1
|
Tan X, Long W, Ma N, Sang S, Cai S. Transcriptome analysis suggested that lncRNAs regulate rapeseed seedlings in responding to drought stress by coordinating the phytohormone signal transduction pathways. BMC Genomics 2024; 25:704. [PMID: 39030492 PMCID: PMC11264961 DOI: 10.1186/s12864-024-10624-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 07/15/2024] [Indexed: 07/21/2024] Open
Abstract
The growth, yield, and seed quality of rapeseed are negatively affected by drought stress. Therefore, it is of great value to understand the molecular mechanism behind this phenomenon. In a previous study, long non-coding RNAs (lncRNAs) were found to play a key role in the response of rapeseed seedlings to drought stress. However, many questions remained unanswered. This study was the first to investigate the expression profile of lncRNAs not only under control and drought treatment, but also under the rehydration treatment. A total of 381 differentially expressed lncRNA and 10,253 differentially expressed mRNAs were identified in the comparison between drought stress and control condition. In the transition from drought stress to rehydration, 477 differentially expressed lncRNAs and 12,543 differentially expressed mRNAs were detected. After identifying the differentially expressed (DE) lncRNAs, the comprehensive lncRNAs-engaged network with the co-expressed mRNAs in leaves under control, drought and rehydration was investigated. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of co-expressed mRNAs identified the most significant pathways related with plant hormones (expecially abscisic acid, auxin, cytokinins, and gibberellins) in the signal transduction. The genes, co-expressed with the most-enriched DE-lncRNAs, were considered as the most effective candidates in the water-loss and water-recovery processes, including protein phosphatase 2 C (PP2C), ABRE-binding factors (ABFs), and SMALL AUXIN UP-REGULATED RNAs (SAURs). In summary, these analyses clearly demonstrated that DE-lncRNAs can act as a regulatory hub in plant-water interaction by controlling phytohormone signaling pathways and provided an alternative way to explore the complex mechanisms of drought tolerance in rapeseed.
Collapse
Affiliation(s)
- Xiaoyu Tan
- School of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, China
| | - Weihua Long
- School of Rural Revitalization, Jiangsu Open University, Nanjing, China.
| | - Ni Ma
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oilcrops Research Institute of the Chinese Academy of Agricultural, Wuhan, China
| | - Shifei Sang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Shanya Cai
- School of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, China
| |
Collapse
|
2
|
Das Laha S, Kundu A, Podder S. Impact of biotic stresses on the Brassicaceae family and opportunities for crop improvement by exploiting genotyping traits. PLANTA 2024; 259:97. [PMID: 38520529 DOI: 10.1007/s00425-024-04379-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024]
Abstract
MAIN CONCLUSION Utilizing RNAi, miRNA, siRNA, lncRNA and exploiting genotyping traits can help safeguard the food supply from illnesses and pest damage to Brassicas, as well as reduce yield losses caused by plant pathogens and insect pests. In the natural environment, plants face significant challenges in the form of biotic stress, due to various living organisms, leading to biological stress and a sharp decline in crop yields. To cope with these effects, plants have evolved specialized mechanisms to mitigate these challenges. Plant stress tolerance and resistance are influenced by genes associated with stress-responsive pathogens that interact with various stress-related signaling pathway components. Plants employ diverse strategies and mechanisms to combat biological stress, involving a complex network of transcription factors that interact with specific cis-elements to regulate gene expression. Understanding both plant developmental and pathogenic disease resistance mechanisms can allow us to develop stress-tolerant and -resistant crops. Brassica genus includes commercially important crops, e.g., broccoli, cabbage, cauliflower, kale, and rapeseed, cultivated worldwide, with several applications, e.g., oil production, consumption, condiments, fodder, as well as medicinal ones. Indeed, in 2020, global production of vegetable Brassica reached 96.4 million tones, a 10.6% rise from the previous decade. Taking into account their commercial importance, coupled to the impact that pathogens can have in Brassica productivity, yield losses up to 60%, this work complies the major diseases caused due to fungal, bacterial, viral, and insects in Brassica species. The review is structured into three parts. In the first part, an overview is provided of the various pathogens affecting Brassica species, including fungi, bacteria, viruses, and insects. The second part delves into the exploration of defense mechanisms that Brassica plants encounter against these pathogens including secondary metabolites, duplicated genes, RNA interference (RNAi), miRNA (micro-RNA), siRNA (small interfering RNA), and lncRNA (long non-coding RNA). The final part comprehensively outlines the current applications of CRISPR/Cas9 technology aimed at enhancing crop quality. Taken collectively, this review will contribute to our enhanced understanding of these mechanisms and their role in the development of resistance in Brassica plants, thus supporting strategies to protect this crucial crop.
Collapse
Affiliation(s)
- Shayani Das Laha
- Computational and Systems Biology Laboratory, Department of Microbiology, Raiganj University, Raiganj, West Bengal, India
- Department of Genetics and Plant Breeding, Uttar Banga Krishi Viswavidyalaya, Coochbehar, West Bengal, India
| | - Avijit Kundu
- Department of Genetics and Plant Breeding, Uttar Banga Krishi Viswavidyalaya, Coochbehar, West Bengal, India
| | - Soumita Podder
- Computational and Systems Biology Laboratory, Department of Microbiology, Raiganj University, Raiganj, West Bengal, India.
| |
Collapse
|
3
|
Quan C, Li Y, Chen G, Tian X, Jia Z, Tu J, Shen J, Yi B, Fu T, Ma C, Dai C. The dynamics of lncRNAs transcription in interspecific F 1 allotriploid hybrids between Brassica species. Genomics 2022; 114:110505. [PMID: 36265744 DOI: 10.1016/j.ygeno.2022.110505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/05/2022] [Accepted: 10/15/2022] [Indexed: 01/15/2023]
Abstract
Interspecific hybridization is the intrinsic forces behind genome evolution. Long non-coding RNAs (lncRNAs) are important for plant biological processes regulation. However, it is unclear that these non-coding fractions are impacted by interspecific hybridization. Here we examined the profiles of lncRNAs by comparing them with coding genes in Brassica napus, three accessions of Brassica rapa, and their F1 hybrids. 6206 high-confidential lncRNAs were identified in F 1 hybrids and their parentals, and the lncRNAs transcriptome in the F1 hybrids was reprogrammed by the genome shock. Notably, genome-wide unbalanced of lncRNAs were observed between An and Ar subgenomes, ELD (Expression Level Dominance) was biased toward the An -genome in F1 hybrids, and ELD of non-conserved lncRNAs was more than conserved lncRNAs. Our findings demonstrate that the reprogramed lncRNAs acts as important role in enhancing plant plasticity, leading to the acquisition of desirable traits in polyploid Brassica species.
Collapse
Affiliation(s)
- Chengtao Quan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yuanyuan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Guoting Chen
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xia Tian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhibao Jia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
4
|
Zhou J, Wu JT. Nitrate/ammonium-responsive microRNA-mRNA regulatory networks affect root system architecture in Populus × canescens. BMC PLANT BIOLOGY 2022; 22:96. [PMID: 35246022 PMCID: PMC8895855 DOI: 10.1186/s12870-022-03482-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/14/2022] [Indexed: 05/15/2023]
Abstract
BACKGROUND Nitrate (NO3-) and ammonium (NH4+) are the primary forms of inorganic nitrogen (N) taken up by plant roots, and a lack of these N sources commonly limits plant growth. To better understand how NO3- and NH4+ differentially affect root system architecture, we analyzed the expression profiles of microRNAs and their targets in poplar roots treated with three forms of nitrogen S1 (NO3-), S2 (NH4NO3, normal), and S3 (NH4+) via RNA sequencing. RESULTS The results revealed a total of 709 miRNAs. Among them, 57 significantly differentially expressed miRNAs and 28 differentially expressed miRNA-target pairs showed correlated expression profiles in S1 vs. S2. Thirty-six significantly differentially expressed miRNAs and 12 differentially expressed miRNA-target pairs showed correlated expression profiles in S3 vs. S2. In particular, NFYA3, a target of upregulated ptc-miR169i and ptc-miR169b, was downregulated in S1 vs. S2, while NFYA1, a target of upregulated ptc-miR169b, was downregulated in S3 vs. S2 and probably played an important role in the changes in root morphology observed when the poplar plants were treated with different N forms. Furthermore, the miRNA-target pairs ptc-miR169i/b-D6PKL2, ptc-miR393a-5p-AFB2, ptc-miR6445a-NAC14, ptc-miR172d-AP2, csi-miR396a-5p_R + 1_1ss21GA-EBP1, ath-miR396b-5p_R + 1-TPR4, and ptc-miR166a/b/c-ATHB-8 probably contributed to the changes in root morphology observed when poplar plants were treated with different N forms. CONCLUSIONS These results demonstrate that differentially expressed miRNAs and their targets play an important role in the regulation of the poplar root system architecture by different N forms.
Collapse
Affiliation(s)
- Jing Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| | - Jiang-Ting Wu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| |
Collapse
|
5
|
Wang L, Gao J, Wang C, Xu Y, Li X, Yang J, Chen K, Kang Y, Wang Y, Cao P, Xie X. Comprehensive Analysis of Long Non-coding RNA Modulates Axillary Bud Development in Tobacco ( Nicotiana tabacum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:809435. [PMID: 35237286 PMCID: PMC8884251 DOI: 10.3389/fpls.2022.809435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Long non-coding RNAs (lncRNAs) regulate gene expression and are crucial for plant growth and development. However, the mechanisms underlying the effects of activated lncRNAs on axillary bud development remain largely unknown. By lncRNA transcriptomes of axillary buds in topped and untopped tobacco plants, we identified a total of 13,694 lncRNAs. LncRNA analysis indicated that the promoted growth of axillary bud by topping might be partially ascribed to the genes related to hormone signal transduction and glycometabolism, trans-regulated by differentially expressed lncRNAs, such as MSTRG.52498.1, MSTRG.60026.1, MSTRG.17770.1, and MSTRG.32431.1. Metabolite profiling indicated that auxin, abscisic acid and gibberellin were decreased in axillary buds of topped tobacco lines, while cytokinin was increased, consistent with the expression levels of related lncRNAs. MSTRG.52498.1, MSTRG.60026.1, MSTRG.17770.1, and MSTRG.32431.1 were shown to be influenced by hormones and sucrose treatments, and were associated with changes of axillary bud growth in the overexpression of NtCCD8 plants (with reduced axillary buds) and RNA interference of NtTB1 plants (with increased axillary buds). Moreover, MSTRG.28151.1 was identified as the antisense lncRNA of NtTB1. Silencing of MSTRG.28151.1 in tobacco significantly attenuated the expression of NtTB1 and resulted in larger axillary buds, suggesting the vital function of MSTRG.28151.1 axillary bud developmen by NtTB1. Our findings shed light on lncRNA-mRNA interactions and their functional roles in axillary bud growth, which would improve our understanding of lncRNAs as important regulators of axillary bud development and plant architecture.
Collapse
Affiliation(s)
- Lin Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Junping Gao
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Chen Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Yalong Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Xiaoxu Li
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Kai Chen
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Yile Kang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Yaofu Wang
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Xiaodong Xie
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| |
Collapse
|
6
|
Anastasiadi D, Venney CJ, Bernatchez L, Wellenreuther M. Epigenetic inheritance and reproductive mode in plants and animals. Trends Ecol Evol 2021; 36:1124-1140. [PMID: 34489118 DOI: 10.1016/j.tree.2021.08.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022]
Abstract
Epigenetic inheritance is another piece of the puzzle of nongenetic inheritance, although the prevalence, sources, persistence, and phenotypic consequences of heritable epigenetic marks across taxa remain unclear. We systematically reviewed over 500 studies from the past 5 years to identify trends in the frequency of epigenetic inheritance due to differences in reproductive mode and germline development. Genetic, intrinsic (e.g., disease), and extrinsic (e.g., environmental) factors were identified as sources of epigenetic inheritance, with impacts on phenotype and adaptation depending on environmental predictability. Our review shows that multigenerational persistence of epigenomic patterns is common in both plants and animals, but also highlights many knowledge gaps that remain to be filled. We provide a framework to guide future studies towards understanding the generational persistence and eco-evolutionary significance of epigenomic patterns.
Collapse
Affiliation(s)
- Dafni Anastasiadi
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten St, Nelson 7010, New Zealand
| | - Clare J Venney
- Institut de Biologie Intégrative des Systèmes (IBIS), Département de Biologie, Université Laval, 1030 Avenue de la Médecine, G1V 0A6, Québec, QC, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative des Systèmes (IBIS), Département de Biologie, Université Laval, 1030 Avenue de la Médecine, G1V 0A6, Québec, QC, Canada
| | - Maren Wellenreuther
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten St, Nelson 7010, New Zealand; School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland 1010, New Zealand.
| |
Collapse
|
7
|
Genome-wide analysis of long noncoding RNAs, 24-nt siRNAs, DNA methylation and H3K27me3 marks in Brassica rapa. PLoS One 2021; 16:e0242530. [PMID: 33788851 PMCID: PMC8011741 DOI: 10.1371/journal.pone.0242530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/18/2021] [Indexed: 11/30/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are RNA fragments that generally do not code for a protein but are involved in epigenetic gene regulation. In this study, lncRNAs of Brassica rapa were classified into long intergenic noncoding RNAs, natural antisense RNAs, and intronic noncoding RNAs and their expression analyzed in relation to genome-wide 24-nt small interfering RNAs (siRNAs), DNA methylation, and histone H3 lysine 27 trimethylation marks (H3K27me3). More than 65% of the lncRNAs analyzed consisted of one exon, and more than 55% overlapped with inverted repeat regions (IRRs). Overlap of lncRNAs with IRRs or genomic regions encoding for 24-nt siRNAs resulted in increased DNA methylation levels when both were present. LncRNA did not overlap greatly with H3K27me3 marks, but the expression level of intronic noncoding RNAs that did coincide with H3K27me3 marks was higher than without H3K27me3 marks. The Brassica genus comprises important vegetables and oil seed crops grown across the world. B. rapa is a diploid (AA genome) thought to be one of the ancestral species of both B. juncea (AABB genome) and B. napus (AACC) through genome merging (allotetrapolyploidization). Complex genome restructuring and epigenetic alterations are thought to be involved in these allotetrapolyploidization events. Comparison of lncRNAs between B. rapa and B. nigra, B. oleracea, B. juncea, and B. napus showed the highest conservation with B. oleracea. This study presents a comprehensive analysis of the epigenome structure of B. rapa at multi-epigenetic levels (siRNAs, DNA methylation, H3K27me3, and lncRNAs) and identified a suite of candidate lncRNAs that may be epigenetically regulated in the Brassica genus.
Collapse
|
8
|
Moosavi B, Zhu XL, Yang WC, Yang GF. Genetic, epigenetic and biochemical regulation of succinate dehydrogenase function. Biol Chem 2020; 401:319-330. [DOI: 10.1515/hsz-2019-0264] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/08/2019] [Indexed: 12/22/2022]
Abstract
AbstractSuccinate dehydrogenase (SDH), complex II or succinate:quinone oxidoreductase (SQR) is a crucial enzyme involved in both the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS), the two primary metabolic pathways for generating ATP. Impaired function of SDH results in deleterious disorders from cancer to neurodegeneration. SDH function is tailored to meet the energy demands in different cell types. Thus, understanding how SDH function is regulated and how it operates in distinct cell types can support the development of therapeutic approaches against the diseases. In this article we discuss the molecular pathways which regulate SDH function and describe extra roles played by SDH in specific cell types.
Collapse
Affiliation(s)
- Behrooz Moosavi
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Xiao-lei Zhu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
9
|
Tan X, Li S, Hu L, Zhang C. Genome-wide analysis of long non-coding RNAs (lncRNAs) in two contrasting rapeseed (Brassica napus L.) genotypes subjected to drought stress and re-watering. BMC PLANT BIOLOGY 2020; 20:81. [PMID: 32075594 PMCID: PMC7032001 DOI: 10.1186/s12870-020-2286-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/12/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Drought stress is a major abiotic factor that affects rapeseed (Brassica napus L.) productivity. Though previous studies indicated that long non-coding RNAs (lncRNAs) play a key role in response to drought stress, a scheme for genome-wide identification and characterization of lncRNAs' response to drought stress is still lacking, especially in the case of B. napus. In order to further understand the molecular mechanism of the response of B. napus to drought stress, we compared changes in the transcriptome between Q2 (a drought-tolerant genotype) and Qinyou8 (a drought-sensitive genotype) responding drought stress and rehydration treatment at the seedling stage. RESULTS A total of 5546 down-regulated and 6997 up-regulated mRNAs were detected in Q2 compared with 7824 and 10,251 in Qinyou8, respectively; 369 down-regulated and 108 up- regulated lncRNAs were detected in Q2 compared with 449 and 257 in Qinyou8, respectively. LncRNA-mRNA interaction network analysis indicated that the co-expression network of Q2 was composed of 145 network nodes and 5175 connections, while the co-expression network of Qinyou8 was composed of 305 network nodes and 22,327 connections. We further identified 34 transcription factors (TFs) corresponding to 126 differentially expressed lncRNAs in Q2, and 45 TFs corresponding to 359 differentially expressed lncRNAs in Qinyou8. Differential expression analysis of lncRNAs indicated that up- and down-regulated mRNAs co-expressed with lncRNAs participated in different metabolic pathways and were involved in different regulatory mechanisms in the two genotypes. Notably, some lncRNAs were co-expressed with BnaC07g44670D, which are associated with plant hormone signal transduction. Additionally, some mRNAs co-located with XLOC_052298, XLOC_094954 and XLOC_012868 were mainly categorized as signal transport and defense/stress response. CONCLUSIONS The results of this study increased our understanding of expression characterization of rapeseed lncRNAs in response to drought stress and re-watering, which would be useful to provide a reference for the further study of the function and action mechanisms of lncRNAs under drought stress and re-watering.
Collapse
Affiliation(s)
- Xiaoyu Tan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Su Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Liyong Hu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunlei Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
10
|
Integrative Analysis of the lncRNA and mRNA Transcriptome Revealed Genes and Pathways Potentially Involved in the Anther Abortion of Cotton ( Gossypium hirsutum L.). Genes (Basel) 2019; 10:genes10120947. [PMID: 31756984 PMCID: PMC6947465 DOI: 10.3390/genes10120947] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
Cotton plays an important role in the economy of many countries. Many studies have revealed that numerous genes and various metabolic pathways are involved in anther development. In this research, we studied the differently expressed mRNA and lncRNA during the anther development of cotton between the cytoplasmic male sterility (CMS) line, C2P5A, and the maintainer line, C2P5B, using RNA-seq analysis. We identified 17,897 known differentially expressed (DE) mRNAs, and 865 DE long noncoding RNAs (lncRNAs) that corresponded to 1172 cis-target genes at three stages of anther development using gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment of DE mRNAs; and cis-target genes of DE lncRNAs probably involved in the degradation of tapetum cells, microspore development, pollen development, and in the differentiation, proliferation, and apoptosis of the anther cell wall in cotton. Of these DE genes, LTCONS_00105434, LTCONS_00004262, LTCONS_00126105, LTCONS_00085561, and LTCONS_00085561, correspond to cis-target genes Ghir_A09G011050.1, Ghir_A01G005150.1, Ghir_D05G003710.2, Ghir_A03G016640.1, and Ghir_A12G005100.1, respectively. They participate in oxidative phosphorylation, flavonoid biosynthesis, pentose and glucuronate interconversions, fatty acid biosynthesis, and MAPK signaling pathway in plants, respectively. In summary, the transcriptomic data indicated that DE lncRNAs and DE mRNAs were related to the anther development of cotton at the pollen mother cell stage, tetrad stage, and microspore stage, and abnormal expression could lead to anther abortion, resulting in male sterility of cotton.
Collapse
|
11
|
Zeng M, He S, Hao L, Li Y, Zheng C, Zhao Y. Conjoint Analysis of Genome-Wide lncRNA and mRNA Expression of Heteromorphic Leavesin Response to Environmental Heterogeneityin Populus euphratica. Int J Mol Sci 2019; 20:E5148. [PMID: 31627402 PMCID: PMC6829562 DOI: 10.3390/ijms20205148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 12/31/2022] Open
Abstract
Heterophylly is the phenomenon of leaf forms varying along the longitudinal axis within a single plant. Populus euphratica, a heterophyllous woody plant, develops lanceolate leaves and dentate broad-ovate leaves on the bottom and top of the canopy, respectively, which are faced with different intensities of ambient solar radiation. However, the mechanism of the heteromorphic leaf response to the microenvironment in P. euphratica remains elusive. Here, we show that the dentate broad-ovate leaves have advantages in tolerating high light intensity, while lanceolate leaves are excellent at capturing light. Compared with lanceolate leaves, more trichomes, higher stomatal density, thicker lamina, and higher specific leaf weight were observed in dentate broad-ovate leaves. Furthermore, high-throughput RNA sequencing analysis revealed that the expression patterns of genes and long noncoding RNAs (lncRNAs) are different between the two heteromorphic leaves. A total of 36,492 genes and 1725 lncRNAs were detected, among which 586 genes and 54 lncRNAs were differentially expressed. Based on targets prediction, lncRNAs and target genes involved in light adaption, protein repair, stress response, and growth and development pathways were differentially expressed in heteromorphic leaves, 10 pairs of which were confirmed by quantitative real-time PCR. Additionally, the analysis of interactions indicated that lncRNA-mRNA interactions were involved in the response to the microenvironment of heteromorphic leaves. Taken together, these results suggest that the morphological features and joint regulation of lncRNA-mRNA in heteromorphic leaves may serve as survival strategies for P. euphratica, which could lead to optimal utilization of environmental factors.
Collapse
Affiliation(s)
- Ming Zeng
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qing Hua Dong Lu, Beijing 100083, China.
| | - Shuhang He
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qing Hua Dong Lu, Beijing 100083, China.
| | - Lin Hao
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qing Hua Dong Lu, Beijing 100083, China.
| | - Yujie Li
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qing Hua Dong Lu, Beijing 100083, China.
| | - Caixia Zheng
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qing Hua Dong Lu, Beijing 100083, China.
| | - Yuanyuan Zhao
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qing Hua Dong Lu, Beijing 100083, China.
| |
Collapse
|
12
|
Ahmed W, Xia Y, Li R, Bai G, Siddique KHM, Guo P. Non-coding RNAs: Functional roles in the regulation of stress response in Brassica crops. Genomics 2019; 112:1419-1424. [PMID: 31430515 DOI: 10.1016/j.ygeno.2019.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 07/03/2019] [Accepted: 08/16/2019] [Indexed: 12/22/2022]
Abstract
Brassica crops face a combination of different abiotic and biotic stresses in the field that can reduce plant growth and development by affecting biochemical and morpho-physiological processes. Emerging evidence suggests that non-coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long ncRNAs (lncRNAs), play a significant role in the modulation of gene expression in response to plant stresses. Recent advances in computational and experimental approaches are of great interest for identifying and functionally characterizing ncRNAs. While progress in this field is limited, numerous ncRNAs involved in the regulation of gene expression in response to stress have been reported in Brassica. In this review, we summarize the modes of action and functions of stress-related miRNAs and lncRNAs in Brassica as well as the approaches used to identify ncRNAs.
Collapse
Affiliation(s)
- Waqas Ahmed
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yanshi Xia
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou, China
| | - Ronghua Li
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou, China
| | - Guihua Bai
- United States Department of Agriculture - Agricultural Research Service, Hard Winter Wheat Genetics Research Unit, Manhattan, Kansas 66506, United States
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture and School of Agriculture & Environment, The University of Western Australia, LB 5005, Perth, WA 6001, Australia
| | - Peiguo Guo
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou, China.
| |
Collapse
|
13
|
Li M, Wang R, Liu Z, Wu X, Wang J. Genome-wide identification and analysis of the WUSCHEL-related homeobox (WOX) gene family in allotetraploid Brassica napus reveals changes in WOX genes during polyploidization. BMC Genomics 2019; 20:317. [PMID: 31023229 PMCID: PMC6482515 DOI: 10.1186/s12864-019-5684-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/11/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND WUSCHEL-related homeobox (WOX) genes encoding plant-specific homeobox (HB) transcription factors play important roles in the growth and development of plants. To date, WOX genes has been identified and analyzed in many polyploids (such as cotton and tobacco), but the evolutionary analysis of them during polyploidization is rare. With the completion of genome sequencing, allotetraploid Brassica napus and its diploid progenitors (B. rapa and B. oleracea) are a good system for studying this question. RESULTS In this study, 52, 25 and 29 WOX genes were identified in allotetraploid B. napus (2n = 4x = 38, AnCn), the An genome donor B. rapa (2n = 2x = 20, Ar) and the Cn genome donor B. oleracea (2n = 2x = 18, Co), respectively. All identified WOX genes in B. napus and its diploid progenitors were divided into three clades, and these genes were selected to perform gene structure and chromosome location analysis. The results showed that at least 70 and 67% of WOX genes maintained the same gene structure and relative position on chromosomes, respectively, indicating that WOX genes in B. napus were highly conserved at the DNA level during polyploidization. In addition, the analysis of duplicated genes and transposable elements (TEs) near WOX genes showed that whole-genome triplication (WGT) events, segmental duplication and abundant TEs played important roles in the expansion of the WOX gene family in B. napus. Moreover, the analysis of the expression profiles of WOX gene pairs with evolutionary relationships suggested that the WOX gene family may have changed at the transcriptional regulation level during polyploidization. CONCLUSIONS The results of this study increased our understanding of the WOX genes in B. napus and its diploid progenitors, providing a rich resource for further study of WOX genes in these species. In addition, the changes in WOX genes during the process of polyploidization were discussed from the aspects of gene number, gene structure, gene relative location and gene expression, which provides a reference for future polyploidization analysis.
Collapse
Affiliation(s)
- Mengdi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Ruihua Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Zhengyi Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Xiaoming Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of CAAS, Wuhan, 430062 China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| |
Collapse
|
14
|
LncRNA expression profile and ceRNA analysis in tomato during flowering. PLoS One 2019; 14:e0210650. [PMID: 30653557 PMCID: PMC6336255 DOI: 10.1371/journal.pone.0210650] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/29/2018] [Indexed: 11/19/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs that play essential regulatory roles in various developmental processes and stress responses. However, the functions of lncRNAs during the flowering period of tomato are largely unknown. To explore the lncRNA profiles and functions during flowering in tomato, we performed strand-specific paired-end RNA sequencing of tomato leaves, flowers and roots, with three biological replicates. We identified 10919 lncRNAs including 248 novel lncRNAs, of which 65 novel lncRNAs were significantly differentially expressed (DE) in the flowers, leaves, and roots. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were carried out to identify the cis target gene of DE lncRNAs. The results showed that the lncRNAs might play an important role in the growth, development, and apoptosis of flowering tomato plant by regulating the formation of intima in flower tissues, binding to various molecules, influencing metabolic pathways, and inducing apoptosis. Moreover, we identified the interaction between 32, 78, and 397 kinds of miRNAs, lncRNAs, and mRNAs. The results suggest that the lncRNAs can regulate the expression of mRNA during flowering period in tomato by forming competitive endogenous RNA, and further regulate various biological metabolism pathways in tomato.
Collapse
|