1
|
Saravia J, Paschke K, Oyarzún-Salazar R, Cheng CHC, Navarro JM, Vargas-Chacoff L. Effects of warming rates on physiological and molecular components of response to CTMax heat stress in the Antarctic fish Harpagifer antarcticus. J Therm Biol 2021; 99:103021. [PMID: 34420652 DOI: 10.1016/j.jtherbio.2021.103021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/25/2021] [Accepted: 05/30/2021] [Indexed: 12/28/2022]
Abstract
Maximum and minimum Critical thermal limits (CTMax and CTMin) have been studied extensively to assess thermal tolerance in ectotherms by means of ramping assays. Notothenioid fish have been proposed as particularly sensitive to temperature increases related to global climate change. However, there are large gaps in our understanding of the thermal responses of these extreme cold-adapted fish in assays with heating rates. We evaluated the effects of two commonly used heating rates (0.3 and 1 °C/min) on the cellular stress responses in the intertidal Antarctic fish Harpagifer antarcticus immediately after CTMax was reached, and at 2 and 4 h of recovery time in ambient water. We compared CTMax values, the relative transcript expression of genes relvant to heat shock response (Hsc70, Hsp70, Grp78), hypoxia (Hif1-α, LDHa, GR), ubiquitination (Ube2), and apoptosis (SMAC/DIABLO), and five plasma parameters - glucose, lactate, total protein, osmolality and cortisol. CTMax values between the two heating rates are not significantly different, and both rates elicited a similar stress response at molecular and physiological levels. We found a lack of up-regulated response of heat shock proteins, consistent with other Antarctic notothenioids. The general transcriptional pattern trended to downregulation, which was more evident in the slower 0.3 °C/min rate, and instances of upregulation were mainly related to ubiquitination. The faster 1 °C/min rate, rarely used for Antarctic fish, can be suitable for studying cold-adapted stenothermic fish without overestimating thermal tolerance or inducing damage from longer heat exposure.
Collapse
Affiliation(s)
- Julia Saravia
- Escuela de Graduados Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile; Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile, Valdivia, Chile.
| | - Kurt Paschke
- Centro Fondap de Investigación de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile, Valdivia, Chile; Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - Ricardo Oyarzún-Salazar
- Escuela de Graduados Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile; Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - C-H Christina Cheng
- Department of Evolution, Ecology, and Behavior, University of Illinois, Urbana-Champaign, IL, 61801, USA
| | - Jorge M Navarro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
2
|
Mesas A, Jaramillo A, Castañeda LE. Experimental evolution on heat tolerance and thermal performance curves under contrasting thermal selection in Drosophila subobscura. J Evol Biol 2021; 34:767-778. [PMID: 33662149 DOI: 10.1111/jeb.13777] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 01/04/2023]
Abstract
Ectotherms can respond to global warming via evolutionary change of their upper thermal limits (CTmax ). Thus, the estimation of CTmax and its evolutionary potential is crucial to determine their vulnerability to global warming. However, CTmax estimations depend on the thermal stress intensity, and it is not completely clear whether its evolutionary capacity can be affected. Here, we performed an artificial selection experiment to increase heat tolerance using fast- and slow-ramping selection protocols in Drosophila subobscura. We found that heat tolerance evolved in both selection protocols, exhibiting similar evolutionary change rates and realized heritabilities. Additionally, we estimated the thermal performance curves (TPC) to evaluate correlated responses to selection on heat tolerance. We detected that thermal optimum increased in fast-ramping selection lines, but with a cost at the thermal performance breadth. Conversely, we did not detect changes in the TPC for the slow-ramping selection lines, indicating that thermal stress intensity has important effects on the evolution of thermal physiology of ectotherms. These findings, together with previous studies in D. subobscura reporting interpopulation variability and significant heritabilities for heat tolerance, suggest that evolutionary change can contribute to insect persistence in thermally changing environments and adaptation to global warming conditions.
Collapse
Affiliation(s)
- Andrés Mesas
- Laboratorio de Genómica y Biodiversidad, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán, Chile
| | - Angélica Jaramillo
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luis E Castañeda
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
3
|
Cortés AJ, López-Hernández F, Osorio-Rodriguez D. Predicting Thermal Adaptation by Looking Into Populations' Genomic Past. Front Genet 2020; 11:564515. [PMID: 33101385 PMCID: PMC7545011 DOI: 10.3389/fgene.2020.564515] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022] Open
Abstract
Molecular evolution offers an insightful theory to interpret the genomic consequences of thermal adaptation to previous events of climate change beyond range shifts. However, disentangling often mixed footprints of selective and demographic processes from those due to lineage sorting, recombination rate variation, and genomic constrains is not trivial. Therefore, here we condense current and historical population genomic tools to study thermal adaptation and outline key developments (genomic prediction, machine learning) that might assist their utilization for improving forecasts of populations' responses to thermal variation. We start by summarizing how recent thermal-driven selective and demographic responses can be inferred by coalescent methods and in turn how quantitative genetic theory offers suitable multi-trait predictions over a few generations via the breeder's equation. We later assume that enough generations have passed as to display genomic signatures of divergent selection to thermal variation and describe how these footprints can be reconstructed using genome-wide association and selection scans or, alternatively, may be used for forward prediction over multiple generations under an infinitesimal genomic prediction model. Finally, we move deeper in time to comprehend the genomic consequences of thermal shifts at an evolutionary time scale by relying on phylogeographic approaches that allow for reticulate evolution and ecological parapatric speciation, and end by envisioning the potential of modern machine learning techniques to better inform long-term predictions. We conclude that foreseeing future thermal adaptive responses requires bridging the multiple spatial scales of historical and predictive environmental change research under modern cohesive approaches such as genomic prediction and machine learning frameworks.
Collapse
Affiliation(s)
- Andrés J Cortés
- Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, C.I. La Selva, Rionegro, Colombia.,Departamento de Ciencias Forestales, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia - Sede Medellín, Medellín, Colombia
| | - Felipe López-Hernández
- Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, C.I. La Selva, Rionegro, Colombia
| | - Daniela Osorio-Rodriguez
- Division of Geological and Planetary Sciences, California Institute of Technology (Caltech), Pasadena, CA, United States
| |
Collapse
|
4
|
Logan ML, Cox CL. Genetic Constraints, Transcriptome Plasticity, and the Evolutionary Response to Climate Change. Front Genet 2020; 11:538226. [PMID: 33193610 PMCID: PMC7531272 DOI: 10.3389/fgene.2020.538226] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/20/2020] [Indexed: 12/23/2022] Open
Abstract
In situ adaptation to climate change will be critical for the persistence of many ectotherm species due to their relative lack of dispersal capacity. Climate change is causing increases in both the mean and the variance of environmental temperature, each of which may act as agents of selection on different traits. Importantly, these traits may not be heritable or have the capacity to evolve independently from one another. When genetic constraints prevent the "baseline" values of thermal performance traits from evolving rapidly, phenotypic plasticity driven by gene expression might become critical. We review the literature for evidence that thermal performance traits in ectotherms are heritable and have genetic architectures that permit their unconstrained evolution. Next, we examine the relationship between gene expression and both the magnitude and duration of thermal stress. Finally, we identify genes that are likely to be important for adaptation to a changing climate and determine whether they show patterns consistent with thermal adaptation. Although few studies have measured narrow-sense heritabilities of thermal performance traits, current evidence suggests that the end points of thermal reaction norms (tolerance limits) are moderately heritable and have the potential to evolve rapidly. By contrast, performance at intermediate temperatures has substantially lower evolutionary potential. Moreover, evolution in many species appears to be constrained by genetic correlations such that populations can adapt to either increases in mean temperature or temperature variability, but not both. Finally, many species have the capacity for plastic expression of the transcriptome in response to temperature shifts, with the number of differentially expressed genes increasing with the magnitude, but not the duration, of thermal stress. We use these observations to develop a conceptual model that describes the likely trajectory of genome evolution in response to changes in environmental temperature. Our results indicate that extreme weather events, rather than gradual increases in mean temperature, are more likely to drive genetic and phenotypic change in wild ectotherms.
Collapse
Affiliation(s)
- Michael L Logan
- Department of Biology, University of Nevada, Reno, Reno, NV, United States.,Smithsonian Tropical Research Institute, Panama City, Panama
| | - Christian L Cox
- Department of Biological Sciences and Institute of Environment, Florida International University, Miami, FL, United States
| |
Collapse
|
5
|
Pinek L, Mansour I, Lakovic M, Ryo M, Rillig MC. Rate of environmental change across scales in ecology. Biol Rev Camb Philos Soc 2020; 95:1798-1811. [PMID: 32761787 DOI: 10.1111/brv.12639] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 12/27/2022]
Abstract
The rate of change (RoC) of environmental drivers matters: biotic and abiotic components respond differently when faced with a fast or slow change in their environment. This phenomenon occurs across spatial scales and thus levels of ecological organization. We investigated the RoC of environmental drivers in the ecological literature and examined publication trends across ecological levels, including prevalent types of evidence and drivers. Research interest in environmental driver RoC has increased over time (particularly in the last decade), however, the amount of research and type of studies were not equally distributed across levels of organization and different subfields of ecology use temporal terminology (e.g. 'abrupt' and 'gradual') differently, making it difficult to compare studies. At the level of individual organisms, evidence indicates that responses and underlying mechanisms are different when environmental driver treatments are applied at different rates, thus we propose including a time dimension into reaction norms. There is much less experimental evidence at higher levels of ecological organization (i.e. population, community, ecosystem), although theoretical work at the population level indicates the importance of RoC for evolutionary responses. We identified very few studies at the community and ecosystem levels, although existing evidence indicates that driver RoC is important at these scales and potentially could be particularly important for some processes, such as community stability and cascade effects. We recommend shifting from a categorical (e.g. abrupt versus gradual) to a quantitative and continuous (e.g. °C/h) RoC framework and explicit reporting of RoC parameters, including magnitude, duration and start and end points to ease cross-scale synthesis and alleviate ambiguity. Understanding how driver RoC affects individuals, populations, communities and ecosystems, and furthermore how these effects can feed back between levels is critical to making improved predictions about ecological responses to global change drivers. The application of a unified quantitative RoC framework for ecological studies investigating environmental driver RoC will both allow cross-scale synthesis to be accomplished more easily and has the potential for the generation of novel hypotheses.
Collapse
Affiliation(s)
- Liliana Pinek
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, D-14195, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| | - India Mansour
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, D-14195, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| | - Milica Lakovic
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, D-14195, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| | - Masahiro Ryo
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, D-14195, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| | - Matthias C Rillig
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, D-14195, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| |
Collapse
|
6
|
Critical Thermal Limits Do Not Vary between Wild-caught and Captive-bred Tadpoles of Agalychnis spurrelli (Anura: Hylidae). DIVERSITY-BASEL 2020. [DOI: 10.3390/d12020043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Captive-bred organisms are widely used in ecology, evolution and conservation research, especially in scenarios where natural populations are scarce or at risk of extinction. Yet, it is still unclear whether captivity may alter thermal tolerances, crucial traits to predict species resilience to global warming. Here, we study whether captive-bred tadpoles of the gliding treefrog (Agalychnis spurrelli) show different thermal tolerances than wild-caught individuals. Our results show that there are no differences between critical thermal limits (CTmax and CTmin) of captive-bred and wild-caught tadpoles exposed to three-day acclimatization at 20 °C. Therefore, we suggest that the use of captive-bred amphibians is valid and may be appropriate in experimental comparisons to thermal physiological studies of wild populations.
Collapse
|
7
|
Castañeda LE, Romero‐Soriano V, Mesas A, Roff DA, Santos M. Evolutionary potential of thermal preference and heat tolerance in
Drosophila subobscura. J Evol Biol 2019; 32:818-824. [DOI: 10.1111/jeb.13483] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/16/2019] [Accepted: 04/22/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Luis E. Castañeda
- Programa de Genética Humana Facultad de Medicina Instituto de Ciencias Biomédicas Universidad de Chile Santiago Chile
| | | | - Andrés Mesas
- Facultad de Ciencias Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Valdivia Chile
| | - Derek A. Roff
- Department of Evolution, Ecology and Organismal Biology University of California Riverside California
| | - Mauro Santos
- Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE) Departament de Genètica i de Microbiologia Universitat Autònoma de Barcelona Barcelona Spain
| |
Collapse
|
8
|
Muñoz MM, Bodensteiner BL. Janzen's Hypothesis Meets the Bogert Effect: Connecting Climate Variation, Thermoregulatory Behavior, and Rates of Physiological Evolution. Integr Org Biol 2019; 1:oby002. [PMID: 33791511 PMCID: PMC7671085 DOI: 10.1093/iob/oby002] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Understanding the motors and brakes that guide physiological evolution is a topic of keen interest, and is of increasing importance in light of global climate change. For more than half a century, Janzen’s hypothesis has been used to understand how climatic variability influences physiological divergence across elevation and latitude. At the same time, there has been increasing recognition that behavior and physiological evolution are mechanistically linked, with regulatory behaviors often serving to dampen environmental selection and stymie evolution (a phenomenon termed the Bogert effect). Here, we illustrate how some aspects of Janzen’s hypothesis and the Bogert effect can be connected to conceptually link climate, behavior, and rates of physiological evolution in a common framework. First, we demonstrate how thermal heterogeneity varies between nighttime and daytime environments across elevation in a tropical mountain. Using data from Hispaniolan Anolis lizards, we show how clinal variation in cold tolerance is consistent with thermally homogenous nighttime environments. Elevational patterns of heat tolerance and the preferred temperature, in contrast, are best explained by incorporating the buffering effects of thermoregulatory behavior in thermally heterogeneous daytime environments. In turn, climatic variation and behavior interact to determine rates of physiological evolution, with heat tolerance and the preferred temperature evolving much more slowly than cold tolerance. Conceptually bridging some aspects of Janzen’s hypothesis and the Bogert effect provides an integrative, cohesive framework illustrating how environment and behavior interact to shape patterns of physiological evolution.
Collapse
Affiliation(s)
- M M Muñoz
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060
| | - B L Bodensteiner
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060
| |
Collapse
|
9
|
Moyen NE, Somero GN, Denny MW. Impact of heating rate on cardiac thermal tolerance in the California mussel, Mytilus californianus. J Exp Biol 2019; 222:jeb.203166. [DOI: 10.1242/jeb.203166] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/01/2019] [Indexed: 01/06/2023]
Abstract
Intertidal communities of wave-swept rocky shores have served as a powerful model system for experiments in ecology, and mussels (the dominant competitor for space in the mid-intertidal zone) play a central role in determining community structure in this physically stressful habitat. Consequently, our ability to account for mussels’ physiological responses to thermal stress affects ecologists’ abilities to predict the impacts of a warming climate on this ecosystem. Here, we examine the effect of heating rate on cardiac thermal tolerance in the ribbed mussel, Mytilus californianus, comparing populations from high and low sites in the intertidal zone where emersion duration leads to different mean daily heating rates. Two temperature-related cardiac variables were examined: 1) the critical temperature (Hcrit) at which heart rate (HR) precipitously declines, and 2) flatline temperature (FLT) where HR reaches zero. Mussels were heated in air at slow, moderate, and fast rates, and heart rate was measured via an infrared sensor affixed to the shell. Faster heating rates significantly increased Hcrit in high-, but not low-zone mussels, and Hcrit was higher in high vs. - mussels, especially at the fastest heating rate. By contrast, FLT did not differ between zones, and was minimally affected by heating rate. Since heating rate significantly impacted high- but not low-zone mussels’ cardiac thermal tolerance, realistic zone-specific heating rates must be used in laboratory tests if those tests are to provide accurate information for ecological models attempting to predict the effects of increasing temperature on intertidal communities.
Collapse
Affiliation(s)
- Nicole E. Moyen
- Hopkins Marine Station, Department of Biology, Stanford University, USA
| | - George N. Somero
- Hopkins Marine Station, Department of Biology, Stanford University, USA
| | - Mark W. Denny
- Hopkins Marine Station, Department of Biology, Stanford University, USA
| |
Collapse
|
10
|
Diamond SE, Chick LD, Perez A, Strickler SA, Zhao C. Evolution of plasticity in the city: urban acorn ants can better tolerate more rapid increases in environmental temperature. CONSERVATION PHYSIOLOGY 2018; 6:coy030. [PMID: 29977563 PMCID: PMC6007456 DOI: 10.1093/conphys/coy030] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/21/2018] [Accepted: 05/29/2018] [Indexed: 06/07/2023]
Abstract
Because cities contain high levels of impervious surfaces and diminished buffering effects of vegetation cover, urbanized environments can warm faster over the day and exhibit more rapid warming over space due to greater thermal heterogeneity in these environments. Whether organismal physiologies can adapt to these more rapid spatio-temporal changes in temperature rise within cities is unknown, and exploring these responses can inform not only how plastic and evolutionary mechanisms shape organismal physiologies, but also the potential for organisms to cope with urban development. Here, we examined how plasticity in thermal tolerance under faster and slower rates of temperature change might evolve in response to the more rapid spatio-temporal temperature rise in cities. We focused on acorn ants, a temperature-sensitive, ground-dwelling ant species that makes its home inside hollowed out acorns. We reared acorn ant colonies from urban and rural populations under a common garden design in the laboratory and assessed the thermal tolerances of F1 offspring workers using both fast (1°C min-1) and slow (0.2°C min-1) rates of temperature change. Relative to the rural population, the urban population exhibited higher heat tolerance when the temperature was increased quickly, providing evidence that temperature ramp-rate plasticity evolved in the urban population. This result was correlated with both faster rates of diurnal warming in urban acorn ant nest sites and greater spatial heterogeneity in environmental temperature across urban foraging areas. By contrast, rates of diurnal cooling in acorn ant nest sites were similar across urban and rural habitats, and correspondingly, we found that urban and rural populations responded similarly to variation in the rate of temperature decrease when we assessed cold tolerance. Our study highlights the importance of considering not only evolutionary differentiation in trait means across urbanization gradients, but also how trait plasticity might or might not evolve.
Collapse
Affiliation(s)
- Sarah E Diamond
- Department of Biology, Case Western Reserve University, 2080 Adelbert Rd., Cleveland, OH, USA
| | - Lacy D Chick
- Department of Biology, Case Western Reserve University, 2080 Adelbert Rd., Cleveland, OH, USA
| | - Abe Perez
- Department of Biology, Case Western Reserve University, 2080 Adelbert Rd., Cleveland, OH, USA
| | - Stephanie A Strickler
- Department of Biology, Case Western Reserve University, 2080 Adelbert Rd., Cleveland, OH, USA
| | - Crystal Zhao
- Hathaway Brown School, 19600 North Park Boulevard, Shaker Heights, OH, USA
| |
Collapse
|
11
|
Truebano M, Fenner P, Tills O, Rundle SD, Rezende EL. Thermal strategies vary with life history stage. J Exp Biol 2018; 221:jeb.171629. [DOI: 10.1242/jeb.171629] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/14/2018] [Indexed: 01/08/2023]
Abstract
ABSTRACT
With both global surface temperatures and the incidence and intensity of extreme temperature events projected to increase, the assessment of species' sensitivity to chronic and acute changes in temperature has become crucial. Sensitivity predictions are based predominantly on adult responses, despite the fact that early life stages may be more vulnerable to thermal challenge. Here, we compared the sensitivity of different life history stages of the intertidal gastropod Littorina obtusata using thermal death time curves, which incorporate the intensity and duration of heat stress, and used these to calculate upper critical thermal limits (CTmax) and sensitivity to temperature change (z). Early (larval) life stages had both a lower CTmax and a lower z than adults, suggesting they are less good at withstanding short-term extreme thermal challenges but better able to survive moderate temperatures in the long term. This result supports the predicted trade-off between acute and chronic tolerance to thermal stress, and is consistent with the different thermal challenges that these stages encounter in the intertidal zone. We conclude that different life history stages employ different thermal strategies that may be adaptive. Our findings caution against the use of predictions of the impact of global warming that are based on only adult responses and, hence, which may underestimate vulnerability.
Collapse
Affiliation(s)
- Manuela Truebano
- Marine Biology and Ecology Research Centre, Plymouth University, Plymouth PL4 8AA, UK
| | - Phillip Fenner
- Marine Biology and Ecology Research Centre, Plymouth University, Plymouth PL4 8AA, UK
| | - Oliver Tills
- Marine Biology and Ecology Research Centre, Plymouth University, Plymouth PL4 8AA, UK
| | - Simon D. Rundle
- Marine Biology and Ecology Research Centre, Plymouth University, Plymouth PL4 8AA, UK
| | - Enrico L. Rezende
- Departamento de Ecología, Center of Applied Ecology and Sustainability, Facultad de Ciencias Biológicas, Universidad Católica de Chile, Santiago 6513677, Chile
| |
Collapse
|
12
|
Mutamiswa R, Machekano H, Chidawanyika F, Nyamukondiwa C. Thermal resilience may shape population abundance of two sympatric congeneric Cotesia species (Hymenoptera: Braconidae). PLoS One 2018; 13:e0191840. [PMID: 29438408 PMCID: PMC5810992 DOI: 10.1371/journal.pone.0191840] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/11/2018] [Indexed: 11/24/2022] Open
Abstract
Basal and plasticity of thermal tolerance determine abundance, biogeographical patterns and activity of insects over spatial and temporal scales. For coexisting stemborer parasitoids, offering synergistic impact for biological control, mismatches in thermal tolerance may influence their ultimate impact in biocontrol programs under climate variability. Using laboratory-reared congeneric parasitoid species Cotesia sesamiae Cameron and Cotesia flavipes Cameron (Hymenoptera: Braconidae), we examined basal thermal tolerance to understand potential impact of climate variability on their survival and limits to activity. We measured upper- and lower -lethal temperatures (ULTs and LLTs), critical thermal limits [CTLs] (CTmin and CTmax), supercooling points (SCPs), chill-coma recovery time (CCRT) and heat knock-down time (HKDT) of adults. Results showed LLTs ranging -5 to 5°C and -15 to -1°C whilst ULTs ranged 35 to 42°C and 37 to 44°C for C. sesamiae and C. flavipes respectively. Cotesia flavipes had significantly higher heat tolerance (measured as CTmax), as well as cold tolerance (measured as CTmin) relative to C. sesamiae (P<0.0001). While SCPs did not vary significantly (P>0.05), C. flavipes recovered significantly faster following chill-coma and had higher HKDT compared to C. sesamiae. The results suggest marked differential basal thermal tolerance responses between the two congeners, with C. flavipes having an advantage at both temperature extremes. Thus, under predicted climate change, the two species may differ in phenologies and biogeography with consequences on their efficacy as biological control agents. These results may assist in predicting spatio-temporal activity patterns which can be used in integrated pest management programs under climate variability.
Collapse
Affiliation(s)
- Reyard Mutamiswa
- Department of Biology and Biotechnological Sciences, Botswana International University of Science and Technology (BIUST), Palapye, Botswana
| | - Honest Machekano
- Department of Biology and Biotechnological Sciences, Botswana International University of Science and Technology (BIUST), Palapye, Botswana
| | - Frank Chidawanyika
- Agricultural Research Council, Plant Protection Research, Weeds Division, Hilton, South Africa
- School of Lifesciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Casper Nyamukondiwa
- Department of Biology and Biotechnological Sciences, Botswana International University of Science and Technology (BIUST), Palapye, Botswana
| |
Collapse
|
13
|
Diamond SE. Evolutionary potential of upper thermal tolerance: biogeographic patterns and expectations under climate change. Ann N Y Acad Sci 2016; 1389:5-19. [PMID: 27706832 DOI: 10.1111/nyas.13223] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/29/2016] [Accepted: 08/08/2016] [Indexed: 11/26/2022]
Abstract
How will organisms respond to climate change? The rapid changes in global climate are expected to impose strong directional selection on fitness-related traits. A major open question then is the potential for adaptive evolutionary change under these shifting climates. At the most basic level, evolutionary change requires the presence of heritable variation and natural selection. Because organismal tolerances of high temperature place an upper bound on responding to temperature change, there has been a surge of research effort on the evolutionary potential of upper thermal tolerance traits. Here, I review the available evidence on heritable variation in upper thermal tolerance traits, adopting a biogeographic perspective to understand how heritability of tolerance varies across space. Specifically, I use meta-analytical models to explore the relationship between upper thermal tolerance heritability and environmental variability in temperature. I also explore how variation in the methods used to obtain these thermal tolerance heritabilities influences the estimation of heritable variation in tolerance. I conclude by discussing the implications of a positive relationship between thermal tolerance heritability and environmental variability in temperature and how this might influence responses to future changes in climate.
Collapse
Affiliation(s)
- Sarah E Diamond
- Department of Biology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
14
|
Evolution of Plasticity: Mechanistic Link between Development and Reversible Acclimation. Trends Ecol Evol 2016; 31:237-249. [PMID: 26846962 DOI: 10.1016/j.tree.2016.01.004] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 12/29/2015] [Accepted: 01/07/2016] [Indexed: 11/24/2022]
Abstract
Phenotypic characteristics of animals can change independently from changes in the genetic code. These plastic phenotypic responses are important for population persistence in changing environments. Plasticity can be induced during early development, with persistent effects on adult phenotypes, and it can occur reversibly throughout life (acclimation). These manifestations of plasticity have been viewed as separate processes. Here we argue that developmental conditions not only change mean trait values but also modify the capacity for acclimation. Acclimation counteracts the potentially negative effects of phenotype-environment mismatches resulting from epigenetic modifications during early development. Developmental plasticity is therefore also beneficial when environmental conditions change within generations. Hence, the evolution of reversible acclimation can no longer be viewed as independent from developmental processes.
Collapse
|
15
|
Castañeda LE, Rezende EL, Santos M. Heat tolerance in Drosophila subobscura along a latitudinal gradient: Contrasting patterns between plastic and genetic responses. Evolution 2015; 69:2721-34. [PMID: 26292981 DOI: 10.1111/evo.12757] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/13/2015] [Accepted: 08/11/2015] [Indexed: 01/17/2023]
Abstract
Susceptibility to global warming relies on how thermal tolerances respond to increasing temperatures through plasticity or evolution. Climatic adaptation can be assessed by examining the geographic variation in thermal-related traits. We studied latitudinal patterns in heat tolerance in Drosophila subobscura reared at two temperatures. We used four static stressful temperatures to estimate the thermal death time (TDT) curves, and two ramping assays with fast and slow heating rates. Thermal death time curves allow estimation of the critical thermal maximum (CT(max)), by extrapolating to the temperature that would knock down the flies almost "instantaneously," and the thermal sensitivity to increasing stressful temperatures. We found a positive latitudinal cline for CT(max), but no clinal pattern for knockdown temperatures estimated from the ramping assays. Although high-latitude populations were more tolerant to an acute heat stress, they were also more sensitive to prolonged exposure to less stressful temperatures, supporting a trade-off between acute and chronic heat tolerances. Conversely, developmental plasticity did not affect CT(max) but increased the tolerance to chronic heat exposition. The patterns observed from the TDT curves help to understand why the relationship between heat tolerance and latitude depends on the methodology used and, therefore, these curves provide a more complete and reliable measurement of heat tolerance.
Collapse
Affiliation(s)
- Luis E Castañeda
- Instituto de Ecología y Biodiversidad (IEB-Chile), Casilla 653, Santiago, Chile. .,Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, PO 5090000, Valdivia, Chile.
| | - Enrico L Rezende
- Department of Life Sciences, University of Roehampton, Holybourne Avenue, London, SW15 4JD, United Kingdom
| | - Mauro Santos
- Departament de Genètica i de Microbiologia, Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Universitat Autonòma de Barcelona, 08193, Bellaterra (Barcelona), Spain
| |
Collapse
|
16
|
Hangartner S, Hoffmann AA. Evolutionary potential of multiple measures of upper thermal tolerance in
D
rosophila melanogaster. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12499] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sandra Hangartner
- School of BioSciences The University of Melbourne 30 Flemington Road Parkville Vic.3010 Australia
- School of Biological Sciences Monash University, Clayton Campus Building 18Vic.3800 Australia
| | - Ary A. Hoffmann
- School of BioSciences The University of Melbourne 30 Flemington Road Parkville Vic.3010 Australia
| |
Collapse
|
17
|
Affiliation(s)
- Enrico L. Rezende
- Department of Life Sciences; University of Roehampton; Holybourne Avenue London SW15 4JD UK
| | - Luis E. Castañeda
- Instituto de Ecología y Biodiversidad (IEB); Universidad de Chile; Casilla 653 Santiago Chile
- Instituto de Ciencias Ambientales y Evolutivas; Universidad Austral de Chile; PO 5090000 Valdivia Chile
| | - Mauro Santos
- Departament de Genètica i de Microbiologia; Grup de Biologia Evolutiva (GBE); Universitat Autònoma de Barcelona; 08193 Bellaterra (Barcelona) Spain
| |
Collapse
|
18
|
Culumber ZW, Monks S. Resilience to extreme temperature events: acclimation capacity and body condition of a polymorphic fish in response to thermal stress. Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12230] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zachary W. Culumber
- Centro de Investigaciones Biologicas; Universidad Autónoma del Estado de Hidalgo; Pachuca Hidalgo 42001 Mexico
- Centro de Investigaciones de las Huastecas Aguazarca; 16 de Septiembre Aguazarca Calnali Hidalgo 392 Mexico
| | - Scott Monks
- Centro de Investigaciones Biologicas; Universidad Autónoma del Estado de Hidalgo; Pachuca Hidalgo 42001 Mexico
| |
Collapse
|
19
|
Blackburn S, Kellmermann V, van Heerwaarden B, Sgrò CM. Evolutionary capacity of upper thermal limits: beyond single trait assessments. J Exp Biol 2014; 217:1918-24. [DOI: 10.1242/jeb.099184] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Thermal tolerance is an important factor influencing the distribution of ectotherms, but we still have limited understanding of the ability of species to evolve different thermal limits. Recent studies suggest that species may have limited capaity to evolve higher themal limits in response to slower, more ecologically relevant rates of warming. However these conclusions are based on univarite estimates of adaptive capacity. To test these findings within an explicitly multivariate context, we used a paternal half-sibling breeding design to estimate the multivariate evolutionary potential for upper thermal limits in Drosophila melanogaster. We assessed heat tolerance using static (basal and hardened) and ramping assays. Additive genetic variances were significantly different from zero only for the static measures of heat tolerance. Our G matrix analysis revealed that any response to selection for increased heat tolerance will largely be driven by static basal and hardened heat tolerance, with minimal contribution from ramping heat tolerance. These results suggest that the capacity to evolve upper thermal limits in nature may depend on the type of thermal stress experienced.
Collapse
|
20
|
Nespolo RF, Bartheld JL, González A, Bruning A, Roff DA, Bacigalupe LD, Gaitán‐Espitia JD. The quantitative genetics of physiological and morphological traits in an invasive terrestrial snail: additive vs. non‐additive genetic variation. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12203] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Roberto F. Nespolo
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile
| | - José L. Bartheld
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile
| | - Avia González
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile
| | - Andrea Bruning
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile
| | - Derek A. Roff
- Department of Biology University of California Riverside CaliforniaUSA
| | - Leonardo D. Bacigalupe
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile
| | - Juan D. Gaitán‐Espitia
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile
| |
Collapse
|
21
|
Paaijmans KP, Heinig RL, Seliga RA, Blanford JI, Blanford S, Murdock CC, Thomas MB. Temperature variation makes ectotherms more sensitive to climate change. GLOBAL CHANGE BIOLOGY 2013; 19:2373-80. [PMID: 23630036 PMCID: PMC3908367 DOI: 10.1111/gcb.12240] [Citation(s) in RCA: 326] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/08/2013] [Indexed: 05/03/2023]
Abstract
Ectotherms are considered to be particularly vulnerable to climate warming. Descriptions of habitat temperatures and predicted changes in climate usually consider mean monthly, seasonal or annual conditions. Ectotherms, however, do not simply experience mean conditions, but are exposed to daily fluctuations in habitat temperatures. Here, we highlight how temperature fluctuation can generate 'realized' thermal reaction (fitness) norms that differ from the 'fundamental' norms derived under standard constant temperatures. Using a mosquito as a model organism, we find that temperature fluctuation reduces rate processes such as development under warm conditions, increases processes under cool conditions, and reduces both the optimum and the critical maximum temperature. Generalizing these effects for a range of terrestrial insects reveals that prevailing daily fluctuations in temperature should alter the sensitivity of species to climate warming by reducing 'thermal safety margins'. Such effects of daily temperature dynamics have generally been ignored in the climate change literature.
Collapse
Affiliation(s)
- Krijn P Paaijmans
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | | | | | |
Collapse
|