1
|
Suwannapoom C, Osathanunkul M. Distinguishing fanged frogs (Limnonectes) species (Amphibia: Anura: Dicroglossidae), from Thailand using high resolution melting analysis. Sci Rep 2023; 13:18615. [PMID: 37903792 PMCID: PMC10616069 DOI: 10.1038/s41598-023-43637-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/26/2023] [Indexed: 11/01/2023] Open
Abstract
Morphologically, species of fanged frogs (Limnonectes) are exceedingly similar, making it difficult to distinguish them within the complex. In Thailand, it has been difficult to distinguish between the sympatric species L. bannaensis and L. taylori, particularly among tadpoles, adolescents, and adult females. A precise identification contributes to a greater understanding of biodiversity, particularly for assessing distributions and population dynamics. Therefore, a novel approach is required. The objective of this study was to develop a high resolution melting analysis (HRM) for the rapid and accurate identification of six species of Limnonectes of the L. kuhlii complex found in Thailand, particularly the two sympatric fanged frogs. Here, HRM assays using 16S rRNA mitochondrial primers were designed and developed. There was as much as a 25.3% variation in the nucleotide sequence of the fragment amplified by HRM16S primers among the six species of Limnonectes. Prior to conducting an in vitro HRM, the DNA sequences were used in a simulation HRM, uMELT Quartz, to predict the melting curve for each species of Limnonectes. There were discrepancies between the predicted melting curves of each species generated by the programme. Consequently, in vitro HRM tests were conducted. The obtained melting curve and Tm values were consistent with those predicted, albeit with a slightly different Tm value and a more distinct melting curve. All evaluated species of Limnonectes could be easily distinguished from one another by comparing the melting curve shapes. The HRM assay was then used to confirm the species of 18 Limnonectes samples in comparison to the reference samples (confidence interval > 90%). In addition, the results of HRM were consistent with those of experts who used morphological analysis to identify species. The HRM was found to be useful, and therefore the method would also contribute to future ecological and systematic studies on the target species.
Collapse
Affiliation(s)
- Chatmongkon Suwannapoom
- School of Agriculture and Natural Resources, University of Phayao, Muang District, Phayao, Thailand
| | - Maslin Osathanunkul
- Department of Biology, Faculty of Science, Chiang Mai University, Muang District, Chiang Mai, 50200, Thailand.
| |
Collapse
|
2
|
Saptarshi AN, Dongerdiye RK, More TA, Kedar PS. Development of High-Resolution Melting Curve Analysis for rapid detection of SEC23B gene mutation causing Congenital Dyserythropoietic Anemia type II in Indian population. Ital J Pediatr 2023; 49:84. [PMID: 37455305 DOI: 10.1186/s13052-023-01493-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/09/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Congenital dyserythropoietic anemias (CDAs) are a very rare and heterogeneous group of disorders characterized by ineffective erythropoiesis. CDA II is caused by mutations in the SEC23B gene. The most common mutation reported in India is c.1385 A > G, p.Y462C. There is no simple and cost-effective confirmatory diagnostic test available for CDA, and therefore, many patients remain undiagnosed. High-resolution melting curve (HRM) analysis is a polymerase chain reaction (PCR) based technique applied to identify genetic differences and scan nucleic acid sequences. HRM can be used to rapidly screen the common mutation causing CDA II in the Indian population. Thus, we studied the use of High-Resolution Melting Curve Analysis to detect common mutation causing CDA II in the Indian population. METHOD 11 patients having SEC23B (Y462C) mutation causing CDA II are considered for this study. HRM was used to check the presence of Y462C mutation. To verify the accuracy of the HRM analysis, we compared HRM results with the results of Sanger sequencing. This helped us to confirm the diagnosis. RESULTS We have described the clinical, hematological, and genetic data of eleven patients suffering from CDAII. According to HRM and Sanger sequencing, a homozygous SEC23B (Y462C) mutation was present in all patients, whereas a heterozygous Y462C mutation was present in their parents. CONCLUSION Our data showed that High-Resolution Melting (HRM) analysis could be used to rapidly screen common SEC23B mutation that causes CDA II in the Indian population.
Collapse
Affiliation(s)
- Arati Nandan Saptarshi
- Department of Haematogenetics, ICMR- National Institute of Immunohaematology, 13th Floor, New Multi Storeyed Building, KEM Hospital Campus, Parel, Mumbai, 400012, India
| | - Rashmi K Dongerdiye
- Department of Haematogenetics, ICMR- National Institute of Immunohaematology, 13th Floor, New Multi Storeyed Building, KEM Hospital Campus, Parel, Mumbai, 400012, India
| | - Tejashree Anil More
- Department of Haematogenetics, ICMR- National Institute of Immunohaematology, 13th Floor, New Multi Storeyed Building, KEM Hospital Campus, Parel, Mumbai, 400012, India
| | - Prabhakar S Kedar
- Department of Haematogenetics, ICMR- National Institute of Immunohaematology, 13th Floor, New Multi Storeyed Building, KEM Hospital Campus, Parel, Mumbai, 400012, India.
| |
Collapse
|
3
|
More TA, Kedar PS. Genotypic analysis of SLC4A1 A858D mutation in Indian population associated with distal renal tubular Acidosis (dRTA) coupled with hemolytic anemia. Gene 2020; 769:145241. [PMID: 33068675 DOI: 10.1016/j.gene.2020.145241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/27/2020] [Accepted: 10/11/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Although distinctive, distal renal tubular acidosis (dRTA) and Hereditary Spherocytosis (HS) shares a common protein, the anion exchanger1 (AE1) encoded by SLC4A1gene. In spite of this, the co-existence of dRTA and HS has rarely been observed. To date, 23 mutations have been identified in SLC4A1 gene causing both autosomal recessive (AR) and autosomal dominant (AD) forms of dRTA. METHODS We have assessed the applicability of the High Resolution Melting curve (HRM) method for the detection of SLC4A1 (A858D) mutation in 12 Indian families having AR dRTA coupled with HS. The reliability of the HRM analysis was verified by comparing the results of the HRM method with those of conventional methods such as Polymerase Chain Reaction-Restriction Fragment-Length Polymorphism (PCR-RFLP) and Sanger sequencing thereby confirming the diagnosis. RESULTS We here described the clinical, hematological and genetic data of 16 individuals from 12 families having AR dRTA coupled with HS. All patients carried homozygous SLC4A1 (A858D) mutation, whereas their family members had heterozygous A858D obtained by HRM analysis and confirmed by RFLP and Sanger sequencing. CONCLUSION Our data indicates that a missense mutation of A858D in SLC4A1 gene is the most common cause of dRTA coupled with HS in the Indian population. HRM analysis can be used as a rapid screening method for common SLC4A1 mutations that cause AR dRTA in the Indian population.
Collapse
Affiliation(s)
- Tejashree Anil More
- Department of Hematogenetics, ICMR-National Institute of Immunohematology, KEM Hospital Campus, Parel, Mumbai 40012, India
| | - Prabhakar S Kedar
- Department of Hematogenetics, ICMR-National Institute of Immunohematology, KEM Hospital Campus, Parel, Mumbai 40012, India.
| |
Collapse
|
4
|
Zangl L, Oberreiter H, Huss H, Stabentheiner E, Sturmbauer C, Koblmüller S. Discriminating larvae of two syntopic Cychramus species (Coleoptera, Nitidulidae) by means of bar-HRM analysis. Mol Biol Rep 2020; 47:8251-8257. [PMID: 32901359 PMCID: PMC7588358 DOI: 10.1007/s11033-020-05786-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/28/2020] [Indexed: 11/03/2022]
Abstract
Molecular genetic methods are increasingly used to supplement or substitute classical morphology-based species identification. Here, we employ a COI mini-barcode coupled high-resolution melting analysis to quickly, cost-efficiently and reliably determine larvae of two closely related Cychramus (Coleoptera, Nitidulidae) species. Euclidean distance comparison (p < 0.01) and a Welch t-test of the melting point temperatures (p < 0.01) provide highly significant statistical evidence for species specific differences in melting and fluorescence curves, thus allowing the assignment of larvae to either of the two species. This protocol serves as a fast, low-cost and low-tech method to discriminate between pairs or groups of closely related species and can be adapted and applied to various ecological research questions.
Collapse
Affiliation(s)
- Lukas Zangl
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria. .,Universalmuseum Joanneum, Studienzentrum Naturkunde, Weinzöttlstraße 16, 8045, Graz, Austria. .,ÖKOTEAM - Institute for Animal Ecology and Landscape Planning, Bergmanngasse 22, 8010, Graz, Austria.
| | - Hannes Oberreiter
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | | | - Edith Stabentheiner
- Institute of Biology, University of Graz, Schubertstraße 51, 8010, Graz, Austria
| | - Christian Sturmbauer
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Stephan Koblmüller
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria.
| |
Collapse
|
5
|
Ouso DO, Otiende MY, Jeneby MM, Oundo JW, Bargul JL, Miller SE, Wambua L, Villinger J. Three-gene PCR and high-resolution melting analysis for differentiating vertebrate species mitochondrial DNA for biodiversity research and complementing forensic surveillance. Sci Rep 2020; 10:4741. [PMID: 32179808 PMCID: PMC7075967 DOI: 10.1038/s41598-020-61600-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/27/2020] [Indexed: 11/09/2022] Open
Abstract
Reliable molecular identification of vertebrate species from morphologically unidentifiable tissue is critical for the prosecution of illegally-traded wildlife products, conservation-based biodiversity research, and identification of blood-meal hosts of hematophagous invertebrates. However, forensic identification of vertebrate tissue relies on sequencing of the mitochondrial cytochrome oxidase I (COI) 'barcode' gene, which remains costly for purposes of screening large numbers of unknown samples during routine surveillance. Here, we adapted a rapid, low-cost approach to differentiate 10 domestic and 24 wildlife species that are common in the East African illegal wildlife products trade based on their unique high-resolution melting profiles from COI, cytochrome b, and 16S ribosomal RNA gene PCR products. Using the approach, we identified (i) giraffe among covertly sampled meat from Kenyan butcheries, and (ii) forest elephant mitochondrial sequences among savannah elephant reference samples. This approach is being adopted for high-throughput pre-screening of potential bushmeat samples in East African forensic science pipelines.
Collapse
Affiliation(s)
- Daniel O Ouso
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
- Biochemistry Department, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000-00200, Nairobi, Kenya
| | - Moses Y Otiende
- Kenya Wildlife Service, Veterinary Department, P.O. Box 40241-00100, Nairobi, Kenya
| | - Maamun M Jeneby
- Institute of Primate Research, National Museums of Kenya, Department of Tropical and Infectious Diseases, P. O. Box 24481-00502, Karen, Nairobi, Kenya
| | - Joseph W Oundo
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Joel L Bargul
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
- Biochemistry Department, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000-00200, Nairobi, Kenya
| | - Scott E Miller
- National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Lillian Wambua
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
- International Livestock Research Institute, Department of Animal Biosciences, P.O. Box 30709-00100, Nairobi, Kenya
| | - Jandouwe Villinger
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya.
| |
Collapse
|