1
|
Schneider HM. Characterization, costs, cues and future perspectives of phenotypic plasticity. ANNALS OF BOTANY 2022; 130:131-148. [PMID: 35771883 PMCID: PMC9445595 DOI: 10.1093/aob/mcac087] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/28/2022] [Indexed: 06/09/2023]
Abstract
BACKGROUND Plastic responses of plants to the environment are ubiquitous. Phenotypic plasticity occurs in many forms and at many biological scales, and its adaptive value depends on the specific environment and interactions with other plant traits and organisms. Even though plasticity is the norm rather than the exception, its complex nature has been a challenge in characterizing the expression of plasticity, its adaptive value for fitness and the environmental cues that regulate its expression. SCOPE This review discusses the characterization and costs of plasticity and approaches, considerations, and promising research directions in studying plasticity. Phenotypic plasticity is genetically controlled and heritable; however, little is known about how organisms perceive, interpret and respond to environmental cues, and the genes and pathways associated with plasticity. Not every genotype is plastic for every trait, and plasticity is not infinite, suggesting trade-offs, costs and limits to expression of plasticity. The timing, specificity and duration of plasticity are critical to their adaptive value for plant fitness. CONCLUSIONS There are many research opportunities to advance our understanding of plant phenotypic plasticity. New methodology and technological breakthroughs enable the study of phenotypic responses across biological scales and in multiple environments. Understanding the mechanisms of plasticity and how the expression of specific phenotypes influences fitness in many environmental ranges would benefit many areas of plant science ranging from basic research to applied breeding for crop improvement.
Collapse
|
2
|
McCormick MI, Chivers DP, Ferrari MCO, Blandford MI, Nanninga GB, Richardson C, Fakan EP, Vamvounis G, Gulizia AM, Allan BJM. Microplastic exposure interacts with habitat degradation to affect behaviour and survival of juvenile fish in the field. Proc Biol Sci 2020; 287:20201947. [PMID: 33109008 DOI: 10.1098/rspb.2020.1947] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Coral reefs are degrading globally due to increased environmental stressors including warming and elevated levels of pollutants. These stressors affect not only habitat-forming organisms, such as corals, but they may also directly affect the organisms that inhabit these ecosystems. Here, we explore how the dual threat of habitat degradation and microplastic exposure may affect the behaviour and survival of coral reef fish in the field. Fish were caught prior to settlement and pulse-fed polystyrene microplastics six times over 4 days, then placed in the field on live or dead-degraded coral patches. Exposure to microplastics or dead coral led fish to be bolder, more active and stray further from shelter compared to control fish. Effect sizes indicated that plastic exposure had a greater effect on behaviour than degraded habitat, and we found no evidence of synergistic effects. This pattern was also displayed in their survival in the field. Our results highlight that attaining low concentrations of microplastic in the environment will be a useful management strategy, since minimizing microplastic intake by fishes may work concurrently with reef restoration strategies to enhance the resilience of coral reef populations.
Collapse
Affiliation(s)
- Mark I McCormick
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon SK S7N 5E2, Canada
| | - Maud C O Ferrari
- Department of Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon SK S7 W 5B4, Canada
| | - Makeely I Blandford
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Gerrit B Nanninga
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK.,Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Celia Richardson
- Department of Marine Science, University of Otago, Dunedin 9054, New Zealand
| | - Eric P Fakan
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - George Vamvounis
- College of Sciences and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Alexandra M Gulizia
- College of Sciences and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Bridie J M Allan
- Department of Marine Science, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
3
|
Ferrari MCO, McCormick MI, Fakan E, Barry R, Chivers DP. The fading of fear effects due to coral degradation is modulated by community composition. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maud C. O. Ferrari
- Department of Biomedical Sciences WCVMUniversity of Saskatchewan Saskatoon SK Canada
| | - Mark I. McCormick
- Department of Marine Biology and Aquaculture James Cook University Townsville QLD Australia
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville QLD Australia
| | - Eric Fakan
- Department of Marine Biology and Aquaculture James Cook University Townsville QLD Australia
| | - Randall Barry
- Department of Marine Biology and Aquaculture James Cook University Townsville QLD Australia
| | | |
Collapse
|
4
|
Bonamour S, Chevin LM, Charmantier A, Teplitsky C. Phenotypic plasticity in response to climate change: the importance of cue variation. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180178. [PMID: 30966957 DOI: 10.1098/rstb.2018.0178] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phenotypic plasticity is a major mechanism of response to global change. However, current plastic responses will only remain adaptive under future conditions if informative environmental cues are still available. We briefly summarize current knowledge of the evolutionary origin and mechanistic underpinnings of environmental cues for phenotypic plasticity, before highlighting the potentially complex effects of global change on cue availability and reliability. We then illustrate some of these aspects with a case study, comparing plasticity of blue tit breeding phenology in two contrasted habitats: evergreen and deciduous forests. Using long-term datasets, we investigate the climatic factors linked to the breeding phenology of the birds and their main food source. Blue tits occupying different habitats differ extensively in the cues affecting laying date plasticity, as well as in the reliability of these cues as predictors of the putative driver of selective pressure, the date of caterpillar peak. The temporal trend for earlier laying date, detected only in the evergreen populations, is explained by increased temperature during their cue windows. Our results highlight the importance of integrating ecological mechanisms shaping variation in plasticity if we are to understand how global change will affect plasticity and its consequences for population biology. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.
Collapse
Affiliation(s)
- Suzanne Bonamour
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE , Campus CNRS, 1919 Route de Mende, 34293 Montpellier 5 , France
| | - Luis-Miguel Chevin
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE , Campus CNRS, 1919 Route de Mende, 34293 Montpellier 5 , France
| | - Anne Charmantier
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE , Campus CNRS, 1919 Route de Mende, 34293 Montpellier 5 , France
| | - Céline Teplitsky
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE , Campus CNRS, 1919 Route de Mende, 34293 Montpellier 5 , France
| |
Collapse
|
5
|
Habitat degradation and predators have independent trait-mediated effects on prey. Sci Rep 2019; 9:15705. [PMID: 31673067 PMCID: PMC6823502 DOI: 10.1038/s41598-019-51798-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/07/2019] [Indexed: 11/13/2022] Open
Abstract
Coral reefs are degrading globally leading to a catastrophic loss of biodiversity. While shifts in the species composition of communities have been well documented associated with habitat change, the mechanisms that underlie change are often poorly understood. Our study experimentally examines the effects of coral degradation on the trait-mediated effects of predators on the morphology, behaviour and performance of a juvenile coral reef fish. Juvenile damselfish were exposed to predators or controls (omnivore or nothing) in seawater that had flowed over either live or dead-degraded coral over a 45d period. No interaction between water source and predator exposure was found. However, fish exposed to degraded water had larger false eyespots relative to the size of their true eyes, and were more active, both of which may lead to a survival advantage. Non-consumptive effects of predators on prey occurred regardless of water source and included longer and deeper bodies, large false eyespots that may distract predator strikes away from the vulnerable head region, and shorter latencies in their response to a simulated predator strike. Research underscores that phenotypic plasticity may assist fishes in coping with habitat degradation and promote greater resilience to habitat change than may otherwise be predicted.
Collapse
|
6
|
McCormick MI, Ferrari MC, Fakan EP, Barry RP, Chivers DP. Diet cues and their utility for risk assessment in degraded habitats. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Draper AM, Weissburg MJ. Impacts of Global Warming and Elevated CO2 on Sensory Behavior in Predator-Prey Interactions: A Review and Synthesis. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00072] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
8
|
Loss of live coral compromises predator-avoidance behaviour in coral reef damselfish. Sci Rep 2018; 8:7795. [PMID: 29773843 PMCID: PMC5958076 DOI: 10.1038/s41598-018-26090-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/19/2018] [Indexed: 11/09/2022] Open
Abstract
Tropical reefs have experienced an unprecedented loss of live coral in the past few decades and the biodiversity of coral-dependent species is under threat. Many reef fish species decline in abundance as coral cover is lost, yet the mechanisms responsible for these losses are largely unknown. A commonly hypothesised cause of fish decline is the loss of shelter space between branches as dead corals become overgrown by algae. Here we tested this hypothesis by quantifying changes in predator-avoidance behaviour of a common damselfish, Pomacentrus moluccensis, before and after the death of their coral colony. Groups of P. moluccensis were placed on either healthy or degraded coral colonies, startled using a visual stimulus and their sheltering responses compared over a 7-week period. P. moluccensis stopped sheltering amongst the coral branches immediately following the death of the coral, despite the presence of ample shelter space. Instead, most individuals swam away from the dead coral, potentially increasing their exposure to predators. It appears that the presence of live coral rather than shelter per se is the necessary cue that elicits the appropriate behavioural response to potential predators. The disruption of this link poses an immediate threat to coral-associated fishes on degrading reefs.
Collapse
|
9
|
McCormick MI, Allan BJM, Harding H, Simpson SD. Boat noise impacts risk assessment in a coral reef fish but effects depend on engine type. Sci Rep 2018; 8:3847. [PMID: 29497097 PMCID: PMC5832755 DOI: 10.1038/s41598-018-22104-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/16/2018] [Indexed: 11/09/2022] Open
Abstract
Human noise pollution has increased markedly since the start of industrialization and there is international concern about how this may impact wildlife. Here we determined whether real motorboat noise affected the behavior, space use and escape response of a juvenile damselfish (Pomacentrus wardi) in the wild, and explored whether fish respond effectively to chemical and visual threats in the presence of two common types of motorboat noise. Noise from 30 hp 2-stroke outboard motors reduced boldness and activity of fish on habitat patches compared to ambient reef-sound controls. Fish also no longer responded to alarm odours with an antipredator response, instead increasing activity and space use, and fewer fish responded appropriately to a looming threat. In contrast, while there was a minor influence of noise from a 30 hp 4-stroke outboard on space use, there was no influence on their ability to respond to alarm odours, and no impact on their escape response. Evidence suggests that anthropogenic noise impacts the way juvenile fish assess risk, which will reduce individual fitness and survival, however, not all engine types cause major effects. This finding may give managers options by which they can reduce the impact of motorboat noise on inshore fish communities.
Collapse
Affiliation(s)
- Mark I McCormick
- ARC Centre of Excellence for Coral Reef Studies, and College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland, 4811, Australia.
| | - Bridie J M Allan
- ARC Centre of Excellence for Coral Reef Studies, and College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland, 4811, Australia
- Institute of Marine Research, Bergen, Norway
| | - Harry Harding
- School of Biological Sciences & Cabot Institute, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Stephen D Simpson
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, EX4 4QD, UK
| |
Collapse
|
10
|
McCormick MI, Barry RP, Allan BJM. Algae associated with coral degradation affects risk assessment in coral reef fishes. Sci Rep 2017; 7:16937. [PMID: 29208978 PMCID: PMC5717098 DOI: 10.1038/s41598-017-17197-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/22/2017] [Indexed: 01/26/2023] Open
Abstract
Habitat degradation alters the chemical landscape through which information about community dynamics is transmitted. Olfactory information is crucial for risk assessment in aquatic organisms as predators release odours when they capture prey that lead to an alarm response in conspecific prey. Recent studies show some coral reef fishes are unable to use alarm odours when surrounded by dead-degraded coral. Our study examines the spatial and temporal dynamics of this alarm odour-nullifying effect, and which substratum types may be responsible. Field experiments showed that settlement-stage damselfish were not able to detect alarm odours within 2 m downcurrent of degraded coral, and that the antipredator response was re-established 20-40 min after transferral to live coral. Laboratory experiments indicate that the chemicals from common components of the degraded habitats, the cyanobacteria, Okeania sp., and diatom, Pseudo-nitzschia sp.prevented an alarm odour response. The same nullifying effect was found for the common red algae, Galaxauria robusta, suggesting that the problem is of a broader nature than previously realised. Those fish species best able to compensate for a lack of olfactory risk information at key times will be those potentially most resilient to the effects of coral degradation that operate through this mechanism.
Collapse
Affiliation(s)
- Mark I McCormick
- ARC Centre of Excellence for Coral Reef Studies, and Department of Marine Biology and Aquaculture, James Cook University, Townsville, Queensland, 4811, Australia.
| | - Randall P Barry
- ARC Centre of Excellence for Coral Reef Studies, and Department of Marine Biology and Aquaculture, James Cook University, Townsville, Queensland, 4811, Australia
| | - Bridie J M Allan
- ARC Centre of Excellence for Coral Reef Studies, and Department of Marine Biology and Aquaculture, James Cook University, Townsville, Queensland, 4811, Australia
- Institute of Marine Research, Bergen, Norway
| |
Collapse
|
11
|
Ferrari MCO, McCormick MI, Allan BJM, Chivers DP. Not equal in the face of habitat change: closely related fishes differ in their ability to use predation-related information in degraded coral. Proc Biol Sci 2017; 284:rspb.2016.2758. [PMID: 28404773 PMCID: PMC5394659 DOI: 10.1098/rspb.2016.2758] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/13/2017] [Indexed: 12/03/2022] Open
Abstract
Coral reefs are biodiversity hotpots that are under significant threat due to the degradation and death of hard corals. When obligate coral-dwelling species die, the remaining species must either move or adjust to the altered conditions. Our goal was to investigate the effect of coral degradation on the ability of coral reef fishes to assess their risk of predation using alarm cues from injured conspecifics. Here, we tested the ability of six closely related species of juvenile damselfish (Pomacentridae) to respond to risk cues in both live coral or dead-degraded coral environments. Of those six species, two are exclusively associated with live coral habitats, two are found mostly on dead-degraded coral rubble, while the last two are found in both habitat types. We found that the two live coral associates failed to respond appropriately to the cues in water from degraded habitats. In contrast, the cue response of the two rubble associates was unaffected in the same degraded habitat. Interestingly, we observed a mixed response from the species found in both habitat types, with one species displaying an appropriate cue response while the other did not. Our second experiment suggested that the lack of responses stemmed from deactivation of the alarm cues, rather than the inability of the species to smell. Habitat preference (live coral versus dead coral associates) and phylogeny are good candidates for future work aimed at predicting which species are affected by coral degradation. Our results point towards a surprising level of variation in the ability of congeneric species to fare in altered habitats and hence underscores the difficulty of predicting community change in degraded habitats.
Collapse
Affiliation(s)
- Maud C O Ferrari
- Department of Biomedical Sciences, WCVM, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, Canada
| | - Mark I McCormick
- ARC Centre of Excellence for Coral Reef Studies, and Discipline of Marine Biology and Aquaculture, James Cook University, Townsville, Queensland, Australia
| | - Bridie J M Allan
- ARC Centre of Excellence for Coral Reef Studies, and Discipline of Marine Biology and Aquaculture, James Cook University, Townsville, Queensland, Australia
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Canada
| |
Collapse
|
12
|
McCormick MI, Lönnstedt OM. Disrupted learning: habitat degradation impairs crucial antipredator responses in naive prey. Proc Biol Sci 2017; 283:rspb.2016.0441. [PMID: 27170715 DOI: 10.1098/rspb.2016.0441] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/18/2016] [Indexed: 11/12/2022] Open
Abstract
Habitat degradation is a global problem and one of the main causes of biodiversity loss. Though widespread, the mechanisms that underlie faunal changes are poorly understood. In tropical marine systems, corals play a crucial role in forming habitat, but coral cover on many reefs is declining sharply. Coral degradation affects the olfactory cues that provide reliable information on the presence and intensity of threat. Here, we show for the first time that the ability of a habitat generalist to learn predators using an efficient and widespread method of predator learning is compromised in degraded coral habitats. Results indicate that chemical alarm cues are no longer indicative of a local threat for the habitat generalist (the damselfish, Pomacentrus amboinensis), and these cues can no longer be used to learn the identity of novel predators in degraded habitats. By contrast, a rubble specialist and congeneric (Pomacentrus coelestis) responded to olfactory threat cues regardless of background environment and could learn the identity of a novel predator using chemical alarm cues. Understanding how some species can cope with or acclimate to the detrimental impacts of habitat degradation on risk assessment abilities will be crucial to defining the scope of resilience in threatened communities.
Collapse
Affiliation(s)
- Mark I McCormick
- ARC Centre of Excellence for Coral Reef Studies and College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland, Australia
| | - Oona M Lönnstedt
- ARC Centre of Excellence for Coral Reef Studies and College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland, Australia Department of Ecology and Genetics, Limnology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Sundin J, Amcoff M, Mateos-González F, Raby GD, Jutfelt F, Clark TD. Long-term exposure to elevated carbon dioxide does not alter activity levels of a coral reef fish in response to predator chemical cues. Behav Ecol Sociobiol 2017; 71:108. [PMID: 28736477 PMCID: PMC5498585 DOI: 10.1007/s00265-017-2337-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/08/2017] [Accepted: 06/14/2017] [Indexed: 02/02/2023]
Abstract
Abstract Levels of dissolved carbon dioxide (CO2) projected to occur in the world’s oceans in the near future have been reported to increase swimming activity and impair predator recognition in coral reef fishes. These behavioral alterations would be expected to have dramatic effects on survival and community dynamics in marine ecosystems in the future. To investigate the universality and replicability of these observations, we used juvenile spiny chromis damselfish (Acanthochromis polyacanthus) to examine the effects of long-term CO2 exposure on routine activity and the behavioral response to the chemical cues of a predator (Cephalopholis urodeta). Commencing at ~3–20 days post-hatch, juvenile damselfish were exposed to present-day CO2 levels (~420 μatm) or to levels forecasted for the year 2100 (~1000 μatm) for 3 months of their development. Thereafter, we assessed routine activity before and after injections of seawater (sham injection, control) or seawater-containing predator chemical cues. There was no effect of CO2 treatment on routine activity levels before or after the injections. All fish decreased their swimming activity following the predator cue injection but not following the sham injection, regardless of CO2 treatment. Our results corroborate findings from a growing number of studies reporting limited or no behavioral responses of fishes to elevated CO2. Significance statement Alarmingly, it has been reported that levels of dissolved carbon dioxide (CO2) forecasted for the year 2100 cause coral reef fishes to be attracted to the chemical cues of predators. However, most studies have exposed the fish to CO2 for very short periods before behavioral testing. Using long-term acclimation to elevated CO2 and automated tracking software, we found that fish exposed to elevated CO2 showed the same behavioral patterns as control fish exposed to present-day CO2 levels. Specifically, activity levels were the same between groups, and fish acclimated to elevated CO2 decreased their swimming activity to the same degree as control fish when presented with cues from a predator. These findings indicate that behavioral impacts of elevated CO2 levels are not universal in coral reef fishes. Electronic supplementary material The online version of this article (doi:10.1007/s00265-017-2337-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Josefin Sundin
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Mirjam Amcoff
- Department of Zoology/Functional Zoomorphology, Stockholm University, Stockholm, Sweden.,Section of Integrative Biology, University of Texas, Austin, TX USA
| | - Fernando Mateos-González
- Section of Integrative Biology, University of Texas, Austin, TX USA.,Department of Collective Behaviour, Max Planck Institute for Ornithology, University of Konstanz, Konstanz, Germany
| | - Graham D Raby
- Australian Institute of Marine Science, Townsville, Queensland Australia.,Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario Canada
| | - Fredrik Jutfelt
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Timothy D Clark
- Australian Institute of Marine Science, Townsville, Queensland Australia.,University of Tasmania and CSIRO Agriculture and Food, Hobart, Tasmania Australia
| |
Collapse
|
14
|
Natt M, Lönnstedt OM, McCormick MI. Coral reef fish predator maintains olfactory acuity in degraded coral habitats. PLoS One 2017; 12:e0179300. [PMID: 28658295 PMCID: PMC5489151 DOI: 10.1371/journal.pone.0179300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 05/26/2017] [Indexed: 11/30/2022] Open
Abstract
Coral reefs around the world are rapidly degrading due to a range of environmental stressors. Habitat degradation modifies the sensory landscape within which predator-prey interactions occur, with implications for olfactory-mediated behaviours. Predator naïve settlement-stage damselfish rely on conspecific damage-released odours (i.e., alarm odours) to inform risk assessments. Yet, species such as the Ambon damselfish, Pomacentrus amboinensis, become unable to respond appropriately to these cues when living in dead-degraded coral habitats, leading to increased mortality through loss of vigilance. Reef fish predators also rely on odours from damaged prey to locate, assess prey quality and engage in prey-stealing, but it is unknown whether their responses are also modified by the change to dead-degraded coral habitats. Implications for prey clearly depend on how their predatory counterparts are affected, therefore the present study tested whether olfactory-mediated foraging responses in the dusky dottyback, Pseudochromis fuscus, a common predator of P. amboinensis, were similarly affected by coral degradation. A y-maze was used to measure the ability of Ps. fuscus to detect and move towards odours, against different background water sources. Ps. fuscus were exposed to damage-released odours from juvenile P. amboinensis, or a control cue of seawater, against a background of seawater treated with either healthy or dead-degraded hard coral. Predators exhibited an increased time allocation to the chambers of y-mazes injected with damage-released odours, with comparable levels of response in both healthy and dead-degraded coral treated waters. In control treatments, where damage-released odours were replaced with a control seawater cue, fish showed no increased preference for either chamber of the y-maze. Our results suggest that olfactory-mediated foraging behaviours may persist in Ps. fuscus within dead-degraded coral habitats. Ps. fuscus may consequently gain a sensory advantage over P. amboinensis, potentially altering the outcome of predator-prey interactions.
Collapse
Affiliation(s)
- Michael Natt
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- Department of Marine Biology and Aquaculture, James Cook University, Townsville, Queensland, Australia
| | - Oona M. Lönnstedt
- Department of Ecology and Genetics, Limnology, Uppsala University, Uppsala, Sweden
| | - Mark I. McCormick
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- Department of Marine Biology and Aquaculture, James Cook University, Townsville, Queensland, Australia
- * E-mail:
| |
Collapse
|
15
|
McCormick MI, Allan BJM. Interspecific differences in how habitat degradation affects escape response. Sci Rep 2017; 7:426. [PMID: 28348362 PMCID: PMC5428724 DOI: 10.1038/s41598-017-00521-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 03/03/2017] [Indexed: 12/20/2022] Open
Abstract
Degradation of habitats is widespread and a leading cause of extinctions. Our study determined whether the change in the chemical landscape associated with coral degradation affected the way three fish species use olfactory information to optimize their fast-start escape response. Water from degraded coral habitats affected the fast-start response of the three closely-related damselfishes, but its effect differed markedly among species. The Ward's damselfish (Pomacentrus wardi) was most affected by water from degraded coral, and displayed shorter distances covered in the fast-start and slower escape speeds compared to fish in water from healthy coral. In the presence of alarm odours, which indicate an imminent threat, the Ambon damsel (P. amboinensis) displayed enhanced fast-start performance in water from healthy coral, but not when in water from degraded coral. In contrast, while the white-tailed damsel (P. chrysurus) was similarly primed by its alarm odour, the elevation of fast start performance was not altered by water from degraded coral. These species-specific responses to the chemistry of degraded water and alarm odours suggest differences in the way alarm odours interact with the chemical landscape, and differences in the way species balance information about threats, with likely impacts on the survival of affected species in degraded habitats.
Collapse
Affiliation(s)
- Mark I McCormick
- ARC Centre of Excellence for Coral Reef Studies and Department of Marine Biology and Aquaculture, James Cook University, Townsville, QLD 4811, Australia.
| | - Bridie J M Allan
- ARC Centre of Excellence for Coral Reef Studies and Department of Marine Biology and Aquaculture, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
16
|
McCormick MI, Chivers DP, Allan BJM, Ferrari MCO. Habitat degradation disrupts neophobia in juvenile coral reef fish. GLOBAL CHANGE BIOLOGY 2017; 23:719-727. [PMID: 27393344 DOI: 10.1111/gcb.13393] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 06/01/2016] [Indexed: 06/06/2023]
Abstract
Habitat degradation not only disrupts habitat-forming species, but alters the sensory landscape within which most species must balance behavioural activities against predation risk. Rapidly developing a cautious behavioural phenotype, a condition known as neophobia, is advantageous when entering a novel risky habitat. Many aquatic organisms rely on damage-released conspecific cues (i.e. alarm cues) as an indicator of impending danger and use them to assess general risk and develop neophobia. This study tested whether settlement-stage damselfish associated with degraded coral reef habitats were able to use alarm cues as an indicator of risk and, in turn, develop a neophobic response at the end of their larval phase. Our results indicate that fish in live coral habitats that were exposed to alarm cues developed neophobia, and, in situ, were found to be more cautious, more closely associated with their coral shelters and survived four-times better than non-neophobic control fish. In contrast, fish that settled onto degraded coral habitats did not exhibit neophobia and consequently suffered much greater mortality on the reef, regardless of their history of exposure to alarm cues. Our results show that habitat degradation alters the efficacy of alarm cues with phenotypic and survival consequences for newly settled recruits.
Collapse
Affiliation(s)
- Mark I McCormick
- ARC Centre of Excellence for Coral Reef Studies, College of Marine and Environmental Sciences, James Cook University, Townsville, Qld, 4811, Australia
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Bridie J M Allan
- ARC Centre of Excellence for Coral Reef Studies, College of Marine and Environmental Sciences, James Cook University, Townsville, Qld, 4811, Australia
| | - Maud C O Ferrari
- Department of Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, SK, S7W 5B4, Canada
| |
Collapse
|
17
|
McCormick MI, Allan BJM. Lionfish misidentification circumvents an optimized escape response by prey. CONSERVATION PHYSIOLOGY 2016; 4:cow064. [PMID: 27990292 PMCID: PMC5156895 DOI: 10.1093/conphys/cow064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 11/02/2016] [Accepted: 11/08/2016] [Indexed: 06/06/2023]
Abstract
Invasive lionfish represent an unprecedented problem in the Caribbean basin, where they are causing major changes to foodwebs and habitats through their generalized predation on fishes and invertebrates. To ascertain what makes the red lionfish (Pterois volitans) such a formidable predator, we examined the reaction of a native damselfish prey, the whitetail damsel (Pomacentrus chrysurus), to a repeatable startle stimulus once they had been forewarned of the sight or smell of lionfish. Fast-start responses were compared with prey forewarned of a predatory rockcod (Cephalopholis microprion), a corallivorous butterflyfish (Chaetodon trifasctiatus) and experimental controls. Forewarning of the sight, smell or a combination of the two cues from a rockcod led to reduced escape latencies and higher response distances, speed and maximal speed compared with controls, suggesting that forewarning primed the prey and enabled a more effective escape response. In contrast, forewarning of lionfish did not affect the fast-start kinematics measured, which were the same as in the control and non-predatory butterflyfish treatments. Lionfish appear to be able to circumvent mechanisms commonly used by prey to identify predators and were misclassified as non-predatory, and this is likely to contribute to their success as predators.
Collapse
Affiliation(s)
- Mark I. McCormick
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
- Department of Marine Biology and Aquaculture, James Cook University, Townsville, QLD 4811, Australia
| | - Bridie J. M. Allan
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
- Department of Marine Biology and Aquaculture, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
18
|
Risk assessment and predator learning in a changing world: understanding the impacts of coral reef degradation. Sci Rep 2016; 6:32542. [PMID: 27611870 PMCID: PMC5017198 DOI: 10.1038/srep32542] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/08/2016] [Indexed: 01/22/2023] Open
Abstract
Habitat degradation is among the top drivers of the loss of global biodiversity. This problem is particularly acute in coral reef system. Here we investigated whether coral degradation influences predator risk assessment and learning for damselfish. When in a live coral environment, Ambon damselfish were able to learn the identity of an unknown predator upon exposure to damselfish alarm cues combined with predator odour and were able to socially transmit this learned recognition to naïve conspecifics. However, in the presence of dead coral water, damselfish failed to learn to recognize the predator through alarm cue conditioning and hence could not transmit the information socially. Unlike alarm cues of Ambon damselfish that appear to be rendered unusable in degraded coral habitats, alarm cues of Nagasaki damselfish remain viable in this same environment. Nagasaki damselfish were able to learn predators through conditioning with alarm cues in degraded habitats and subsequently transmit the information socially to Ambon damselfish. Predator-prey dynamics may be profoundly affected as habitat degradation proceeds; the success of one species that appears to have compromised predation assessment and learning, may find itself reliant on other species that are seemingly unaffected by the same degree of habitat degradation.
Collapse
|
19
|
del Mar Palacios M, Warren DT, McCormick MI. Sensory cues of a top-predator indirectly control a reef fish mesopredator. OIKOS 2015. [DOI: 10.1111/oik.02116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Maria del Mar Palacios
- ARC Centre of Excellence for Coral Reef Studies, and College of Marine and Environmental Sciences, James Cook Univ.; Townsville Queensland 4811 Australia
| | - Donald T. Warren
- ARC Centre of Excellence for Coral Reef Studies, and College of Marine and Environmental Sciences, James Cook Univ.; Townsville Queensland 4811 Australia
| | - Mark I. McCormick
- ARC Centre of Excellence for Coral Reef Studies, and College of Marine and Environmental Sciences, James Cook Univ.; Townsville Queensland 4811 Australia
| |
Collapse
|
20
|
Heuer RM, Grosell M. Physiological impacts of elevated carbon dioxide and ocean acidification on fish. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1061-84. [DOI: 10.1152/ajpregu.00064.2014] [Citation(s) in RCA: 258] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Most fish studied to date efficiently compensate for a hypercapnic acid-base disturbance; however, many recent studies examining the effects of ocean acidification on fish have documented impacts at CO2 levels predicted to occur before the end of this century. Notable impacts on neurosensory and behavioral endpoints, otolith growth, mitochondrial function, and metabolic rate demonstrate an unexpected sensitivity to current-day and near-future CO2 levels. Most explanations for these effects seem to center on increases in Pco2 and HCO3− that occur in the body during pH compensation for acid-base balance; however, few studies have measured these parameters at environmentally relevant CO2 levels or directly related them to reported negative endpoints. This compensatory response is well documented, but noted variation in dynamic regulation of acid-base transport pathways across species, exposure levels, and exposure duration suggests that multiple strategies may be utilized to cope with hypercapnia. Understanding this regulation and changes in ion gradients in extracellular and intracellular compartments during CO2 exposure could provide a basis for predicting sensitivity and explaining interspecies variation. Based on analysis of the existing literature, the present review presents a clear message that ocean acidification may cause significant effects on fish across multiple physiological systems, suggesting that pH compensation does not necessarily confer tolerance as downstream consequences and tradeoffs occur. It remains difficult to assess if acclimation responses during abrupt CO2 exposures will translate to fitness impacts over longer timescales. Nonetheless, identifying mechanisms and processes that may be subject to selective pressure could be one of many important components of assessing adaptive capacity.
Collapse
Affiliation(s)
- Rachael M. Heuer
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Marine Biology and Fisheries, Miami, Florida
| | - Martin Grosell
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Marine Biology and Fisheries, Miami, Florida
| |
Collapse
|
21
|
Bosiger YJ, McCormick MI. Temporal links in daily activity patterns between coral reef predators and their prey. PLoS One 2014; 9:e111723. [PMID: 25354096 PMCID: PMC4213059 DOI: 10.1371/journal.pone.0111723] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/07/2014] [Indexed: 11/19/2022] Open
Abstract
Few studies have documented the activity patterns of both predators and their common prey over 24 h diel cycles. This study documents the temporal periodicity of two common resident predators of juvenile reef fishes, Cephalopholis cyanostigma (rockcod) and Pseudochromis fuscus (dottyback) and compares these to the activity and foraging pattern of a common prey species, juvenile Pomacentrus moluccensis (lemon damselfish). Detailed observations of activity in the field and using 24 h infrared video in the laboratory revealed that the two predators had very different activity patterns. C. cyanostigma was active over the whole 24 h period, with a peak in feeding strikes at dusk and increased activity at both dawn and dusk, while P. fuscus was not active at night and had its highest strike rates at midday. The activity and foraging pattern of P. moluccensis directly opposes that of C. cyanostigma with individuals reducing strike rate and intraspecific aggression at both dawn and dusk, and reducing distance from shelter and boldness at dusk only. Juveniles examined were just outside the size-selection window of P. fuscus. We suggest that the relatively predictable diel behaviour of coral reef predators results from physiological factors such as visual sensory abilities, circadian rhythmicity, variation in hunting profitability, and predation risk at different times of the day. Our study suggests that the diel periodicity of P. moluccensis behaviour may represent a response to increased predation risk at times when both the ability to efficiently capture food and visually detect predators is reduced.
Collapse
Affiliation(s)
- Yoland J. Bosiger
- ARC Centre of Excellence for Coral Reef Studies, and School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
| | - Mark I. McCormick
- ARC Centre of Excellence for Coral Reef Studies, and School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
22
|
Frechette JL, Sieving KE, Boinski S. Social and personal information use by squirrel monkeys in assessing predation risk. Am J Primatol 2014; 76:956-66. [PMID: 24809852 DOI: 10.1002/ajp.22283] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 11/09/2022]
Abstract
The threat of predation can significantly influence prey behaviors through altered perceptions of risk. Prey risk perception is constantly updated via collection of personal and social information about predators. Better understanding of the links between information availability, its use, and prey species' perception of risk will aid in explaining how animals adapt to predation. The goal of this study was to determine the environmental and social cues-available to prey via personal and social information, respectively-that influence wild squirrel monkey (Saimiri sciureus) reactivity to potential predators, treated here as a proxy for risk perception. We followed squirrel monkey troops for 3 years in Suriname, South America, and accounted for environmental and social variables associated with potential predator encounters. We utilized logistic regression models applied to a robust and long-term data set to reveal relationships among factors affecting squirrel monkey anti-predator responses. Our analyses revealed that height, season, type of predator stimulus, and mixed-species associations with capuchin monkeys (Sapajus apella) were highly related to intensity of squirrel monkey anti-predator responses. Moreover, our analyses revealed that squirrel monkeys overestimate the immediate threat of predation when individuals have incomplete information regarding the potential predator.
Collapse
Affiliation(s)
- Jackson L Frechette
- School of Natural Resources and Environment, University of Florida, Gainesville, Florida; Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida
| | | | | |
Collapse
|
23
|
Lönnstedt OM, McCormick MI, Chivers DP, Ferrari MCO. Habitat degradation is threatening reef replenishment by making fish fearless. J Anim Ecol 2014; 83:1178-85. [DOI: 10.1111/1365-2656.12209] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/24/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Oona M. Lönnstedt
- ARC Centre of Excellence for Coral Reef Studies, and School of Marine and Tropical Biology; James Cook University; Townsville Qld 4811 Australia
| | - Mark I. McCormick
- ARC Centre of Excellence for Coral Reef Studies, and School of Marine and Tropical Biology; James Cook University; Townsville Qld 4811 Australia
| | - Douglas P. Chivers
- Department of Biology; University of Saskatchewan; Saskatoon SK S7N 5E2 Canada
| | - Maud C. O. Ferrari
- Department of Biomedical Sciences; WCVM; University of Saskatchewan; Saskatoon SK S7N 5B4 Canada
| |
Collapse
|
24
|
Predator-induced changes in the growth of eyes and false eyespots. Sci Rep 2014; 3:2259. [PMID: 23887772 PMCID: PMC3722912 DOI: 10.1038/srep02259] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/01/2013] [Indexed: 11/30/2022] Open
Abstract
The animal world is full of brilliant colours and striking patterns that serve to hide individuals or attract the attention of others. False eyespots are pervasive across a variety of animal taxa and are among nature's most conspicuous markings. Understanding the adaptive significance of eyespots has long fascinated evolutionary ecologists. Here we show for the first time that the size of eyespots is plastic and increases upon exposure to predators. Associated with the growth of eyespots there is a corresponding reduction in growth of eyes in juvenile Ambon damselfish, Pomacentrus amboinensis. These morphological changes likely direct attacks away from the head region. Exposure to predators also induced changes in prey behaviour and morphology. Such changes could prevent or deter attacks and increase burst speed, aiding in escape. Damselfish exposed to predators had drastically higher survival suffering only 10% mortality while controls suffered 60% mortality 72 h after release.
Collapse
|
25
|
McCormick MI, Watson SA, Munday PL. Ocean acidification reverses competition for space as habitats degrade. Sci Rep 2013; 3:3280. [PMID: 24263692 PMCID: PMC3836291 DOI: 10.1038/srep03280] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/01/2013] [Indexed: 01/02/2023] Open
Abstract
How marine communities are affected by CO2-induced climate change depends on the ability of species to tolerate or adapt to the new conditions, and how the altered characteristics of species influence the outcomes of key processes, such as competition and predation. Our study examines how near future CO2 levels may affect the interactions between two damselfish species known to compete for space, and the effects of declining habitat quality on these interactions. The two focal species differed in their tolerance to elevated CO2, with the species that is competitively dominant under present day conditions being most affected. Field experiments showed that elevated CO2 (945 μatm) reversed the competitive outcome between the two species with mortal consequences, and this reversal was accentuated in degraded habitats. Understanding these complex interactions will be crucial to predicting the likely composition of future communities under ocean acidification and climate change.
Collapse
Affiliation(s)
- Mark I. McCormick
- ARC Centre of Excellence for Coral Reef Studies and School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
| | - Sue-Ann Watson
- ARC Centre of Excellence for Coral Reef Studies and School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
| | - Philip L. Munday
- ARC Centre of Excellence for Coral Reef Studies and School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
26
|
Lönnstedt OM, McCormick MI. Ultimate predators: lionfish have evolved to circumvent prey risk assessment abilities. PLoS One 2013; 8:e75781. [PMID: 24146775 PMCID: PMC3797751 DOI: 10.1371/journal.pone.0075781] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 08/21/2013] [Indexed: 11/19/2022] Open
Abstract
Invasive species cause catastrophic alterations to communities worldwide by changing the trophic balance within ecosystems. Ever since their introduction in the mid 1980's common red lionfish, Pterois volitans, are having dramatic impacts on the Caribbean ecosystem by displacing native species and disrupting food webs. Introduced lionfish capture prey at extraordinary rates, altering the composition of benthic communities. Here we demonstrate that the extraordinary success of the introduced lionfish lies in its capacity to circumvent prey risk assessment abilities as it is virtually undetectable by prey species in its native range. While experienced prey damselfish, Chromis viridis, respond with typical antipredator behaviours when exposed to a common predatory rock cod (Cephalopholis microprion) they fail to visibly react to either the scent or visual presentation of the red lionfish, and responded only to the scent (not the visual cue) of a lionfish of a different genus, Dendrochirus zebra. Experienced prey also had much higher survival when exposed to the two non-invasive predators compared to P. volitans. The cryptic nature of the red lionfish has enabled it to be destructive as a predator and a highly successful invasive species.
Collapse
Affiliation(s)
- Oona M. Lönnstedt
- Australian Research Council Centre of Excellence for Coral Reef Studies, and School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
- * E-mail:
| | - Mark I. McCormick
- Australian Research Council Centre of Excellence for Coral Reef Studies, and School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
27
|
McCormick MI, Lönnstedt OM. Degrading habitats and the effect of topographic complexity on risk assessment. Ecol Evol 2013; 3:4221-9. [PMID: 24324872 PMCID: PMC3853566 DOI: 10.1002/ece3.793] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/25/2013] [Accepted: 08/29/2013] [Indexed: 12/03/2022] Open
Abstract
Topographic complexity is a key component of habitats that influences communities by modulating the interactions among individuals that drive population processes such as recruitment, competition, and predation. A broad range of disturbance agents affect biological communities indirectly through their modifications to habitat complexity. Individuals that best judge the threat of predation within their environment and can trade-off vigilance against behaviors that promote growth will be rewarded with the highest fitness. This study experimentally examined whether topographic habitat complexity affected the way a damselfish assessed predation risk using olfactory, visual, or combined cues. Fish had higher feeding rates in the low complexity environment. In a low complexity environment, damage-released olfactory cues and visual cues of predators complemented each other in the prey's assessment of risk. However, where complexity was high and visual cues obscured, prey had lower feeding rates and relied more heavily on olfactory cues for risk assessment. Overall, fish appear to be more conservative in the high complexity treatment. Low complexity promoted extremes of behavior, with higher foraging activity but a greater response to predation threats compared with the high complexity treatment. The degree of flexibility that individuals and species have in their ability to adjust the balance of senses used in risk assessment will determine the extent to which organisms will tolerate modifications to their habitat through disturbance.
Collapse
Affiliation(s)
- Mark I McCormick
- ARC Centre of Excellence for Coral Reef Studies, and School of Marine and Tropical Biology, James Cook University Townsville, Qld, 4811, Australia
| | | |
Collapse
|
28
|
Chivers DP, Dixson DL, White JR, McCormick MI, Ferrari MCO. Degradation of chemical alarm cues and assessment of risk throughout the day. Ecol Evol 2013; 3:3925-34. [PMID: 24198950 PMCID: PMC3810885 DOI: 10.1002/ece3.760] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/06/2013] [Accepted: 08/12/2013] [Indexed: 11/06/2022] Open
Abstract
The use of chemical information in assessment of predation risk is pervasive across animal taxa. However, by its very nature, chemical information can be temporally unreliable. Chemical cues persist for some period of time after they are released into the environment. Yet, we know surprisingly little about the rate of degradation of chemical cues under natural conditions and hence little about how they function in temporal risk assessment under natural conditions. Here, we conducted an experiment to identify a concentration of fresh alarm cues that evoke a strong antipredator response in coral reef damselfish, Pomacentrus ambonensis. We then tested the rate at which these alarm cues degraded under natural conditions in ocean water, paying attention to whether the rate of degradation varied throughout the day and whether the temporal pattern correlated with physicochemical factors that could influence the rate of degradation. Fresh alarm cues released into ocean water evoke strong avoidance responses in juvenile fish, while those aged for 30 min no longer evoke antipredator responses. Fish exposed to cues aged for 10 or 20 min show intermediate avoidance responses. We found a marked temporal pattern of response throughout the day, with much faster degradation in early to mid-afternoon, the time of day when solar radiation, temperature, dissolved oxygen, and pH are nearing their peak. Ecologists have spent considerable effort elucidating the role of chemical information in mediating predator–prey interactions, yet we know almost nothing about the temporal dynamics of risk assessment using chemical information. We are in dire need of additional comparative field experiments on the rate of breakdown of chemical cues, particularly given that global change in UV radiation, temperature, and water chemistry could be altering the rates of degradation and the potential use of this information in risk assessment.
Collapse
Affiliation(s)
- Douglas P Chivers
- Department of Biology, University of Saskatchewan Saskatoon, SasKatchewan, S7N 5E2, Canada
| | | | | | | | | |
Collapse
|
29
|
Manassa RP, McCormick MI, Chivers DP, Ferrari MCO. Social learning of predators in the dark: understanding the role of visual, chemical and mechanical information. Proc Biol Sci 2013; 280:20130720. [PMID: 23804616 DOI: 10.1098/rspb.2013.0720] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The ability of prey to observe and learn to recognize potential predators from the behaviour of nearby individuals can dramatically increase survival and, not surprisingly, is widespread across animal taxa. A range of sensory modalities are available for this learning, with visual and chemical cues being well-established modes of transmission in aquatic systems. The use of other sensory cues in mediating social learning in fishes, including mechano-sensory cues, remains unexplored. Here, we examine the role of different sensory cues in social learning of predator recognition, using juvenile damselfish (Amphiprion percula). Specifically, we show that a predator-naive observer can socially learn to recognize a novel predator when paired with a predator-experienced conspecific in total darkness. Furthermore, this study demonstrates that when threatened, individuals release chemical cues (known as disturbance cues) into the water. These cues induce an anti-predator response in nearby individuals; however, they do not facilitate learnt recognition of the predator. As such, another sensory modality, probably mechano-sensory in origin, is responsible for information transfer in the dark. This study highlights the diversity of sensory cues used by coral reef fishes in a social learning context.
Collapse
Affiliation(s)
- R P Manassa
- ARC Centre of Excellence for Coral Reef Studies and School of Marine and Tropical Biology, James Cook University, Townsville, Queensland 4811, Australia.
| | | | | | | |
Collapse
|
30
|
Chivers DP, Al-Batati F, Brown GE, Ferrari MCO. The effect of turbidity on recognition and generalization of predators and non-predators in aquatic ecosystems. Ecol Evol 2012; 3:268-77. [PMID: 23467451 PMCID: PMC3586637 DOI: 10.1002/ece3.454] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/15/2012] [Accepted: 11/27/2012] [Indexed: 11/15/2022] Open
Abstract
Recent anthropogenic activities have caused a considerable change in the turbidity of freshwater and marine ecosystems. Concomitant with such perturbations are changes in community composition. Understanding the mechanisms through which species interactions are influenced by anthropogenic change has come to the forefront of many ecological disciplines. Here, we examine how a change in the availability of visual information influences the behavior of prey fish exposed to potential predators and non-predators. When fathead minnows, Pimephales promelas, were conditioned to recognize predators and non-predators in clear water, they showed a highly sophisticated ability to distinguish predators from non-predators. However, when learning occurred under conditions of increased turbidity, the ability of the prey to learn and generalize recognition of predators and non-predators was severely impaired. Our work highlights that changes at the community level associated with anthropogenic perturbations may be mediated through altered trophic interactions, and highlights the need to closely examine behavioral interactions to understand how species interactions change.
Collapse
Affiliation(s)
- Douglas P Chivers
- Department of Biology, University of Saskatchewan SK, S7N 5E2, Canada
| | | | | | | |
Collapse
|