1
|
Cosentino BJ, Vanek JP, Gibbs JP. Rural selection drives the evolution of an urban-rural cline in coat color in gray squirrels. Ecol Evol 2023; 13:e10544. [PMID: 37829180 PMCID: PMC10565125 DOI: 10.1002/ece3.10544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 10/14/2023] Open
Abstract
Phenotypic differences between urban and rural populations are well-documented, but the evolutionary processes driving trait variation along urbanization gradients are often unclear. We combined spatial data on abundance, trait variation, and measurements of fitness to understand cline structure and test for natural selection on heritable coat color morphs (melanic, gray) of eastern gray squirrels (Sciurus carolinensis) along an urbanization gradient. Population surveys using remote cameras and visual counts at 76 sites along the urbanization gradient revealed a significant cline in melanism, decreasing from 48% in the city center to <5% in rural woodlands. Among 76 squirrels translocated to test for phenotypic selection, survival was lower for the melanic than gray morph in rural woodlands, whereas there was no difference in survival between color morphs in the city. These results suggest the urban-rural cline in melanism is explained by natural selection favoring the gray morph in rural woodlands combined with relaxed selection in the city. Our study illustrates how trait variation between urban and rural populations can emerge from selection primarily in rural populations rather than adaptation to novel features of the urban environment.
Collapse
Affiliation(s)
| | - John P. Vanek
- Department of BiologyHobart and William Smith CollegesGenevaNew YorkUSA
- Department of Environmental BiologyState University of New York College of Environmental Science and ForestrySyracuseNew YorkUSA
- Present address:
New York Natural Heritage ProgramAlbanyNew YorkUSA
| | - James P. Gibbs
- Department of Environmental BiologyState University of New York College of Environmental Science and ForestrySyracuseNew YorkUSA
| |
Collapse
|
2
|
Black EN, Blair JD, van der Burg KRL, Marshall KE. Crowd-sourced observations of a polyphagous moth reveal evidence of allochronic speciation varying along a latitudinal gradient. PLoS One 2023; 18:e0288415. [PMID: 37440520 DOI: 10.1371/journal.pone.0288415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Allochronic speciation, where reproductive isolation between populations of a species is facilitated by a difference in reproductive timing, depends on abiotic factors such as seasonality and biotic factors such as diapause intensity. These factors are strongly influenced by latitudinal trends in climate, so we hypothesized that there is a relationship between latitude and divergence among populations separated by life history timing. Hyphantria cunea (the fall webworm), a lepidopteran defoliator with red and black colour morphs, is hypothesized to be experiencing an incipient allochronic speciation. However, given their broad geographic range, the strength of allochronic speciation may vary across latitude. We annotated >11,000 crowd-sourced observations of fall webworm to model geographic distribution, phenology, and differences in colour phenotype between morphs across North America. We found that red and black morph life history timing differs across North America, and the phenology of morphs diverges more in warmer climates at lower latitudes. We also found some evidence that the colour phenotype of morphs also diverges at lower latitudes, suggesting reduced gene flow between colour morphs. Our results demonstrate that seasonality in lower latitudes may increase the strength of allochronic speciation in insects, and that the strength of sympatric speciation can vary along a latitudinal gradient. This has implications for our understanding of broad-scale speciation events and trends in global biodiversity.
Collapse
Affiliation(s)
- Emily N Black
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jarrett D Blair
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karin R L van der Burg
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Katie E Marshall
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Geurts EM, Reynolds JD, Starzomski BM. Not all who wander are lost: Trail bias in community science. PLoS One 2023; 18:e0287150. [PMID: 37352184 PMCID: PMC10289309 DOI: 10.1371/journal.pone.0287150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/31/2023] [Indexed: 06/25/2023] Open
Abstract
The exponential growth and interest in community science programs is producing staggering amounts of biodiversity data across broad temporal and spatial scales. Large community science datasets such as iNaturalist and eBird are allowing ecologists and conservation biologists to answer novel questions that were not possible before. However, the opportunistic nature of many of these enormous datasets leads to biases. Spatial bias is a common problem, where observations are biased towards points of access like roads and trails. iNaturalist-a popular biodiversity community science platform-exhibits strong spatial biases, but it is unclear how these biases affect the quality of biodiversity data collected. Thus, we tested whether fine-scale spatial bias due to sampling from trails affects taxonomic richness estimates. We compared timed transects with experienced iNaturalist observers on and off trails in British Columbia, Canada. Using generalized linear mixed models, we found higher overall taxonomic richness on trails than off trails. In addition, we found more exotic as well as native taxa on trails than off trails. There was no difference between on and off trail observations for species that are rarely observed. Thus, fine-scale spatial bias from trails does not reduce the quality of biodiversity measurements, a promising result for those interested in using iNaturalist data for research and conservation management.
Collapse
Affiliation(s)
- Ellyne M. Geurts
- School of Environmental Studies, University of Victoria, Victoria, British Columbia, Canada
| | - John D. Reynolds
- Earth to Ocean Research Group, Department of Biological Sciences, 8888 University Drive, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Brian M. Starzomski
- School of Environmental Studies, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
4
|
Hantak MM, Guralnick RP, Cameron AC, Griffing AH, Harrington SM, Weinell JL, Paluh DJ. Colour scales with climate in North American ratsnakes: a test of the thermal melanism hypothesis using community science images. Biol Lett 2022; 18:20220403. [PMID: 36541094 PMCID: PMC9768630 DOI: 10.1098/rsbl.2022.0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Animal colour is a complex trait shaped by multiple selection pressures that can vary across geography. The thermal melanism hypothesis predicts that darker coloration is beneficial to animals in colder regions because it allows for more rapid solar absorption. Here, we use community science images of three closely related species of North American ratsnakes (genus Pantherophis) to examine if climate predicts colour variation across range-wide scales. We predicted that darker individuals are found in colder regions and higher elevations, in accordance with the thermal melanism hypothesis. Using an unprecedented dataset of over 8000 images, we found strong support for temperature as a key predictor of darker colour, supporting thermal melanism. We also found that elevation and precipitation are predictive of colour, but the direction and magnitude of these effects were more variable across species. Our study is the first to quantify colour variation in Pantherophis ratsnakes, highlighting the value of community science images for studying range-wide colour variation.
Collapse
Affiliation(s)
- Maggie M. Hantak
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Robert P. Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Alexander C. Cameron
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Aaron H. Griffing
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Milwaukee Public Museum, Milwaukee, WI 53233, USA
| | - Sean M. Harrington
- Department of Herpetology, American Museum of Natural History, New York, NY 10024-5192, USA
- INBRE Data Science Core, University of Wyoming, Laramie, WY 82071, USA
| | - Jeffrey L. Weinell
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, KS 66045, USA
| | - Daniel J. Paluh
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
5
|
Rhodes C, Haunfelder W, Carlson BE. Citizen science reporting indicates geographic and phenotypic drivers of road use and mortality in a threatened rattlesnake. Curr Zool 2022. [DOI: 10.1093/cz/zoac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Roads may influence selection on phenotypic traits of wildlife. In particular, the likelihood of vehicle collisions with wildlife may vary depending on body coloration in contrast to the road, which may be exaggerated by cultural attitudes towards the species. The timber rattlesnake Crotalus horridus is a threatened species that varies widely in coloration, and their color pattern could influence thermoregulatory use of roads and visibility to motorists. Moreover, better camouflaged snakes may have higher road mortality in areas where environmental interest is lower and, perhaps, negative attitudes towards wildlife are more prevalent. We used citizen scientist observations of timber rattlesnakes from iNaturalist and categorized for each rattlesnake the surface they were on, color pattern, and whether they were alive. We combined iNaturalist data with Google Trends data to characterize regional variation in environmental interest. We discovered that lighter-colored snakes were more likely to be found on roads, as were snakes further south, west, and on warmer days. Once on a road, coloration didn’t influence survival regardless of road type or environmental interest. However, snakes on asphalt roads or on southern roads were more likely to be found dead. The higher likelihood of lighter colored snakes being found on roads suggests that they are at greater overall risk of road death, potentially selecting for darker coloration. Citizen scientist behavior may at least partly underlie the influence of latitude on the results, however, and further work in the application of citizen science data to such research questions is warranted.
Collapse
Affiliation(s)
- Chaz Rhodes
- Department of Biology, Wabash College, Crawfordsville Indiana , USA
| | | | | |
Collapse
|
6
|
Hantak MM, Guralnick RP, Zare A, Stucky BJ. Computer vision for assessing species color pattern variation from web-based community science images. iScience 2022; 25:104784. [PMID: 35982791 PMCID: PMC9379571 DOI: 10.1016/j.isci.2022.104784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/16/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022] Open
Abstract
Openly available community science digital vouchers provide a wealth of data to study phenotypic change across space and time. However, extracting phenotypic data from these resources requires significant human effort. Here, we demonstrate a workflow and computer vision model for automatically categorizing species color pattern from community science images. Our work is focused on documenting the striped/unstriped color polymorphism in the Eastern Red-backed Salamander (Plethodon cinereus). We used an ensemble convolutional neural network model to analyze this polymorphism in 20,318 iNaturalist images. Our model was highly accurate (∼98%) despite image heterogeneity. We used the resulting annotations to document extensive niche overlap between morphs, but wider niche breadth for striped morphs at the range-wide scale. Our work showcases key design principles for using machine learning with heterogeneous community science image data to address questions at an unprecedented scale. We built a deep learning model to group color morphs from community science images Our model achieved 98% accuracy for classifying striped and unstriped salamanders We used our model to classify >20,000 images and built morph-specific niche models We then determined if Red-backed salamanders niche partition at a range-wide scale
Collapse
Affiliation(s)
- Maggie M. Hantak
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
- Corresponding author
| | - Robert P. Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Alina Zare
- Department of Electrical, and Computer Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Brian J. Stucky
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
- Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| |
Collapse
|
7
|
Parallel evolution of urban-rural clines in melanism in a widespread mammal. Sci Rep 2022; 12:1752. [PMID: 35110609 PMCID: PMC8810909 DOI: 10.1038/s41598-022-05746-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/17/2022] [Indexed: 12/22/2022] Open
Abstract
Urbanization is the dominant trend of global land use change. The replicated nature of environmental change associated with urbanization should drive parallel evolution, yet insight into the repeatability of evolutionary processes in urban areas has been limited by a lack of multi-city studies. Here we leverage community science data on coat color in > 60,000 eastern gray squirrels (Sciurus carolinensis) across 43 North American cities to test for parallel clines in melanism, a genetically based trait associated with thermoregulation and crypsis. We show the prevalence of melanism was positively associated with urbanization as measured by impervious cover. Urban–rural clines in melanism were strongest in the largest cities with extensive forest cover and weakest or absent in cities with warmer winter temperatures, where thermal selection likely limits the prevalence of melanism. Our results suggest that novel traits can evolve in a highly repeatable manner among urban areas, modified by factors intrinsic to individual cities, including their size, land cover, and climate.
Collapse
|
8
|
Mesaglio T, Callaghan CT. An overview of the history, current contributions and future outlook of iNaturalist in Australia. WILDLIFE RESEARCH 2021. [DOI: 10.1071/wr20154] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Citizen science initiatives and the data they produce are increasingly common in ecology, conservation and biodiversity monitoring. Although the quality of citizen science data has historically been questioned, biases can be detected and corrected for, allowing these data to become comparable in quality to professionally collected data. Consequently, citizen science is increasingly being integrated with professional science, allowing the collection of data at unprecedented spatial and temporal scales. iNaturalist is one of the most popular biodiversity citizen science platforms globally, with more than 1.4 million users having contributed over 54 million observations. Australia is the top contributing nation in the southern hemisphere, and in the top four contributing nations globally, with over 1.6 million observations of over 36000 identified species contributed by almost 27000 users. Despite the platform’s success, there are few holistic syntheses of contributions to iNaturalist, especially for Australia. Here, we outline the history of iNaturalist from an Australian perspective, and summarise, taxonomically, temporally and spatially, Australian biodiversity data contributed to the platform. We conclude by discussing important future directions to maximise the usefulness of these data for ecological research, conservation and policy.
Collapse
|