1
|
Dukas R, Bailey NW. Evolutionary biology of social expertise. Biol Rev Camb Philos Soc 2024; 99:2176-2189. [PMID: 38946116 DOI: 10.1111/brv.13115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/02/2024]
Abstract
There is increasing evidence that competent handling of social interactions among conspecifics has positive effects on individual fitness. While individual variation in social competence has been appreciated, the role of long-term experience in the acquisition of superior social skills has received less attention. With the goal of promoting further research, we integrate knowledge across disciplines to assess social expertise, defined as the characteristics, skills and knowledge allowing individuals with extensive social experience to perform significantly better than novices on a given social task. We focus on three categories of social behaviour. First, animals can gain from adjusting social behaviour towards individually recognised conspecifics that they interact with on a regular basis. For example, there is evidence that some territorial animals individually recognise their neighbours and modify their social interactions based on experience with each neighbour. Similarly, individuals in group-living species learn to associate with specific group members based on their expected benefits from such social connections. Individuals have also been found to devote considerable time and effort to learning about the spatial location and timing of sexual receptivity of opposite-sex neighbours to optimise reproduction. Second, signallers can enhance their signals, and receivers can refine their response to signals with experience. In many birds and insects, individuals can produce more consistent signals with experience, and females across a wide taxonomic range can adaptively adjust mating preferences after perceiving distinct male signals. Third, in many species, individuals that succeed in reproducing encounter the novel, complex task of caring for vulnerable offspring. Evidence from a few species of mammals indicates that mothers improve in providing for and protecting their young over successive broods. Finally, for social expertise to evolve, heritable variation in social expertise has to be positively associated with fitness. Heritable variation has been shown in traits contributing to social expertise including social attention, empathy, individual recognition and maternal care. There are currently limited data associating social expertise with fitness, most likely owing to sparse research effort. Exceptions include maternal care, signal refinement, and familiarity with neighbours and group members. Overall, there is evidence that individuals in many species keep refining their social skills with experience throughout life. Hence we propose promising lines of research that can quantify more thoroughly the development of social expertise and its effects on fitness.
Collapse
Affiliation(s)
- Reuven Dukas
- Department of Psychology, Neuroscience, and Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Nathan W Bailey
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Fife, KY16 9TH, UK
| |
Collapse
|
2
|
Lynn K, Ichinose T, Tanimoto H. Peer-induced quiescence of male Drosophila melanogaster following copulation. Front Behav Neurosci 2024; 18:1414029. [PMID: 39081685 PMCID: PMC11286487 DOI: 10.3389/fnbeh.2024.1414029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Mating experience impacts the physiology and behavior of animals. Although mating effects of female Drosophila melanogaster have been studied extensively, the behavioral changes of males following copulation have not been fully understood. In this study, we characterized the mating-dependent behavioral changes of male flies, especially focusing on fly-to-fly interaction, and their dependence on rearing conditions. Our data demonstrate that male flies quiesce their courtship toward both females and males, as well as their locomotor activity. This post-copulatory quiescence appears to be contingent upon the presence of a peer, as minimal variation is noted in locomotion when the male is measured in isolation. Interestingly, copulated males influence a paired male without successful copulation to reduce his locomotion. Our findings point to a conditional behavioral quiescence following copulation, influenced by the presence of other flies.
Collapse
Affiliation(s)
- Katrina Lynn
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Toshiharu Ichinose
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
3
|
Yadav RSP, Ansari F, Bera N, Kent C, Agrawal P. Lessons from lonely flies: Molecular and neuronal mechanisms underlying social isolation. Neurosci Biobehav Rev 2024; 156:105504. [PMID: 38061597 DOI: 10.1016/j.neubiorev.2023.105504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023]
Abstract
Animals respond to changes in the environment which affect their internal state by adapting their behaviors. Social isolation is a form of passive environmental stressor that alters behaviors across animal kingdom, including humans, rodents, and fruit flies. Social isolation is known to increase violence, disrupt sleep and increase depression leading to poor mental and physical health. Recent evidences from several model organisms suggest that social isolation leads to remodeling of the transcriptional and epigenetic landscape which alters behavioral outcomes. In this review, we explore how manipulating social experience of fruit fly Drosophila melanogaster can shed light on molecular and neuronal mechanisms underlying isolation driven behaviors. We discuss the recent advances made using the powerful genetic toolkit and behavioral assays in Drosophila to uncover role of neuromodulators, sensory modalities, pheromones, neuronal circuits and molecular mechanisms in mediating social isolation. The insights gained from these studies could be crucial for developing effective therapeutic interventions in future.
Collapse
Affiliation(s)
- R Sai Prathap Yadav
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Karnataka 576104, India
| | - Faizah Ansari
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Karnataka 576104, India
| | - Neha Bera
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Karnataka 576104, India
| | - Clement Kent
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Pavan Agrawal
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Karnataka 576104, India.
| |
Collapse
|
4
|
Desjonquères C, Speck B, Seidita S, Cirino LA, Escalante I, Sergi C, Maliszewski J, Wiese C, Hoebel G, Bailey NW, Rodríguez RL. Social Plasticity Enhances Signal-Preference Codivergence. Am Nat 2023; 202:818-829. [PMID: 38033176 DOI: 10.1086/726786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
AbstractThe social environment is often the most dynamic and fitness-relevant environment animals experience. Here we tested whether plasticity arising from variation in social environments can promote signal-preference divergence-a key prediction of recent speciation theory but one that has proven difficult to test in natural systems. Interactions in mixed social aggregations could reduce, create, or enhance signal-preference differences. In the latter case, social plasticity could establish or increase assortative mating. We tested this by rearing two recently diverged species of Enchenopa treehoppers-sap-feeding insects that communicate with plant-borne vibrational signals-in treatments consisting of mixed-species versus own-species aggregations. Social experience with heterospecifics (in the mixed-species treatment) resulted in enhanced signal-preference species differences. For one of the two species, we tested but found no differences in the plastic response between sympatric and allopatric sites, suggesting the absence of reinforcement in the signals and preferences and their plastic response. Our results support the hypothesis that social plasticity can create or enhance signal-preference differences and that this might occur in the absence of long-term selection against hybridization on plastic responses themselves. Such social plasticity may facilitate rapid bursts of diversification.
Collapse
|
5
|
Karigo T, Deutsch D. Flexibility of neural circuits regulating mating behaviors in mice and flies. Front Neural Circuits 2022; 16:949781. [PMID: 36426135 PMCID: PMC9679785 DOI: 10.3389/fncir.2022.949781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/28/2022] [Indexed: 11/11/2022] Open
Abstract
Mating is essential for the reproduction of animal species. As mating behaviors are high-risk and energy-consuming processes, it is critical for animals to make adaptive mating decisions. This includes not only finding a suitable mate, but also adapting mating behaviors to the animal's needs and environmental conditions. Internal needs include physical states (e.g., hunger) and emotional states (e.g., fear), while external conditions include both social cues (e.g., the existence of predators or rivals) and non-social factors (e.g., food availability). With recent advances in behavioral neuroscience, we are now beginning to understand the neural basis of mating behaviors, particularly in genetic model organisms such as mice and flies. However, how internal and external factors are integrated by the nervous system to enable adaptive mating-related decision-making in a state- and context-dependent manner is less well understood. In this article, we review recent knowledge regarding the neural basis of flexible mating behaviors from studies of flies and mice. By contrasting the knowledge derived from these two evolutionarily distant model organisms, we discuss potential conserved and divergent neural mechanisms involved in the control of flexible mating behaviors in invertebrate and vertebrate brains.
Collapse
Affiliation(s)
- Tomomi Karigo
- Kennedy Krieger Institute, Baltimore, MD, United States,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States,*Correspondence: Tomomi Karigo,
| | - David Deutsch
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel,David Deutsch,
| |
Collapse
|
6
|
Jin B, Barbash DA, Castillo DM. Divergent selection on behavioural and chemical traits between reproductively isolated populations of Drosophila melanogaster. J Evol Biol 2022; 35:693-707. [PMID: 35411988 PMCID: PMC9320809 DOI: 10.1111/jeb.14007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/29/2022]
Abstract
Speciation is driven by traits that can act to prevent mating between nascent lineages, including male courtship and female preference for male traits. Mating barriers involving these traits evolve quickly because there is strong selection on males and females to maximize reproductive success, and the tight co-evolution of mating interactions can lead to rapid diversification of sexual behaviour. Populations of Drosophila melanogaster show strong asymmetrical reproductive isolation that is correlated with geographic origin. Using strains that capture natural variation in mating traits, we ask two key questions: which specific male traits are females selecting, and are these traits under divergent sexual selection? These questions have proven extremely challenging to answer, because even in closely related lineages males often differ in multiple traits related to mating behaviour. We address these questions by estimating selection gradients for male courtship and cuticular hydrocarbons for two different female genotypes. We identify specific behaviours and particular cuticular hydrocarbons that are under divergent sexual selection and could potentially contribute to premating reproductive isolation. Additionally, we report that a subset of these traits are plastic; males adjust these traits based on the identity of the female genotype they interact with. These results suggest that even when male courtship is not fixed between lineages, ongoing selection can act on traits that are important for reproductive isolation.
Collapse
Affiliation(s)
- Bozhou Jin
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNew YorkUSA
| | - Daniel A. Barbash
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNew YorkUSA
| | - Dean M. Castillo
- Department of BiologyUniversity of Nebraska at OmahaOmahaNebraskaUSA
| |
Collapse
|
7
|
Rouse J, McDowall L, Mitchell Z, Duncan EJ, Bretman A. Social competition stimulates cognitive performance in a sex-specific manner. Proc Biol Sci 2020; 287:20201424. [PMID: 32933446 DOI: 10.1098/rspb.2020.1424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Social interactions are thought to be a critical driver in the evolution of cognitive ability. Cooperative interactions, such as pair bonding, rather than competitive interactions have been largely implicated in the evolution of increased cognition. This is despite competition traditionally being a very strong driver of trait evolution. Males of many species track changes in their social environment and alter their reproductive strategies in response to anticipated levels of competition. We predict this to be cognitively challenging. Using a Drosophila melanogaster model, we are able to distinguish between the effects of a competitive environment versus generic social contact by exposing flies to same-sex same-species competition versus different species partners, shown to present non-competitive contacts. Males increase olfactory learning/memory and visual memory after exposure to conspecific males only, a pattern echoed by increased expression of synaptic genes and an increased need for sleep. For females, largely not affected by mating competition, the opposite pattern was seen. The results indicate that specific social contacts dependent on sex, not simply generic social stimulation, may be an important evolutionary driver for cognitive ability in fruit flies.
Collapse
Affiliation(s)
- James Rouse
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Laurin McDowall
- Centre for Gene Regulation and Expression School of Life Sciences, Dow Street, Dundee DD1 5EH, UK
| | - Zak Mitchell
- Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK
| | - Elizabeth J Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Amanda Bretman
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
8
|
Sethi S, Lin HH, Shepherd AK, Volkan PC, Su CY, Wang JW. Social Context Enhances Hormonal Modulation of Pheromone Detection in Drosophila. Curr Biol 2019; 29:3887-3898.e4. [PMID: 31679932 DOI: 10.1016/j.cub.2019.09.045] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/06/2019] [Accepted: 09/16/2019] [Indexed: 12/16/2022]
Abstract
Critical to evolutionary fitness, animals regulate social behaviors by integrating signals from both their external environments and internal states. Here, we find that population density modulates the courtship behavior of male Drosophila melanogaster in an age-dependent manner. In a competitive mating assay, males reared in a social environment have a marked advantage in courting females when pitted against males reared in isolation. Group housing promotes courtship in mature (7-day) but not immature (2-day) males; this behavioral plasticity requires the Or47b pheromone receptor. Using single-sensillum recordings, we find that group housing increases the response of Or47b olfactory receptor neurons (ORNs) only in mature males. The effect of group housing on olfactory response and behavior can be mimicked by chronically exposing single-housed males to an Or47b ligand. At the molecular level, group housing elevates Ca2+ levels in Or47b ORNs, likely leading to CaMKI-mediated activation of the histone-acetyl transferase CBP. This signaling event in turn enhances the efficacy of juvenile hormone, an age-related regulator of reproductive maturation in flies. Furthermore, the male-specific Fruitless isoform (FruM) is required for the sensory plasticity, suggesting that FruM functions as a downstream genomic coincidence detector in Or47b ORNs-integrating reproductive maturity, signaled by juvenile hormone, and population density, signaled by CBP. In all, we identify a neural substrate and activity-dependent mechanism by which social context can directly influence pheromone sensitivity, thereby modulating social behavior according to animals' life-history stage.
Collapse
Affiliation(s)
- Sachin Sethi
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hui-Hao Lin
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andrew K Shepherd
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Pelin C Volkan
- Department of Biology, Duke University, Durham, NC 27708, USA; Department of Neurobiology, Duke University, Durham, NC 27708, USA
| | - Chih-Ying Su
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jing W Wang
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|