1
|
O'Reilly GD, Manlik O, Vardeh S, Sinclair J, Cannell B, Lawler ZP, Sherwin WB. A new method for ecologists to estimate heterozygote excess and deficit for multi-locus gene families. Ecol Evol 2024; 14:e11561. [PMID: 39045501 PMCID: PMC11264353 DOI: 10.1002/ece3.11561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 07/25/2024] Open
Abstract
The fixation index, F IS, has been a staple measure to detect selection, or departures from random mating in populations. However, current Next Generation Sequencing (NGS) cannot easily estimate F IS, in multi-locus gene families that contain multiple loci having similar or identical arrays of variant sequences of ≥1 kilobase (kb), which differ at multiple positions. In these families, high-quality short-read NGS data typically identify variants, but not the genomic location, which is required to calculate F IS (based on locus-specific observed and expected heterozygosity). Thus, to assess assortative mating, or selection on heterozygotes, from NGS of multi-locus gene families, we need a method that does not require knowledge of which variants are alleles at which locus in the genome. We developed such a method. Like F IS, our novel measure, 1 H IS, is based on the principle that positive assortative mating, or selection against heterozygotes, and some other processes reduce within-individual variability relative to the population. We demonstrate high accuracy of 1 H IS on a wide range of simulated scenarios and two datasets from natural populations of penguins and dolphins. 1 H IS is important because multi-locus gene families are often involved in assortative mating or selection on heterozygotes. 1 H IS is particularly useful for multi-locus gene families, such as toll-like receptors, the major histocompatibility complex in animals, homeobox genes in fungi and self-incompatibility genes in plants.
Collapse
Affiliation(s)
- Gabe D. O'Reilly
- Evolution and Ecology Research Centre, School of Biological Earth and Environmental ScienceUniversity of New South WalesSydneyNew South WalesAustralia
- Department of BioinformaticsUniversity of North Carolina at CharlotteCharlotteNorth CarolinaUSA
| | - Oliver Manlik
- Evolution and Ecology Research Centre, School of Biological Earth and Environmental ScienceUniversity of New South WalesSydneyNew South WalesAustralia
- Biology DepartmentUnited Arab Emirates UniversityAl Ain, Abu DhabiUAE
| | - Sandra Vardeh
- Evolution and Ecology Research Centre, School of Biological Earth and Environmental ScienceUniversity of New South WalesSydneyNew South WalesAustralia
- Bundesamt für NaturschutzBonnNordrhein‐WestfalenGermany
| | - Jennifer Sinclair
- Evolution and Ecology Research Centre, School of Biological Earth and Environmental ScienceUniversity of New South WalesSydneyNew South WalesAustralia
- Cape Bernier VineyardBream CreekTasmaniaAustralia
| | - Belinda Cannell
- Oceans Institute/School of Biological SciencesUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
- School of Environmental and Conservation SciencesMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Zachary P. Lawler
- Evolution and Ecology Research Centre, School of Biological Earth and Environmental ScienceUniversity of New South WalesSydneyNew South WalesAustralia
- The University of NewcastleNewcastleNew South WalesAustralia
| | - William B. Sherwin
- Evolution and Ecology Research Centre, School of Biological Earth and Environmental ScienceUniversity of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
2
|
Heimeier D, Garland EC, Eichenberger F, Garrigue C, Vella A, Baker CS, Carroll EL. A pan-cetacean MHC amplicon sequencing panel developed and evaluated in combination with genome assemblies. Mol Ecol Resour 2024; 24:e13955. [PMID: 38520161 DOI: 10.1111/1755-0998.13955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 03/25/2024]
Abstract
The major histocompatibility complex (MHC) is a highly polymorphic gene family that is crucial in immunity, and its diversity can be effectively used as a fitness marker for populations. Despite this, MHC remains poorly characterised in non-model species (e.g., cetaceans: whales, dolphins and porpoises) as high gene copy number variation, especially in the fast-evolving class I region, makes analyses of genomic sequences difficult. To date, only small sections of class I and IIa genes have been used to assess functional diversity in cetacean populations. Here, we undertook a systematic characterisation of the MHC class I and IIa regions in available cetacean genomes. We extracted full-length gene sequences to design pan-cetacean primers that amplified the complete exon 2 from MHC class I and IIa genes in one combined sequencing panel. We validated this panel in 19 cetacean species and described 354 alleles for both classes. Furthermore, we identified likely assembly artefacts for many MHC class I assemblies based on the presence of class I genes in the amplicon data compared to missing genes from genomes. Finally, we investigated MHC diversity using the panel in 25 humpback and 30 southern right whales, including four paternity trios for humpback whales. This revealed copy-number variable class I haplotypes in humpback whales, which is likely a common phenomenon across cetaceans. These MHC alleles will form the basis for a cetacean branch of the Immuno-Polymorphism Database (IPD-MHC), a curated resource intended to aid in the systematic compilation of MHC alleles across several species, to support conservation initiatives.
Collapse
Affiliation(s)
- Dorothea Heimeier
- School of Biological Sciences, University of Auckland-Waipapa Taumata Rau, Auckland, New Zealand
| | - Ellen C Garland
- Sea Mammal Research Unit, School of Biology, University of St. Andrews, Fife, UK
| | - Franca Eichenberger
- Sea Mammal Research Unit, School of Biology, University of St. Andrews, Fife, UK
| | - Claire Garrigue
- UMR ENTROPIE, (IRD, Université de La Réunion, Université de la Nouvelle-Calédonie, IFREMER, CNRS, Laboratoire d'Excellence-CORAIL), Nouméa, New Caledonia
- Opération Cétacés, Nouméa, New Caledonia
| | - Adriana Vella
- Conservation Biology Research Group, Department of Biology, University of Malta, Msida, Malta
| | - C Scott Baker
- Marine Mammal Institute, Hatfield Marine Science Center, Oregon State University, Corvallis, Oregon, USA
| | - Emma L Carroll
- School of Biological Sciences, University of Auckland-Waipapa Taumata Rau, Auckland, New Zealand
| |
Collapse
|
3
|
Day G, Robb K, Oxley A, Telonis-Scott M, Ujvari B. Organisation and evolution of the major histocompatibility complex class I genes in cetaceans. iScience 2024; 27:109590. [PMID: 38632986 PMCID: PMC11022044 DOI: 10.1016/j.isci.2024.109590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/30/2023] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
A quarter of marine mammals are at risk of extinction, with disease and poor habitat quality contributing to population decline. Investigation of the Major Histocompatibility Complex (MHC) provides insight into species' capacity to respond to immune and environmental challenges. The eighteen available cetacean chromosome level genomes were used to annotate MHC Class I loci, and to reconstruct the phylogenetic relationship of the described loci. The highest number of loci was observed in the striped dolphin (Stenella coeruleoalba), while the least was observed in the pygmy sperm whale (Kogia breviceps) and rough toothed dolphin (Steno bredanensis). Of the species studied, Mysticetes had the most pseudogenes. Evolutionarily, MHC Class I diverged before the speciation of cetaceans. Yet, locus one was genomically and phylogenetically similar in many species, persisting over evolutionary time. This characterisation of MHC Class I in cetaceans lays the groundwork for future population genetics and MHC expression studies.
Collapse
Affiliation(s)
- Grace Day
- School of Life and Environmental Sciences, Deakin University, Geelong 3216, VIC, Australia
- Marine Mammal Foundation, Melbourne 3194, VIC, Australia
| | - Kate Robb
- Marine Mammal Foundation, Melbourne 3194, VIC, Australia
| | - Andrew Oxley
- School of Life and Environmental Sciences, Deakin University, Geelong 3216, VIC, Australia
| | - Marina Telonis-Scott
- School of Life and Environmental Sciences, Deakin University, Melbourne 3125, VIC, Australia
| | - Beata Ujvari
- School of Life and Environmental Sciences, Deakin University, Geelong 3216, VIC, Australia
| |
Collapse
|
4
|
Napolitano C, Sacristán I, Acuña F, Aguilar E, García S, López-Jara MJ, Cabello J, Hidalgo-Hermoso E, Poulin E, Grueber CE. Assessing micro-macroparasite selective pressures and anthropogenic disturbance as drivers of immune gene diversity in a Neotropical wild cat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:166289. [PMID: 37591403 DOI: 10.1016/j.scitotenv.2023.166289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
Anthropogenic environmental change is reducing available habitat for wild species, providing novel selection pressures such as infectious diseases and causing species to interact in new ways. The potential for emerging infectious diseases and zoonoses at the interface between humans, domestic animals, and wild species is a key global concern. In vertebrates, diversity at the major histocompatibility complex MHC is critical to disease resilience, and its study in wild populations provides insights into eco-evolutionary dynamics that human activities alter. In natural populations, variation at MHC loci is partly maintained by balancing selection, driven by pathogenic selective pressures. We hypothesize that MHC genetic diversity differs between guigna populations inhabiting human-dominated landscapes (higher pathogen pressures) versus more natural habitats (lower pathogen pressures). We predict that MHC diversity in guignas would be highest in human-dominated landscapes compared with continuous forest habitats. We also expected to find higher MHC diversity in guignas infected with micro and macro parasites (higher parasite load) versus non infected guignas. We characterized for the first time the genetic diversity at three MHC class I and II exons in 128 wild guignas (Leopardus guigna) across their distribution range in Chile (32-46° S) and Argentina, representing landscapes with varying levels of human disturbance. We integrated MHC sequence diversity with multiple measures of anthropogenic disturbance and both micro and macro parasite infection data. We also assessed signatures of positive selection acting on MHC genes. We found significantly higher MHC class I diversity in guignas inhabiting landscapes where houses were present, and with lower percentage of vegetation cover, and also in animals with more severe cardiorespiratory helminth infection (richness and intensity) and micro-macroparasite co-infection. This comprehensive, landscape-level assessment further enhances our knowledge on the evolutionary dynamics and adaptive potential of vertebrates in the face of emerging infectious disease threats and increasing anthropogenic impacts.
Collapse
Affiliation(s)
- Constanza Napolitano
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Osorno, Chile; Institute of Ecology and Biodiversity (IEB), Concepción, Chile; Cape Horn International Center (CHIC), Puerto Williams, Chile.
| | - Irene Sacristán
- Universidad Andres Bello, Santiago, Chile; Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA), Centro Superior de Investigaciones Científicas (CSIC), Valdeolmos, Madrid, Spain
| | - Francisca Acuña
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Emilio Aguilar
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Sebastián García
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - María José López-Jara
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Javier Cabello
- Chiloé Silvestre Center for the Conservation of Biodiversity, Ancud, Chile
| | | | - Elie Poulin
- Institute of Ecology and Biodiversity (IEB), Concepción, Chile; Millennium Institute of Biodiversity of Antarctic and Subantarctic Ecosystems and Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Catherine E Grueber
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, Australia
| |
Collapse
|
5
|
Manlik O, Lacy RC, Sherwin WB, Finn H, Loneragan NR, Allen SJ. A stochastic model for estimating sustainable limits to wildlife mortality in a changing world. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13897. [PMID: 35122329 PMCID: PMC9542519 DOI: 10.1111/cobi.13897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 12/22/2021] [Accepted: 01/24/2022] [Indexed: 05/27/2023]
Abstract
Human-caused mortality of wildlife is a pervasive threat to biodiversity. Assessing the population-level impact of fisheries bycatch and other human-caused mortality of wildlife has typically relied upon deterministic methods. However, population declines are often accelerated by stochastic factors that are not accounted for in such conventional methods. Building on the widely applied potential biological removal (PBR) equation, we devised a new population modeling approach for estimating sustainable limits to human-caused mortality and applied it in a case study of bottlenose dolphins affected by capture in an Australian demersal otter trawl fishery. Our approach, termed sustainable anthropogenic mortality in stochastic environments (SAMSE), incorporates environmental and demographic stochasticity, including the dependency of offspring on their mothers. The SAMSE limit is the maximum number of individuals that can be removed without causing negative stochastic population growth. We calculated a PBR of 16.2 dolphins per year based on the best abundance estimate available. In contrast, the SAMSE model indicated that only 2.3-8.0 dolphins could be removed annually without causing a population decline in a stochastic environment. These results suggest that reported bycatch rates are unsustainable in the long term, unless reproductive rates are consistently higher than average. The difference between the deterministic PBR calculation and the SAMSE limits showed that deterministic approaches may underestimate the true impact of human-caused mortality of wildlife. This highlights the importance of integrating stochasticity when evaluating the impact of bycatch or other human-caused mortality on wildlife, such as hunting, lethal control measures, and wind turbine collisions. Although population viability analysis (PVA) has been used to evaluate the impact of human-caused mortality, SAMSE represents a novel PVA framework that incorporates stochasticity for estimating acceptable levels of human-caused mortality. It offers a broadly applicable, stochastic addition to the demographic toolbox to evaluate the impact of human-caused mortality on wildlife.
Collapse
Affiliation(s)
- Oliver Manlik
- Biology Department, College of ScienceUnited Arab Emirates UniversityAbu DhabiUnited Arab Emirates
- Evolution and Ecology Research Centre, School of Biological Earth and Environmental ScienceUniversity of New South WalesSydneyNew South WalesAustralia
| | - Robert C. Lacy
- Species Conservation Toolkit InitiativeChicago Zoological SocietyBrookfieldIllinoisUSA
| | - William B. Sherwin
- Evolution and Ecology Research Centre, School of Biological Earth and Environmental ScienceUniversity of New South WalesSydneyNew South WalesAustralia
| | - Hugh Finn
- Curtin Law School, Faculty of Business and LawCurtin UniversityBentleyWestern AustraliaAustralia
| | - Neil R. Loneragan
- Environmental and Conservation Sciences, College of Science, Health, Engineering and Education and Centre for Sustainable Aquatic Ecosystems, Harry Butler InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Simon J. Allen
- School of Biological SciencesUniversity of BristolBristolUK
- Department of AnthropologyUniversity of ZurichZurichSwitzerland
- School of Biological SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| |
Collapse
|
6
|
Xu N, Ye W, Sun C, He K, Zhu Y, Lan H, Lu C, Liu H. Genetic Diversity and Differentiation of MHC Class I Genes in Red-Crowned Crane Populations. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.898581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The red-crowned crane (Grus japonensis) has been demoted to “vulnerable species” because its populations have apparently stabilized in Japan and Korea. Low variation and genetic drift may cause damage to the nascent recovery of the G. japonensis population. The major histocompatibility complex (MHC) is one of the most polymorphic gene families in the vertebrate genome and can reflect information on the adaptive evolution of endangered species. In this study, variations in MHC I exon 3 of captive G. japonensis in China were assessed and compared with those in cranes from Japan. Forty MHC alleles of 274 base pairs were isolated from 32 individuals from two captive populations in China. There was high variability in the nucleotide and amino acid composition, showing the proportion of polymorphic sites of 18.98 and 32.97%, respectively. Comparative analyses of the Chinese and Japanese populations based on 222 base pair sequences revealed more alleles and higher variation in the Chinese population. The lack of significant geographical differentiation of G. japonensis was supported by the genetic differentiation coefficient (0.04506) between the Chinese and Japanese populations. Positive selection of antigen-binding sites was observed, which contributed to maintaining the diversity of MHC class I genes. Phylogenetic analysis suggested the persistence of trans-species polymorphisms among MHC class I genes in Gruidae species. Our results may contribute to optimizing the management of G. japonensis populations and population recovery of this threatened species.
Collapse
|
7
|
Kardos M, Armstrong EE, Fitzpatrick SW, Hauser S, Hedrick PW, Miller JM, Tallmon DA, Funk WC. The crucial role of genome-wide genetic variation in conservation. Proc Natl Acad Sci U S A 2021; 118:e2104642118. [PMID: 34772759 PMCID: PMC8640931 DOI: 10.1073/pnas.2104642118] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2021] [Indexed: 12/30/2022] Open
Abstract
The unprecedented rate of extinction calls for efficient use of genetics to help conserve biodiversity. Several recent genomic and simulation-based studies have argued that the field of conservation biology has placed too much focus on conserving genome-wide genetic variation, and that the field should instead focus on managing the subset of functional genetic variation that is thought to affect fitness. Here, we critically evaluate the feasibility and likely benefits of this approach in conservation. We find that population genetics theory and empirical results show that conserving genome-wide genetic variation is generally the best approach to prevent inbreeding depression and loss of adaptive potential from driving populations toward extinction. Focusing conservation efforts on presumably functional genetic variation will only be feasible occasionally, often misleading, and counterproductive when prioritized over genome-wide genetic variation. Given the increasing rate of habitat loss and other environmental changes, failure to recognize the detrimental effects of lost genome-wide genetic variation on long-term population viability will only worsen the biodiversity crisis.
Collapse
Affiliation(s)
- Marty Kardos
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112;
| | | | - Sarah W Fitzpatrick
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI 49060
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824
| | - Samantha Hauser
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
| | - Philip W Hedrick
- School of Life Sciences, Arizona State University, Tempe, AZ 85287
| | - Joshua M Miller
- San Diego Zoo Wildlife Alliance, Escondido, CA 92027
- Polar Bears International, Bozeman, MT 59772
- Department of Biological Sciences, MacEwan University, Edmonton, AB T5J 4S2, Canada
| | - David A Tallmon
- Biology and Marine Biology Program, University of Alaska Southeast, Juneau, AK 99801
| | - W Chris Funk
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
8
|
Abstract
The unprecedented rate of extinction calls for efficient use of genetics to help conserve biodiversity. Several recent genomic and simulation-based studies have argued that the field of conservation biology has placed too much focus on conserving genome-wide genetic variation, and that the field should instead focus on managing the subset of functional genetic variation that is thought to affect fitness. Here, we critically evaluate the feasibility and likely benefits of this approach in conservation. We find that population genetics theory and empirical results show that conserving genome-wide genetic variation is generally the best approach to prevent inbreeding depression and loss of adaptive potential from driving populations toward extinction. Focusing conservation efforts on presumably functional genetic variation will only be feasible occasionally, often misleading, and counterproductive when prioritized over genome-wide genetic variation. Given the increasing rate of habitat loss and other environmental changes, failure to recognize the detrimental effects of lost genome-wide genetic variation on long-term population viability will only worsen the biodiversity crisis.
Collapse
|
9
|
Machuka EM, Muigai AWT, Amimo JO, Domelevo Entfellner JB, Lekolool I, Abworo EO, Pelle R. Comparative Analysis of SLA-1, SLA-2, and DQB1 Genetic Diversity in Locally-Adapted Kenyan Pigs and Their Wild Relatives, Warthogs. Vet Sci 2021; 8:180. [PMID: 34564574 PMCID: PMC8473215 DOI: 10.3390/vetsci8090180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
Swine leukocyte antigen (SLA) plays a central role in controlling the immune response by discriminating self and foreign antigens and initiating an immune response. Studies on SLA polymorphism have demonstrated associations between SLA allelic variants, immune response, and disease resistance. The SLA polymorphism is due to host-pathogen co-evolution resulting in improved adaptation to diverse environments making SLA a crucial genomic region for comparative diversity studies. Although locally-adapted African pigs have small body sizes, they possess increased resilience under harsh environmental conditions and robust immune systems with reported tolerance to some diseases, including African swine fever. However, data on the SLA diversity in these pigs are not available. We characterized the SLA of unrelated locally-adapted domestic pigs from Homa Bay, Kenya, alongside exotic pigs and warthogs. We undertook SLA comparative diversity of the functionally expressed SLA class I (SLA-1, SLA-2) and II (DQB1) repertoires in these three suids using the reverse transcription polymerase chain reaction (RT-PCR) sequence-based typing (SBT) method. Our data revealed higher genetic diversity in the locally-adapted pigs and warthogs compared to the exotic pigs. The nucleotide substitution rates were higher in the peptide-binding regions of the SLA-1, SLA-2, and DQB1 loci, indicative of adaptive evolution. We obtained high allele frequencies in the three SLA loci, including some breed-specific private alleles, which could guide breeders to increase their frequency through selection if confirmed to be associated with enhanced resilience. Our study contributes to the growing body of knowledge on genetic diversity in free-ranging animal populations in their natural environment, availing the first DQB1 gene data from locally-adapted Kenyan pigs.
Collapse
Affiliation(s)
- Eunice Magoma Machuka
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, Nairobi P.O. Box 30709-00100, Kenya;
- Institute for Basic Sciences Technology and Innovation (PAUSTI), Pan African University, Nairobi P.O. Box 62000-00200, Kenya
| | - Anne W. Thairu Muigai
- Botany Department, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya;
| | - Joshua Oluoch Amimo
- Center for Food Animal Health, Department of Animal Sciences, 1680 Madison Avenue, The Ohio State University, Wooster, OH 44691, USA;
| | - Jean-Baka Domelevo Entfellner
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, Nairobi P.O. Box 30709-00100, Kenya;
| | - Isaac Lekolool
- Kenya Wildlife Services, Nairobi P.O. Box 40241-00100, Kenya;
| | - Edward Okoth Abworo
- Animal and Human Health Program, International Livestock Research Institute, Nairobi P.O. Box 30709-00100, Kenya;
| | - Roger Pelle
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, Nairobi P.O. Box 30709-00100, Kenya;
| |
Collapse
|
10
|
Paterson NM, Al-Zubieri H, Barber MF. Diversification of CD1 Molecules Shapes Lipid Antigen Selectivity. Mol Biol Evol 2021; 38:2273-2284. [PMID: 33528563 PMCID: PMC8136489 DOI: 10.1093/molbev/msab022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Molecular studies of host-pathogen evolution have largely focused on the consequences of variation at protein-protein interaction surfaces. The potential for other microbe-associated macromolecules to promote arms race dynamics with host factors remains unclear. The cluster of differentiation 1 (CD1) family of vertebrate cell surface receptors plays a crucial role in adaptive immunity through binding and presentation of lipid antigens to T-cells. Although CD1 proteins present a variety of endogenous and microbial lipids to various T-cell types, they are less diverse within vertebrate populations than the related major histocompatibility complex (MHC) molecules. We discovered that CD1 genes exhibit a high level of divergence between simian primate species, altering predicted lipid-binding properties and T-cell receptor interactions. These findings suggest that lipid-protein conflicts have shaped CD1 genetic variation during primate evolution. Consistent with this hypothesis, multiple primate CD1 family proteins exhibit signatures of repeated positive selection at surfaces impacting antigen presentation, binding pocket morphology, and T-cell receptor accessibility. Using a molecular modeling approach, we observe that interspecies variation as well as single mutations at rapidly-evolving sites in CD1a drastically alter predicted lipid binding and structural features of the T-cell recognition surface. We further show that alterations in both endogenous and microbial lipid-binding affinities influence the ability of CD1a to undergo antigen swapping required for T-cell activation. Together these findings establish lipid-protein interactions as a critical force of host-pathogen conflict and inform potential strategies for lipid-based vaccine development.
Collapse
Affiliation(s)
- Nicole M Paterson
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA.,Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
| | - Hussein Al-Zubieri
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA.,Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
| | - Matthew F Barber
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA.,Department of Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
11
|
Hybridization with mountain hares increases the functional allelic repertoire in brown hares. Sci Rep 2021; 11:15771. [PMID: 34349207 PMCID: PMC8338973 DOI: 10.1038/s41598-021-95357-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Brown hares (Lepus europaeus Pallas) are able to hybridize with mountain hares (L. timidus Linnaeus) and produce fertile offspring, which results in cross-species gene flow. However, not much is known about the functional significance of this genetic introgression. Using targeted sequencing of candidate loci combined with mtDNA genotyping, we found the ancestral genetic diversity in the Finnish brown hare to be small, likely due to founder effect and range expansion, while gene flow from mountain hares constitutes an important source of functional genetic variability. Some of this variability, such as the alleles of the mountain hare thermogenin (uncoupling protein 1, UCP1), might have adaptive advantage for brown hares, whereas immunity-related MHC alleles are reciprocally exchanged and maintained via balancing selection. Our study offers a rare example where an expanding species can increase its allelic variability through hybridization with a congeneric native species, offering a route to shortcut evolutionary adaptation to the local environmental conditions.
Collapse
|
12
|
De Cahsan B, Kiemel K, Westbury MV, Lauritsen M, Autenrieth M, Gollmann G, Schweiger S, Stenberg M, Nyström P, Drews H, Tiedemann R. Southern introgression increases adaptive immune gene variability in northern range margin populations of Fire-bellied toad. Ecol Evol 2021; 11:9776-9790. [PMID: 34306661 PMCID: PMC8293767 DOI: 10.1002/ece3.7805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/14/2021] [Accepted: 05/28/2021] [Indexed: 11/20/2022] Open
Abstract
Northern range margin populations of the European fire-bellied toad (Bombina bombina) have rapidly declined during recent decades. Extensive agricultural land use has fragmented the landscape, leading to habitat disruption and loss, as well as eutrophication of ponds. In Northern Germany (Schleswig-Holstein) and Southern Sweden (Skåne), this population decline resulted in decreased gene flow from surrounding populations, low genetic diversity, and a putative reduction in adaptive potential, leaving populations vulnerable to future environmental and climatic changes. Previous studies using mitochondrial control region and nuclear transcriptome-wide SNP data detected introgressive hybridization in multiple northern B. bombina populations after unreported release of toads from Austria. Here, we determine the impact of this introgression by comparing the body conditions (proxy for fitness) of introgressed and nonintrogressed populations and the genetic consequences in two candidate genes for putative local adaptation (the MHC II gene as part of the adaptive immune system and the stress response gene HSP70 kDa). We detected regional differences in body condition and observed significantly elevated levels of within individual MHC allele counts in introgressed Swedish populations, associated with a tendency toward higher body weight, relative to regional nonintrogressed populations. These differences were not observed among introgressed and nonintrogressed German populations. Genetic diversity in both MHC and HSP was generally lower in northern than Austrian populations. Our study sheds light on the potential benefits of translocations of more distantly related conspecifics as a means to increase adaptive genetic variability and fitness of genetically depauperate range margin populations without distortion of local adaptation.
Collapse
Affiliation(s)
- Binia De Cahsan
- Unit of Evolutionary Biology/Systematic ZoologyInstitute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
- GLOBE InstituteUniversity of CopenhagenCopenhagenDenmark
| | - Katrin Kiemel
- Unit of Evolutionary Biology/Systematic ZoologyInstitute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| | | | - Maike Lauritsen
- Unit of Evolutionary Biology/Systematic ZoologyInstitute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| | - Marijke Autenrieth
- Unit of Evolutionary Biology/Systematic ZoologyInstitute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| | - Günter Gollmann
- Department of Evolutionary BiologyUniversity of ViennaViennaAustria
| | - Silke Schweiger
- Herpetological CollectionNatural History Museum ViennaViennaAustria
| | | | | | - Hauke Drews
- Stiftung Naturschutz Schleswig‐HolsteinMolfseeGermany
| | - Ralph Tiedemann
- Unit of Evolutionary Biology/Systematic ZoologyInstitute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| |
Collapse
|
13
|
Teixeira JC, Huber CD. The inflated significance of neutral genetic diversity in conservation genetics. Proc Natl Acad Sci U S A 2021; 118:e2015096118. [PMID: 33608481 PMCID: PMC7958437 DOI: 10.1073/pnas.2015096118] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The current rate of species extinction is rapidly approaching unprecedented highs, and life on Earth presently faces a sixth mass extinction event driven by anthropogenic activity, climate change, and ecological collapse. The field of conservation genetics aims at preserving species by using their levels of genetic diversity, usually measured as neutral genome-wide diversity, as a barometer for evaluating population health and extinction risk. A fundamental assumption is that higher levels of genetic diversity lead to an increase in fitness and long-term survival of a species. Here, we argue against the perceived importance of neutral genetic diversity for the conservation of wild populations and species. We demonstrate that no simple general relationship exists between neutral genetic diversity and the risk of species extinction. Instead, a better understanding of the properties of functional genetic diversity, demographic history, and ecological relationships is necessary for developing and implementing effective conservation genetic strategies.
Collapse
Affiliation(s)
- João C Teixeira
- School of Biological Sciences, The University of Adelaide, Adelaide, 5005 SA, Australia;
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, The University of Adelaide, Adelaide, 5005 SA, Australia
| | - Christian D Huber
- School of Biological Sciences, The University of Adelaide, Adelaide, 5005 SA, Australia;
| |
Collapse
|
14
|
Batley KC, Sandoval-Castillo J, Kemper CM, Zanardo N, Tomo I, Beheregaray LB, Möller LM. Whole genomes reveal multiple candidate genes and pathways involved in the immune response of dolphins to a highly infectious virus. Mol Ecol 2021; 30:6434-6448. [PMID: 33675577 DOI: 10.1111/mec.15873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 01/02/2023]
Abstract
Wildlife species are challenged by various infectious diseases that act as important demographic drivers of populations and have become a great conservation concern particularly under growing environmental changes. The new era of whole genome sequencing provides new opportunities and avenues to explore the role of genetic variants in the plasticity of immune responses, particularly in non-model systems. Cetacean morbillivirus (CeMV) has emerged as a major viral threat to cetacean populations worldwide, contributing to the death of thousands of individuals of multiple dolphin and whale species. To understand the genomic basis of immune responses to CeMV, we generated and analysed whole genomes of 53 Indo-Pacific bottlenose dolphins (Tursiops aduncus) exposed to Australia's largest known CeMV-related mortality event that killed at least 50 dolphins from three different species. The genomic data set consisted of 10,168,981 SNPs anchored onto 23 chromosome-length scaffolds and 77 short scaffolds. Whole genome analysis indicated that levels of inbreeding in the dolphin population did not influence the outcome of an individual. Allele frequency estimates between survivors and nonsurvivors of the outbreak revealed 15,769 candidate SNPs, of which 689 were annotated to 295 protein coding genes. These included 50 genes with functions related to innate and adaptive immune responses, and cytokine signalling pathways and genes thought to be involved in immune responses to other morbilliviruses. Our study characterised genomic regions and pathways that may contribute to CeMV immune responses in dolphins. This represents a stride towards clarifying the complex interactions of the cetacean immune system and emphasises the value of whole genome data sets in understanding genetic elements that are essential for species conservation, including disease susceptibility and adaptation.
Collapse
Affiliation(s)
- Kimberley C Batley
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.,Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Jonathan Sandoval-Castillo
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | | | - Nikki Zanardo
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.,Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Ikuko Tomo
- South Australian Museum, Adelaide, South Australia, Australia
| | - Luciano B Beheregaray
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Luciana M Möller
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.,Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
15
|
Bay V, Keleş M, Aymaz R, Hatipoğlu E, Öner Y, Yaman Y. Documentation of extensive genetic diversity in the Ovar- DRB1 gene in native Turkish sheep. Anim Biotechnol 2021; 32:507-518. [PMID: 33606604 DOI: 10.1080/10495398.2021.1884086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Indigenous breeds have a high level of genetic diversity that might contribute to develop animal breeds with desired traits such as disease resistance and high productivity. Major histocompatibility complex (MHC) is a key component of adaptive immune system and consists of highly polymorphic genes that take part in adaptive immune response and disease resistance. Exploring and understanding the effect of polymorphisms in MHC could be beneficial to future animal breeding strategies. In this study, we sequenced the highly polymorphic Exon2 of the ovine DRB1 gene using Sanger sequencing to explore the diversity of this gene in six indigenous Turkish sheep breeds and two crossbreeds. In total, 894 haplotypes from 447 sheep were investigated, and 69 different haplotypes including 27 novel ones were identified. Among the identified haplotypes there were common and breed specific haplotypes. There was a relatively high diversity of the alleles within indigenous breeds. Allelic diversity patterns were mostly associated with geographical differences. The results of this study highlight the genetic variation within indigenous breeds which has important implications for biodiversity and the adaptability of breeds to specific environments. There is value to further studies which include other genomic regions and traits, and these could guide breeding strategies.
Collapse
Affiliation(s)
- Veysel Bay
- Department of Biometrics and Genetics, Sheep Breeding and Research Institute, Bandirma, Balıkesir, Turkey
| | - Murat Keleş
- Department of Biometrics and Genetics, Sheep Breeding and Research Institute, Bandirma, Balıkesir, Turkey
| | - Ramazan Aymaz
- Department of Biometrics and Genetics, Sheep Breeding and Research Institute, Bandirma, Balıkesir, Turkey
| | - Ecem Hatipoğlu
- Department of Biometrics and Genetics, Sheep Breeding and Research Institute, Bandirma, Balıkesir, Turkey
| | - Yasemin Öner
- Department of Biometry and Genetics, Faculty of Agriculture, Uludağ University, Bursa, Turkey
| | - Yalçın Yaman
- Department of Biometrics and Genetics, Sheep Breeding and Research Institute, Bandirma, Balıkesir, Turkey
| |
Collapse
|
16
|
Zhao B, Zhang X, Li B, Du P, Shi L, Dong Y, Gao X, Sha W, Zhang H. Evolution of major histocompatibility complex class I genes in the sable Martes zibellina (Carnivora, Mustelidae). Ecol Evol 2020; 10:3439-3449. [PMID: 32274000 PMCID: PMC7141072 DOI: 10.1002/ece3.6140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 11/10/2022] Open
Abstract
The molecules encoded by major histocompatibility complex (MHC) genes play an essential role in the adaptive immune response among vertebrates. We investigated the molecular evolution of MHC class I genes in the sable Martes zibellina. We isolated 26 MHC class I sequences, including 12 putatively functional sequences and 14 pseudogene sequences, from 24 individuals from two geographic areas of northeast China. The number of putatively functional sequences found in a single individual ranged from one to five, which might be at least 1-3 loci. We found that both balancing selection and recombination contribute to evolution of MHC class I genes in M. zibellina. In addition, we identified a candidate nonclassical MHC class I lineage in Carnivora, which may have preceded the divergence (about 52-57 Mya) of Caniformia and Feliformia. This may contribute to further understanding of the origin and evolution of nonclassical MHC class I genes. Our study provides important immune information of MHC for M. zibellina, as well as other carnivores.
Collapse
Affiliation(s)
- Baojun Zhao
- College of Life Science Qufu Normal University Qufu China
| | - Xue Zhang
- College of Life Science Qufu Normal University Qufu China
| | - Bo Li
- College of Wildlife and Protected Area Northeast Forestry University Harbin China
| | - Pengfei Du
- College of Life Science Qufu Normal University Qufu China
| | - Lupeng Shi
- College of Life Science Qufu Normal University Qufu China
| | - Yuehuan Dong
- College of Life Science Qufu Normal University Qufu China
| | - Xiaodong Gao
- College of Life Science Qufu Normal University Qufu China
| | - Weilai Sha
- College of Life Science Qufu Normal University Qufu China
| | - Honghai Zhang
- College of Life Science Qufu Normal University Qufu China
| |
Collapse
|
17
|
Manlik O. The Importance of Reproduction for the Conservation of Slow-Growing Animal Populations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1200:13-39. [PMID: 31471793 DOI: 10.1007/978-3-030-23633-5_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Both survival and reproduction are important fitness components, and thus critical to the viability of wildlife populations. Preventing one death (survival) or contributing one newborn (reproduction), has arguably the same effect on population dynamics-in each instance the population grows or is maintained by one additional member. However, for the conservation of slow-growing animal populations, the importance of reproduction is sometimes overlooked when evaluating wildlife management options. This has to do with the use of demographic sensitivity analyses, which quantify the relative contribution of vital rates to population growth. For slow-growing populations, the results of such analyses typically show that growth rates are more sensitive to changes in survival than to equal proportional changes in reproduction. Consequently, for slow-growing taxa, survival has been labelled a better fitness surrogate than reproduction. However, such a generalization, derived from conventional sensitivity analyses, is based on flawed approaches, such as omitting appropriate scaling of vital rates, and sometimes misinterpretations. In this chapter, I make the case that for the conservation of slow-growing species the role of reproduction is considerably greater than conventional sensitivity analyses would suggest. This is illustrated by case studies on wildlife populations that underscore the importance of reproduction for the conservation of slow-growing birds, ungulates, carnivores, and cetaceans.
Collapse
Affiliation(s)
- Oliver Manlik
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates. .,Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|