1
|
Hightower AT, Chitwood DH, Josephs EB. Herbarium specimens reveal links between leaf shape of Capsella bursa-pastoris and climate. AMERICAN JOURNAL OF BOTANY 2024; 111:e16435. [PMID: 39503350 PMCID: PMC11584044 DOI: 10.1002/ajb2.16435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 11/13/2024]
Abstract
PREMISE Studies into the evolution and development of leaf shape have connected variation in plant form, function, and fitness. For species with consistent leaf margin features, patterns in leaf architecture are related to both biotic and abiotic factors. However, for species with inconsistent leaf shapes, quantifying variation in leaf shape and the effects of environmental factors on leaf shape has proven challenging. METHODS To investigate leaf shape variation in a species with inconsistently shaped leaves, we used geometric morphometric modeling and deterministic techniques to analyze approximately 500 digitized specimens of Capsella bursa-pastoris collected throughout the continental United States over 100 years. We generated a morphospace of the leaf shapes and modeled leaf shape as a function of environment and time. RESULTS Leaf shape variation of C. bursa-pastoris was strongly associated with temperature over its growing season, with lobing decreasing as temperature increased. While we expected to see changes in variation over time, our results show that the level of leaf shape variation was consistent over the 100 years. CONCLUSIONS Our findings showed that species with inconsistent leaf shape variation can be quantified using geometric morphometric modeling techniques and that temperature is the main environmental factor influencing leaf shape variation.
Collapse
Affiliation(s)
- Asia T Hightower
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, 48824-1226, MI, USA
- Ecology, Evolution, & Behavior Program, Michigan State University, 567 Wilson Road, East Lansing, 48824-1226, MI, USA
- Plant Resilience Institute, Michigan State University, East Lansing, 48824-1226, MI, USA
| | - Daniel H Chitwood
- Department of Horticulture, Michigan State University, 1066 Bogue Street, East Lansing, 48824-1226, MI, USA
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, 428 S. Shaw Lane, East Lansing, 48824-1226, MI, USA
| | - Emily B Josephs
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, 48824-1226, MI, USA
- Ecology, Evolution, & Behavior Program, Michigan State University, 567 Wilson Road, East Lansing, 48824-1226, MI, USA
- Plant Resilience Institute, Michigan State University, East Lansing, 48824-1226, MI, USA
| |
Collapse
|
2
|
Murata H, Noshita K. Three-Dimensional Leaf Edge Reconstruction Combining Two- and Three-Dimensional Approaches. PLANT PHENOMICS (WASHINGTON, D.C.) 2024; 6:0181. [PMID: 38726389 PMCID: PMC11079596 DOI: 10.34133/plantphenomics.0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/29/2024] [Indexed: 05/12/2024]
Abstract
Leaves, crucial for plant physiology, exhibit various morphological traits that meet diverse functional needs. Traditional leaf morphology quantification, largely 2-dimensional (2D), has not fully captured the 3-dimensional (3D) aspects of leaf function. Despite improvements in 3D data acquisition, accurately depicting leaf morphologies, particularly at the edges, is difficult. This study proposes a method for 3D leaf edge reconstruction, combining 2D image segmentation with curve-based 3D reconstruction. Utilizing deep-learning-based instance segmentation for 2D edge detection, structure from motion for estimation of camera positions and orientations, leaf correspondence identification for matching leaves among images, and curve-based 3D reconstruction for estimating 3D curve fragments, the method assembles 3D curve fragments into a leaf edge model through B-spline curve fitting. The method's performances were evaluated on both virtual and actual leaves, and the results indicated that small leaves and high camera noise pose greater challenges to reconstruction. We developed guidelines for setting a reliability threshold for curve fragments, considering factors occlusion, leaf size, the number of images, and camera error; the number of images had a lesser impact on this threshold compared to others. The method was effective for lobed leaves and leaves with fewer than 4 holes. However, challenges still existed when dealing with morphologies exhibiting highly local variations, such as serrations. This nondestructive approach to 3D leaf edge reconstruction marks an advancement in the quantitative analysis of plant morphology. It is a promising way to capture whole-plant architecture by combining 2D and 3D phenotyping approaches adapted to the target anatomical structures.
Collapse
Affiliation(s)
- Hidekazu Murata
- Department of Biology,
Kyushu University, Fukuoka, Fukuoka 819–0395, Japan
| | - Koji Noshita
- Department of Biology,
Kyushu University, Fukuoka, Fukuoka 819–0395, Japan
- Plant Frontier Research Center,
Kyushu University, Fukuoka, Fukuoka 819–0395, Japan
| |
Collapse
|
3
|
Tian X, Guo J, Song Y, Yu Q, Liu C, Fu Z, Shi Y, Shao Y, Yuan Z. Intraspecific differentiation of Lindera obtusiloba as revealed by comparative plastomic and evolutionary analyses. Ecol Evol 2024; 14:e11119. [PMID: 38469045 PMCID: PMC10927362 DOI: 10.1002/ece3.11119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 01/08/2024] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
Lindera obtusiloba Blume is the northernmost tree species in the family Lauraceae, and it is a key species in understanding the evolutionary history of this family. The species of L. obtusiloba in East Asia has diverged into the Northern and Southern populations, which are geographically separated by an arid belt. Though the morphological differences between populations have been observed and well documented, intraspecific variations at the plastomic level have not been systematically investigated to date. Here, ten chloroplast genomes of L. obtusiloba individuals were sequenced and analyzed along with three publicly available plastomes. Comparative plastomic analysis suggests that both the Northern and the Southern populations share similar overall structure, gene order, and GC content in their plastomes although the size of the plasome and the level of intraspecific variability do vary between the two populations. The Northern have relatively larger plastomes while the Southern population possesses higher intraspecific variability, which could be attributed to the complexity of the geological environments in the South. Phylogenomic analyses also support the split of the Northern and Southern clades among L. obtusiloba individuals. However, there is no obvious species boundary between var. obtusiloba and var. heterophylla in the Southern population, indicating that gene flow could still occur between these two varieties, and this could be used as a good example of reticulate evolution. It is also found that a few photosynthesis-related genes are under positive selection, which is mainly related to the geological and environmental differences between the Northern and the Southern regions. Our results provide a reference for phylogenetic analysis within species and suggest that phylogenomic analyses with a sufficient number of nuclear and chloroplast genomic target loci from widely distributed individuals could provide a deeper understanding of the population evolution of the widespread species.
Collapse
Affiliation(s)
- Xiangyu Tian
- College of Life SciencesHenan Agricultural UniversityZhengzhouHenanChina
| | - Jia Guo
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Yu Song
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education)Guangxi Normal UniversityGuilinGuangxiChina
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River BasinGuangxi Normal UniversityGuilinGuangxiChina
| | - Qunfei Yu
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaYunnanChina
| | - Chao Liu
- College of Biological Resource and Food EngineeringQujing Normal UniversityQujingYunnanChina
| | - Zhixi Fu
- College of Life SciencesSichuan Normal UniversityChengduChina
| | - Yuhua Shi
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Yizhen Shao
- College of Life SciencesHenan Agricultural UniversityZhengzhouHenanChina
| | - Zhiliang Yuan
- College of Life SciencesHenan Agricultural UniversityZhengzhouHenanChina
| |
Collapse
|
4
|
Hightower AT, Chitwood DH, Josephs EB. Herbarium specimens reveal links between Capsella bursa-pastoris leaf shape and climate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580180. [PMID: 38405842 PMCID: PMC10888959 DOI: 10.1101/2024.02.13.580180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Studies into the evolution and development of leaf shape have connected variation in plant form, function, and fitness. For species with consistent leaf margin features, patterns in leaf architecture are related to both biotic and abiotic factors. However, for species with inconsistent leaf margin features, quantifying leaf shape variation and the effects of environmental factors on leaf shape has proven challenging. To investigate leaf shape variation in species with inconsistent shapes, we analyzed approximately 500 digitized Capsella bursa-pastoris specimens collected throughout the continental U.S. over a 100-year period with geometric morphometric modeling and deterministic techniques. We generated a morphospace of C. bursa-pastoris leaf shapes and modeled leaf shape as a function of environment and time. Our results suggest C. bursa-pastoris leaf shape variation is strongly associated with temperature over the C. bursa-pastoris growing season, with lobing decreasing as temperature increases. While we expected to see changes in variation over time, our results show that level of leaf shape variation is consistent over the 100-year period. Our findings showed that species with inconsistent leaf shape variation can be quantified using geometric morphometric modeling techniques and that temperature is the main environmental factor influencing leaf shape variation.
Collapse
Affiliation(s)
- Asia T Hightower
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI, 48824-1226
- Ecology, Evolution, & Behavior Program, Michigan State University, 567 Wilson Rd, East Lansing, MI 48824-1226
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824-1226
| | - Daniel H Chitwood
- Department of Horticulture, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824-1226
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, 428 S Shaw Ln, East Lansing, MI 48824-1226
| | - Emily B Josephs
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI, 48824-1226
- Ecology, Evolution, & Behavior Program, Michigan State University, 567 Wilson Rd, East Lansing, MI 48824-1226
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824-1226
| |
Collapse
|
5
|
Tuwo M, Kuswinanti T, Nasruddin A, Tambaru E. Diverse Morphology and Anatomy of <i>Citrus</i> Spp. (Orange) in South Sulawesi, Indonesia Plantations: A Comprehensive Study. Pak J Biol Sci 2023; 26:321-333. [PMID: 37902046 DOI: 10.3923/pjbs.2023.321.333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
<b>Background and Objective:</b> South Sulawesi, one of the Indonesian provinces, is a producer of oranges with various varieties grown extensively for export and domestic use. Information about the diversity of oranges is crucial for plant breeding and germplasm conservation. This study aims to analyze the diversity of oranges from several plantation centers in South Sulawesi based on morphological and anatomical characteristics. <b>Materials and Methods:</b> Orange leaf samples were collected from five plantation locations in South Sulawesi, namely Pangkep, Sidrap, Bantaeng, North Luwu and Selayar Regencies. The morphological characteristics were identified using descriptors from the International Plant Genetic Resources Institute and Tjitrosoepomo. The anatomical characteristics were identified by preparing stomata slides observed under a microscope at a magnification of 200-400x. Similarity analysis between orange varieties was conducted using the NTSYS software and presented in the form of a dendrogram. <b>Results:</b> The results of the diversity analysis of 13 orange varieties showed morphological variability in tree form and leaf shape, while anatomical characteristics showed variability in stomata size and stomata index. The similarity analysis showed that morphological characteristics formed clusters consisting of seeded selayar (SB), kaffir lime (NN), JC-selayar (JS), selayar-selayar (SS), batu (B), japansche citroen (JC) and dekopon (D) varieties, which had a 75% similarity with siam (SI) and sweet santang (SM) varieties. Meanwhile, the anatomical cluster analysis showed that the JC and SM orange varieties had a 79% similarity with the D variety. <b>Conclusion:</b> The dendrogram diagram can serve as a basis for determining desired plant traits in plant breeding activities.
Collapse
|
6
|
Galicia-Juárez M, Zavala-García F, Sinagawa-García SR, Gutiérrez-Diez A, Williams-Alanís H, Cisneros-López ME, Valle-Gough RE, Flores-Garivay R, Santillano-Cázares J. Identification of Sorghum ( Sorghum bicolor (L.) Moench) Genotypes with Potential for Hydric and Heat Stress Tolerance in Northeastern Mexico. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112265. [PMID: 34834628 PMCID: PMC8623876 DOI: 10.3390/plants10112265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Sorghum (Sorghum bicolor (L.) Moench) is cultivated in regions with frequent drought periods and high temperatures, conditions that have intensified in the last decades. One of the most important photosynthetic components, sensible to hydric stress, is maximum quantum yield for photosystem II (PSII, or Fv/Fm). The objective of the present study was to identify sorghum genotypes with tolerance to hydric and heat stress. The treatments were hydric status (hydric stress or non-hydric stress (irrigation)), the plant's developmental stages (pre or post-anthesis), and six genotypes. The response variables were Fv/Fm; photosynthetic rate (PN); stomatal conductance (gs); transpiration rate (E); relative water content (RWC); damage to cell membrane (DCM) at temperatures of 40 and 45 °C; and agronomic variables. The experiment was conducted in pots in open sky in Marín, N.L., in the dry and hot northeast Mexico. The treatment design was a split-split plot design, with three factors. Hydric stress diminished the functioning of the photosynthetic apparatus by 63%, due to damage caused to PSII. Pre-anthesis was the most vulnerable stage to hydric stress as it decreased the weight of grains per panicle (85%), number of grains per panicle (69%), and weight of 100 grains (46%). Genotypes LER 1 and LER 2 were identified as tolerant to hydric stress, as they had lower damage to PSII; LER 1 and LEB 2 for their superior RWC; and LER 1 as a thermo tolerant genotype, due to its lower DCM at 45 °C. It was concluded that LER 1 could have the potential for both hydric and heat stress tolerance in the arid northeast Mexico.
Collapse
Affiliation(s)
- Marisol Galicia-Juárez
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali 21705, Baja California, Mexico; (M.G.-J.); (R.E.V.-G.); (R.F.-G.)
| | - Francisco Zavala-García
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, General Escobedo 66050, Nuevo León, Mexico; (F.Z.-G.); (S.R.S.-G.); (A.G.-D.)
| | - Sugey Ramona Sinagawa-García
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, General Escobedo 66050, Nuevo León, Mexico; (F.Z.-G.); (S.R.S.-G.); (A.G.-D.)
| | - Adriana Gutiérrez-Diez
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, General Escobedo 66050, Nuevo León, Mexico; (F.Z.-G.); (S.R.S.-G.); (A.G.-D.)
| | - Héctor Williams-Alanís
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, (INIFAP), Río Bravo 88900, Tamaulipas, Mexico; (H.W.-A.); (M.E.C.-L.)
| | - María Eugenia Cisneros-López
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, (INIFAP), Río Bravo 88900, Tamaulipas, Mexico; (H.W.-A.); (M.E.C.-L.)
| | - Raúl Enrique Valle-Gough
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali 21705, Baja California, Mexico; (M.G.-J.); (R.E.V.-G.); (R.F.-G.)
| | - Rodrigo Flores-Garivay
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali 21705, Baja California, Mexico; (M.G.-J.); (R.E.V.-G.); (R.F.-G.)
| | - Jesús Santillano-Cázares
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali 21705, Baja California, Mexico; (M.G.-J.); (R.E.V.-G.); (R.F.-G.)
| |
Collapse
|
7
|
Flo V, Martínez-Vilalta J, Mencuccini M, Granda V, Anderegg WRL, Poyatos R. Climate and functional traits jointly mediate tree water-use strategies. THE NEW PHYTOLOGIST 2021; 231:617-630. [PMID: 33893652 DOI: 10.1111/nph.17404] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
Tree water use is central to plant function and ecosystem fluxes. However, it is still unknown how organ-level water-relations traits are coordinated to determine whole-tree water-use strategies in response to drought, and whether this coordination depends on climate. Here we used a global sap flow database (SAPFLUXNET) to study the response of water use, in terms of whole-tree canopy conductance (G), to vapour pressure deficit (VPD) and to soil water content (SWC) for 142 tree species. We investigated the individual and coordinated effect of six water-relations traits (vulnerability to embolism, Huber value, hydraulic conductivity, turgor-loss point, rooting depth and leaf size) on water-use parameters, also accounting for the effect of tree height and climate (mean annual precipitation, MAP). Reference G and its sensitivity to VPD were tightly coordinated with water-relations traits rather than with MAP. Species with efficient xylem transport had higher canopy conductance but also higher sensitivity to VPD. Moreover, we found that angiosperms had higher reference G and higher sensitivity to VPD than did gymnosperms. Our results highlight the need to consider trait integration and reveal the complications and challenges of defining a single, whole-plant resource use spectrum ranging from 'acquisitive' to 'conservative'.
Collapse
Affiliation(s)
- Victor Flo
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, 08193, Spain
- Univ Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Catalonia, 08193, Spain
| | - Jordi Martínez-Vilalta
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, 08193, Spain
- Univ Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Catalonia, 08193, Spain
| | - Maurizio Mencuccini
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, 08193, Spain
- ICREA, Barcelona, 08010, Spain
| | - Victor Granda
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, 08193, Spain
| | - William R L Anderegg
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Rafael Poyatos
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, 08193, Spain
- Univ Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Catalonia, 08193, Spain
| |
Collapse
|
8
|
Peng X, Zhao M, Liu S, Yan W. Half-leaf width symmetric distribution reveals buffering strategy of Cunninghamia lanceolata. BMC PLANT BIOLOGY 2021; 21:222. [PMID: 34001008 PMCID: PMC8127188 DOI: 10.1186/s12870-021-03000-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Leaf length and width could be a functioning relationship naturally as plant designs. Single-vein leaves have the simplest symmetrical distribution and structural design, which means that fast-growing single-vein species could interpret the scheme more efficiently. The distribution of leaf length and width can be modulated for better adaptation, providing an informative perspective on the various operational strategies in an emergency, while this mechanism is less clear. Here we selected six age groups of Cunninghamia lanceolata pure forests, including saplings, juveniles, mature, and old-growth trees. We pioneered a tapering model to describe half-leaf symmetric distribution with mathematical approximation based on every measured leaf along developmental sequence, and evaluated the ratio of leaf basal part length to total length (called tipping leaf length ratio). RESULTS The tipping leaf length ratio varied among different tree ages. That means the changes of tipping leaf length ratio and leaf shape are a significant but less-noticed reflection of trees tradeoff strategies at different growth stages. For instance, there exhibited relatively low ratio during sapling and juvenile, then increased with increasing age, showing the highest value in their maturity, and finally decreased on mature to old-growth transition. The tipping leaf length ratio serves as a cost-benefit ratio, thus the subtle changes in the leaf symmetrical distribution within individuals reveal buffering strategy, indicating the selection for efficient design of growth and hydraulic in their developmental sequences. CONCLUSIONS Our model provides a physical explanation of varied signatures for tree operations in hydraulic buffering through growth stages, and the buffering strategy revealed from leaf distribution morphologically provides evidence on the regulation mechanism of leaf biomechanics, hydraulics and physiologies. Our insight contributes greatly to plant trait modeling, policy and management, and will be of interest to some scientists and policy makers who are involved in climate change, ecology and environment protection, as well as forest ecology and management.
Collapse
Affiliation(s)
- Xi Peng
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
- Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong, 410015, China
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Changsha, 410004, China
| | - Meifang Zhao
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
- Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong, 410015, China.
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Changsha, 410004, China.
| | - Shuguang Liu
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
- Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong, 410015, China.
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Changsha, 410004, China.
| | - Wende Yan
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
- Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong, 410015, China
- National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Changsha, 410004, China
| |
Collapse
|