1
|
Bókony V, Kalina C, Ujhegyi N, Mikó Z, Lefler KK, Vili N, Gál Z, Gabor CR, Hoffmann OI. Does stress make males? An experiment on the role of glucocorticoids in anuran sex reversal. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:172-181. [PMID: 38155497 DOI: 10.1002/jez.2772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023]
Abstract
Environmentally sensitive sex determination may help organisms adapt to environmental change but also makes them vulnerable to anthropogenic stressors, with diverse consequences for population dynamics and evolution. The mechanisms translating environmental stimuli to sex are controversial: although several fish experiments supported the mediator role of glucocorticoid hormones, results on some reptiles challenged it. We tested this hypothesis in amphibians by investigating the effect of corticosterone on sex determination in agile frogs (Rana dalmatina). This species is liable to environmental sex reversal whereby genetic females develop into phenotypic males. After exposing tadpoles during sex determination to waterborne corticosterone, the proportion of genetic females with testes or ovotestes increased from 11% to up to 32% at 3 out of 4 concentrations. These differences were not statistically significant except for the group treated with 10 nM corticosterone, and there was no monotonous dose-effect relationship. These findings suggest that corticosterone is unlikely to mediate sex reversal in frogs. Unexpectedly, animals originating from urban habitats had higher sex-reversal and corticosterone-release rates, reduced body mass and development speed, and lower survival compared to individuals collected from woodland habitats. Thus, anthropogenic environments may affect both sex and fitness, and the underlying mechanisms may vary across ectothermic vertebrates.
Collapse
Affiliation(s)
- Veronika Bókony
- Department of Evolutionary Ecology, Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
- Department of Zoology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Csenge Kalina
- Department of Zoology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Nikolett Ujhegyi
- Department of Evolutionary Ecology, Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
| | - Zsanett Mikó
- Department of Evolutionary Ecology, Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
| | - Kinga Katalin Lefler
- Department of Aquaculture, Institute of Agricultural and Environmental Safety, Hungarian University of Agriculture and Life Science, Gödöllő, Hungary
| | - Nóra Vili
- Department of Zoology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Zoltán Gál
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Science, Gödöllő, Hungary
| | - Caitlin R Gabor
- Department of Biology, Texas State University, San Marcos, Texas, USA
| | - Orsolya Ivett Hoffmann
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Science, Gödöllő, Hungary
| |
Collapse
|
2
|
Carriquiriborde P, Fernandino JI, López CG, Benito EDS, Gutierrez-Villagomez JM, Cristos D, Trudeau VL, Somoza GM. Atrazine alters early sexual development of the South American silverside, Odontesthes bonariensis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 254:106366. [PMID: 36459853 DOI: 10.1016/j.aquatox.2022.106366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Atrazine (ATZ) is a frequent contaminant in freshwater ecosystems within agricultural regions. The capacity of this herbicide to interfere with the vertebrate endocrine system is broadly recognized, but the mechanisms and responses usually differ among species. In this study, ATZ effects on hypothalamus-pituitary-gonadal (HPG) axis key genes expression and early gonadal development were evaluated in Odontesthes bonariensis larvae waterborne exposed during the gonadal differentiation period. Fish were treated to 0, 0.7, 7.0, and 70 µg ATZ/L at 25 °C from the 2nd to 6th week after hatching (wah), and a group was kept in clean water until the 12th wah. Parallelly, a group was submitted to 0.05 µg/L of ethinylestradiol (EE2) as a positive estrogenic control. From each treatment, eight larvae were sampled at 6 wah for gene expression analysis and twelve larvae at 12 wah for phenotypic sex histological determination. The expression of gnrh1, lhb, fshb, and cyp19a1b was assessed in the head, and the ones of amha, 11βhsd2, and cyp19a1a in the trunk. Fish growth was significantly higher in fish exposed to 7 and 70 µg ATZ/L in the 6 wah, but the effect vanished at the 12 wah. The expression of lhb was upregulated in both sex larvae exposed from 7 µg ATZ/L. However, a dimorphic effect was induced on cyp19a1a expression at 70 µg ATZ/L, up or downregulating mRNA transcription in males and females, respectively. Delayed ovarian development and increased number of testicular germ cells were histologically observed from 7 to 70 µg ATZ/L, respectively, and a sex inversion (genotypic male to phenotypic female) was found in one larva at 70 µg ATZ/L. The lhb expression was also upregulated by EE2, but the cyp19a1a expression was not affected, and a complete male-to-female reversal was induced. Further, EE2 upregulated gnrh1 in females and cyp19a1b in both sexes, but it did not alter any assessed gene in the trunk. In conclusion, ATZ disrupted HPG axis physiology and normal gonadal development in O. bonariensis larvae at environmentally relevant concentrations. The responses to ATZ only partially overlapped and were less active when compared to the model estrogenic compound EE2.
Collapse
Affiliation(s)
- Pedro Carriquiriborde
- Centro de Investigaciones del Medioambiente (CIM, UNLP-CONICET), La Plata, Buenos Aires, Argentina
| | - Juan Ignacio Fernandino
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías. UNSAM. Argentina
| | - Carina G López
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías. UNSAM. Argentina
| | - Eduardo de San Benito
- Centro de Investigaciones del Medioambiente (CIM, UNLP-CONICET), La Plata, Buenos Aires, Argentina
| | | | - Diego Cristos
- Instituto Nacional de Tecnología Agropecuaria, Centro de Investigación de Agroindustria (CIA-INTA), Castelar, Buenos Aires Argentina
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, K1S 6N5, Canada
| | - Gustavo M Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías. UNSAM. Argentina.
| |
Collapse
|
3
|
Del Fresno PS, Garcia de Souza JR, Colautti DC, Yamamoto Y, Yokota M, Strüssmann CA, Miranda LA. Sex reversal of pejerrey (Odontesthes bonariensis), a species with temperature-dependent sex determination, in a seminatural environment. JOURNAL OF FISH BIOLOGY 2023; 102:75-82. [PMID: 36217918 DOI: 10.1111/jfb.15241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
This study examined the changes in sex ratios and sex reversal rates in pejerrey Odontesthes bonariensis that occur with the progression of the spawning season in a seminatural setting. Four groups of hatchery-produced pejerrey larvae were stocked in floating cages in La Salada de Monasterio lake (Pampas region), a natural habitat of this species, and reared from hatching beyond gonadal sex determination with minimum human interference. Cage 1 was stocked at the beginning of the spring spawning season and the other cages were stocked with monthly delays until cage 4 in early summer. The genotypic (amhy+, XY/YY; amhy-, XX) and phenotypic (testis, male; ovary, female) sex ratios and proportions of genotype/phenotype mismatched individuals were estimated and their relation to water temperature and daylength during the experiment was analysed by generalized linear modelling. Water temperature varied between 11 and 30.5°C, and daylength duration between 11 h 22 min and 14 h 35 min. Sex genotyping revealed nearly balanced sex ratios of XY/YY (46%-49.1%) and XX (50.9%-54%) fish in cages 2-4 whereas the genotypic sex ratio in cage 1 was clearly biased towards XY/YY fish (60.6%). Phenotypic males ranged from 42% to 54.4% in cages 1-3. Cage 4, in turn, had significantly more phenotypic males (66%). The percentage of XX males (phenotypic male/genotypic female) was 23.1% in cage 1, decreased to a minimum of 5.4% in cage 2 and gradually increased in cages 3 and 4 to a maximum of 40.7% in the latter. The percentages of XY/YY females (phenotypic female/genotypic male) were highest in cage 1 (30%) and decreased progressively in the other cages to a significantly lower value (4.3%) in cage 4. These results generally support the findings of laboratory studies on the effect of temperature on the sex determination of this species and also provide novel evidence of a XX genotype-specific masculinizing effect of short daylength.
Collapse
Affiliation(s)
- Pamela S Del Fresno
- Laboratorio de Ictiofisiología y Acuicultura, Instituto Tecnológico de Chascomús (CONICET-UNSAM) Escuela de Bio y Nanotecnologías (UNSAM), Buenos Aires, Argentina
| | | | - Darío C Colautti
- Instituto de Limnología "Dr. Raúl A. Ringuelet" ILPLA-(CONICET-UNLP), Buenos Aires, Argentina
| | - Yoji Yamamoto
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Masashi Yokota
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Carlos A Strüssmann
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Leandro A Miranda
- Laboratorio de Ictiofisiología y Acuicultura, Instituto Tecnológico de Chascomús (CONICET-UNSAM) Escuela de Bio y Nanotecnologías (UNSAM), Buenos Aires, Argentina
| |
Collapse
|
4
|
Strüssmann CA, Yamamoto Y, Hattori RS, Fernandino JI, Somoza GM. Where the Ends Meet: An Overview of Sex Determination in Atheriniform Fishes. Sex Dev 2021; 15:80-92. [PMID: 33951664 DOI: 10.1159/000515191] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/22/2021] [Indexed: 11/19/2022] Open
Abstract
Atheriniform fishes have recently emerged as attractive models for evolutionary, ecological, and molecular/physiological studies on sex determination. Many species in this group have marked temperature-dependent sex determination (TSD) and yet many species also have a sex determinant gene that provides a strong drive for male differentiation. Thus, in these species the 2 forms of sex determination that were once considered to be mutually exclusive, environmental (ESD) and genotypic (GSD) sex determination, can coexist at environmentally relevant conditions. Here, we review the current knowledge on sex determination in atheriniform fishes with emphasis on the molecular and physiological mechanisms of ESD and GSD, the coexistence and cross-talk between these 2 mechanisms, the possibility of extragonadal transduction of environmental information and/or extragonadal onset of sex determination, and the results of field studies applying novel tools such as otolith increment analysis and molecular markers of genetic sex developed for selected New World and Old World atheriniform species. We also discuss the existence of molecular and histological mechanisms to prevent the discrepant differentiation in parts of the gonads because of ambiguous or conflicting environmental and genetic signals and particularly the possibility that the female is the default state in these species.
Collapse
Affiliation(s)
- Carlos A Strüssmann
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Yoji Yamamoto
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Ricardo S Hattori
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Juan I Fernandino
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
| | - Gustavo M Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
| |
Collapse
|
5
|
Crowding stress during the period of sex determination causes masculinization in pejerrey Odontesthes bonariensis, a fish with temperature-dependent sex determination. Comp Biochem Physiol A Mol Integr Physiol 2020; 245:110701. [PMID: 32298809 DOI: 10.1016/j.cbpa.2020.110701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 04/04/2020] [Accepted: 04/04/2020] [Indexed: 12/24/2022]
Abstract
The pejerrey is an atherinopsid species from South America that presents a combination of genotypic and environmental (temperature-dependent) sex determination whereby low and high temperatures induce feminization and masculinization, respectively. Masculinization involves a heat-induced stress response leading to increased circulating cortisol and androgens. We tested whether crowding would elicit a similar response as high temperature and affect the sex ratios of pejerrey. Larvae with XX and XY genotypes were reared at 15, 62 and 250 larvae/L in 0.4, 1.6, and 6.4 L containers during a period considered critical for sex determination at 25 °C, a mixed-sex promoting temperature. Fish were analysed at 3-7 weeks for whole-body cortisol and 11-ketotestosterone (11-KT) titer and hydroxy-steroid dehydrogenase (hsd11b2) mRNA transcript abundance, and after completion of gonadal sex differentiation (10-14 weeks) for determination of phenotypic and genotypic sex mismatches. Crowding was associated with depressed growth, higher cortisol and 11-KT titers, increased hsd11b2 transcription, and increased frequency of masculinization compared to intermediate and/or low rearing densities. Perceived crowding (by rearing in containers with mirror-finish, reflecting walls) also caused masculinization. These results suggest the possibility that other environmental factors besides temperature can also affect sex determination in pejerrey and that a stress response leading to increased cortisol and androgen levels, which is potentially perceived by the brain, may be a common feature among different forms of environmental sex determination in this species.
Collapse
|
6
|
Sissao R, D'Cotta H, Baroiller JF, Toguyeni A. Mismatches between the genetic and phenotypic sex in the wild Kou population of Nile tilapia Oreochromis niloticus. PeerJ 2019; 7:e7709. [PMID: 31579600 PMCID: PMC6754722 DOI: 10.7717/peerj.7709] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/20/2019] [Indexed: 11/20/2022] Open
Abstract
Sex determination and sex chromosomes can be very diverse between teleost species. The group of tilapias shows a polymorphism in sex determination not only between closely related species but also between domestic strains within a species. In the Nile tilapia, the major effect genes and therefore the Y chromosome have been located on either linkage group 1 (LG1) or LG23 depending on the strains. In a Japanese strain, the sex determinant of LG23 (the amhY gene) has been identified as a duplicated amh (anti-Müllerian hormone) gene, with its gametolog found on the X chromosome (amhX). AmhY is located in tandem with the amhΔY gene (a truncated form) on the Y chromosome. X and Y chromosome markers based on the amh genes have been validated only on a few domestic strains but not in wild populations. Here, we used four of these markers in order to examine (1) the possible variation in sex determination of a wild population of Nile tilapia living in Lake Kou (Burkina Faso), (2) putative polymorphisms for these amh copies and (3) the existence of sex reversed individuals in the wild. Our genotyping of 91 wild Kou individuals with the amh sex-diagnostic markers of LG23 showed that while phenotypic females were all XX, phenotypic males were either XY or XX. Progeny testing of eight of these XX males revealed that one of these males consistently sired all-female progenies, suggesting that it is a wild sex reversed male (which could result from high temperature effects). The other XX males gave balanced sex ratios, suggesting that sex is controlled by another locus (possibly on another LG) which may be epistatically dominant over the LG23 locus. Finally, identification of unexpected amh genotypes was found for two individuals. They produced either balanced or female-biased sex ratios, depending on the breeder with whom they were crossed, suggesting possible recombination between the X and the Y chromosomes.
Collapse
Affiliation(s)
- Rokyatou Sissao
- Unité de recherche aquaculture et biodiversité aquatique/Laboratoire d'études et de recherche sur les ressources naturelles et sciences de l'environnement, Université Nazi BONI, Bobo-Dioulasso, Burkina Faso.,Institut de l'environnement et de recherches agricoles, Centre national de la recherche scientifique et technologique, Bobo-Dioulasso, Burkina Faso.,Centre international de recherche-développement sur l'élevage en zone subhumide, Bobo-Dioulasso, Burkina Faso
| | - Helena D'Cotta
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France.,UMR ISEM, CIRAD, Montpellier, France
| | - Jean-François Baroiller
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France.,UMR ISEM, CIRAD, Montpellier, France
| | - Aboubacar Toguyeni
- Unité de recherche aquaculture et biodiversité aquatique/Laboratoire d'études et de recherche sur les ressources naturelles et sciences de l'environnement, Université Nazi BONI, Bobo-Dioulasso, Burkina Faso.,Centre international de recherche-développement sur l'élevage en zone subhumide, Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
7
|
Hattori RS, Somoza GM, Fernandino JI, Colautti DC, Miyoshi K, Gong Z, Yamamoto Y, Strüssmann CA. The Duplicated Y-specific amhy Gene Is Conserved and Linked to Maleness in Silversides of the Genus Odontesthes. Genes (Basel) 2019; 10:genes10090679. [PMID: 31491991 PMCID: PMC6770987 DOI: 10.3390/genes10090679] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 11/16/2022] Open
Abstract
Sex-determining genes have been successively isolated in several teleosts. In Odontesthes hatcheri and O. bonariensis, the amhy gene has been identified as a master sex-determining gene. However, whether this gene is conserved along related species is still unknown. In this study, the presence of amhy and its association with phenotypic sex was analyzed in 10 species of Odontesthes genus. The primer sets from O. hatcheri that amplify both amhs successfully generated fragments that correspond to amha and amhy in all species. The full sequences of amhy and amha isolated for four key species revealed higher identity values among presumptive amhy, including the 0.5 Kbp insertion in the third intron and amhy-specific insertions/deletions. Amha was present in all specimens, regardless of species and sex, whereas amhy was amplified in most but not all phenotypic males. Complete association between amhy-homologue with maleness was found in O. argentinensis, O. incisa, O. mauleanum, O. perugiae, O. piquava, O. regia, and O. smitti, whereas O. humensis, O. mirinensis, and O. nigricans showed varied degrees of phenotypic/genotypic sex mismatch. The conservation of amhy gene in Odontesthes provide an interesting framework to study the evolution and the ecological interactions of genotypic and environmental sex determination in this group.
Collapse
Affiliation(s)
- Ricardo S Hattori
- Unidade de Pesquisa e Desenvolvimento de Campos do Jordão, Sao Paulo Fisheries Institue, APTA/SAA, Campos do Jordão 12460-000, Brazil.
| | - Gustavo M Somoza
- Instituto Tecnológico de Chascomús (Consejo Nacional de Investigaciones Científicasy Técnicas-Universidad Nacional de San Martin), Chascomús 7130, Argentina.
| | - Juan I Fernandino
- Instituto Tecnológico de Chascomús (Consejo Nacional de Investigaciones Científicasy Técnicas-Universidad Nacional de San Martin), Chascomús 7130, Argentina.
| | - Dario C Colautti
- Instituto de Limnología "Dr. Raúl A. Ringuelet" (ILPLA) (Consejo Nacional de Investigaciones Científicasy Técnicas-Universidad Nacional de La Plata), La Plata 1900, Argentina.
| | - Kaho Miyoshi
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan.
| | - Zhuang Gong
- School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316002, China.
| | - Yoji Yamamoto
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan.
| | - Carlos A Strüssmann
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan.
| |
Collapse
|
8
|
Sarida M, Hattori RS, Zhang Y, Yamamoto Y, Strüssmann CA. Spatiotemporal Correlations between amh and cyp19a1a Transcript Expression and Apoptosis during Gonadal Sex Differentiation of Pejerrey, Odontesthes bonariensis. Sex Dev 2019; 13:99-108. [DOI: 10.1159/000498997] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2019] [Indexed: 12/13/2022] Open
|
9
|
Fernandino JI, Hattori RS. Sex determination in Neotropical fish: Implications ranging from aquaculture technology to ecological assessment. Gen Comp Endocrinol 2019; 273:172-183. [PMID: 29990492 DOI: 10.1016/j.ygcen.2018.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/09/2018] [Accepted: 07/06/2018] [Indexed: 12/17/2022]
Abstract
The high biodiversity of fish in the Neotropical region contrasts with scarce or biased studies on the mechanisms involved in the sex determination in members of this fauna. In this review, we attempted to compile the information available on determination, differentiation, and manipulation of sex for Neotropical species, with special focus on silversides and other two speciose groups, known as characins (Characiformes) and catfishes (Siluriformes). Currently, there is plenty of information available on chromosomal sex determination systems, which includes both male and female heterogamety with many variations, and sex chromosomes evolution at the macro chromosomal level. However, there is hitherto a blank in information at micro, gene/molecule levels and in research related to the effects of environmental cues on sex determination; most of reported studies are limited to silversides and guppies. In view of such a high diversity, it is critically necessary to establish key model species for relevant Neotropical fish taxa and also multi-disciplinary research groups in order to uncover the main patterns and trends that dictate the mechanisms of sex determination and gonadal differentiation in this icthyofauna. By increasing our knowledge on sex determination/differentiation with the identification of sex chromosome-linked markers or sex-determining genes, characterization of the onset timing of morphological gonadal differentiation, and determination of the environmental-hormonal labile period of gonadal sex determination in reference species, it will be possible to use those information as guidelines for application in other related groups. Overall, the strategic advance in this research field will be crucial for the development of biotechnological tools for aquaculture industry and for conservation of fish fauna from the Neotropical Region.
Collapse
Affiliation(s)
- Juan Ignacio Fernandino
- Laboratorio de Biología del Desarrollo, Instituto Tecnológico de Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas/Universidad Nacional de San Martín (CONICET/UNSAM), Chascomús, Argentina.
| | - Ricardo Shohei Hattori
- Salmonid Experimental Station at Campos do Jordão, UPD-CJ (APTA/SAA), Campos do Jordão, Brazil.
| |
Collapse
|
10
|
Yamamoto Y, Hattori RS, Patiño R, Strüssmann CA. Environmental regulation of sex determination in fishes: Insights from Atheriniformes. Curr Top Dev Biol 2019; 134:49-69. [DOI: 10.1016/bs.ctdb.2019.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|