1
|
Rowan E, Leung A, Grintzalis K. A Novel Method for the Assessment of Feeding Rate as a Phenotypic Endpoint for the Impact of Pollutants in Daphnids. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2211-2221. [PMID: 39056977 DOI: 10.1002/etc.5960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/03/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Traditional approaches for monitoring aquatic pollution primarily rely on chemical analysis and the detection of pollutants in the aqueous environments. However, these methods lack realism and mechanistic insight and, thus, are increasingly supported by effect-based methods, which offer sensitive endpoints. In this context, daphnids, a freshwater species used extensively in molecular ecotoxicology, offer fast and noninvasive approaches to assess the impact of pollutants. Among the phenotypic endpoints used, feeding rate is a highly sensitive approach because it provides evidence of physiological alterations even in sublethal concentrations. However, there has been no standardized method for measuring feeding rate in daphnids, and several approaches follow different protocols. There is a diversity among tests employing large volumes, extensive incubation times, and high animal densities, which in turn utilize measurements of algae via fluorescence, radiolabeling, or counting ingested cells. These tests are challenging and laborious and sometimes require cumbersome instrumentation. In the present study, we optimized the conditions of a miniaturized fast, sensitive, and high-throughput assay to assess the feeding rate based on the ingestion of fluorescent microparticles. The protocol was optimized in neonates in relation to the concentration of microplastic and the number of animals to increase reproducibility. Daphnids, following exposures to nonlethal concentrations, were incubated with microplastics; and, as filter feeders, they ingest microparticles. The new approach revealed differences in the physiology of daphnids in concentrations below the toxicity limits for a range of pollutants of different modes of action, thus proving feeding to be a more sensitive and noninvasive endpoint in pollution assessment. Environ Toxicol Chem 2024;43:2211-2221. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Emma Rowan
- School of Biotechnology, Dublin City University, Dublin, Republic of Ireland
| | - Anne Leung
- School of Biotechnology, Dublin City University, Dublin, Republic of Ireland
| | | |
Collapse
|
2
|
Dziuba MK, McIntire KM, Seto K, Davenport ES, Rogalski MA, Gowler CD, Baird E, Vaandrager M, Huerta C, Jaye R, Corcoran FE, Withrow A, Ahrendt S, Salamov A, Nolan M, Tejomurthula S, Barry K, Grigoriev IV, James TY, Duffy MA. Phylogeny, morphology, virulence, ecology, and host range of Ordospora pajunii (Ordosporidae), a microsporidian symbiont of Daphnia spp. mBio 2024; 15:e0058224. [PMID: 38651867 PMCID: PMC11237803 DOI: 10.1128/mbio.00582-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
The impacts of microsporidia on host individuals are frequently subtle and can be context dependent. A key example of the latter comes from a recently discovered microsporidian symbiont of Daphnia, the net impact of which was found to shift from negative to positive based on environmental context. Given this, we hypothesized low baseline virulence of the microsporidian; here, we investigated the impact of infection on hosts in controlled conditions and the absence of other stressors. We also investigated its phylogenetic position, ecology, and host range. The genetic data indicate that the symbiont is Ordospora pajunii, a newly described microsporidian parasite of Daphnia. We show that O. pajunii infection damages the gut, causing infected epithelial cells to lose microvilli and then rupture. The prevalence of this microsporidian could be high (up to 100% in the lab and 77% of adults in the field). Its overall virulence was low in most cases, but some genotypes suffered reduced survival and/or reproduction. Susceptibility and virulence were strongly host-genotype dependent. We found that North American O. pajunii were able to infect multiple Daphnia species, including the European species Daphnia longispina, as well as Ceriodaphnia spp. Given the low, often undetectable virulence of this microsporidian and potentially far-reaching consequences of infections for the host when interacting with other pathogens or food, this Daphnia-O. pajunii symbiosis emerges as a valuable system for studying the mechanisms of context-dependent shifts between mutualism and parasitism, as well as for understanding how symbionts might alter host interactions with resources. IMPORTANCE The net outcome of symbiosis depends on the costs and benefits to each partner. Those can be context dependent, driving the potential for an interaction to change between parasitism and mutualism. Understanding the baseline fitness impact in an interaction can help us understand those shifts; for an organism that is generally parasitic, it should be easier for it to become a mutualist if its baseline virulence is relatively low. Recently, a microsporidian was found to become beneficial to its Daphnia hosts in certain ecological contexts, but little was known about the symbiont (including its species identity). Here, we identify it as the microsporidium Ordospora pajunii. Despite the parasitic nature of microsporidia, we found O. pajunii to be, at most, mildly virulent; this helps explain why it can shift toward mutualism in certain ecological contexts and helps establish O. pajunii is a valuable model for investigating shifts along the mutualism-parasitism continuum.
Collapse
Affiliation(s)
- Marcin K. Dziuba
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kristina M. McIntire
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kensuke Seto
- Faculty of Environment and Information Sciences, Yokohama National University, Yokohama, Kanagawa, Japan
| | - Elizabeth S. Davenport
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Mary A. Rogalski
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
- Biology Department, Bowdoin College, Brunswick, Maine, USA
| | - Camden D. Gowler
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Emma Baird
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Megan Vaandrager
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Cristian Huerta
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Riley Jaye
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Fiona E. Corcoran
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Alicia Withrow
- Center for Advanced Microscopy, Michigan State University, East Lansing, Michigan, USA
| | - Steven Ahrendt
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Asaf Salamov
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Matt Nolan
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Sravanthi Tejomurthula
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Kerrie Barry
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Igor V. Grigoriev
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Timothy Y. James
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Meghan A. Duffy
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Michalaki A, Grintzalis K. Acute and Transgenerational Effects of Non-Steroidal Anti-Inflammatory Drugs on Daphnia magna. TOXICS 2023; 11:320. [PMID: 37112547 PMCID: PMC10145367 DOI: 10.3390/toxics11040320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Pharmaceuticals pose a great threat to organisms inhabiting the aquatic environment. Non-steroidal anti-inflammatory drugs (NSAIDs) are major pharmaceutical pollutants with a significant presence in freshwater ecosystems. In this study, the impact of indomethacin and ibuprofen, two of the most commonly prescribed NSAIDs, was assessed on Daphnia magna. Toxicity was assessed as the immobilization of animals and used to determine non-lethal exposure concentrations. Feeding was assessed as a phenotypic endpoint and key enzymes were used as molecular endpoints of physiology. Feeding was decreased in mixture exposures for five-day-old daphnids and neonates. Furthermore, animals were exposed to NSAIDs and their mixture in chronic and transgenerational scenarios revealing changes in key enzyme activities. Alkaline and acid phosphatases, lipase, peptidase, β-galactosidase, and glutathione-S-transferase were shown to have significant changes in the first generation at the first and third week of exposure, and these were enhanced in the second generation. On the other hand, the third recovery generation did not exhibit these changes, and animals were able to recover from the induced changes and revert back to the control levels. Overall, our study points towards transgenerational exposures as more impactful laboratory studies to understand pharmaceutical stressors with a combination of molecular and phenotypic markers of physiology.
Collapse
|
4
|
Pfenning‐Butterworth AC, Vetter RE, Hite JL. Natural variation in host feeding behaviors impacts host disease and pathogen transmission potential. Ecol Evol 2023; 13:e9865. [PMID: 36911315 PMCID: PMC9992943 DOI: 10.1002/ece3.9865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/09/2023] [Indexed: 03/10/2023] Open
Abstract
Animals ranging from mosquitoes to humans often vary their feeding behavior when infected or merely exposed to pathogens. These so-called "sickness behaviors" are part of the innate immune response with many consequences, including avoiding orally transmitted pathogens. Fully understanding the role of this ubiquitous behavior in host defense and pathogen evolution requires a quantitative account of its impact on host and pathogen fitness across environmentally relevant contexts. Here, we use a zooplankton host and fungal pathogen as a case study to ask if infection-mediated feeding behaviors vary across pathogen exposure levels and natural genetic variation in susceptibility to infection. Then, we connect these changes in behavior to pathogen transmission potential (spore yield) and fitness and growth costs to the host. Our results validate a protective effect of altered feeding behavior during pathogen exposure while also revealing significant variation in the magnitude of this response across host susceptibility and pathogen exposure levels. Across all four host genotypes, feeding rates were negatively correlated with susceptibility to infection and transmission potential. The most susceptible genotypes exhibited either strong anorexia, reducing food intake by 26%-42%, ("Standard") or pronounced hyperphagia, increasing food intake by 20%-54% ("A45"). Together, these results suggest that infection-mediated changes in host feeding behavior-which are traditionally interpreted as immunopathology- may in fact serve as crucial components of host defense strategies and warrant further investigation.
Collapse
Affiliation(s)
- Alaina C. Pfenning‐Butterworth
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Rachel E. Vetter
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
| | - Jessica L. Hite
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
- Department of Pathobiological SciencesUniversity of WisconsinMadisonWisconsinUSA
| |
Collapse
|
5
|
Pfenning‐Butterworth AC, Nguyen DT, Hite JL, Cressler CE. Circadian rhythms mediate infection risk in Daphnia dentifera. Ecol Evol 2022; 12:e9264. [PMID: 36177139 PMCID: PMC9463024 DOI: 10.1002/ece3.9264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/09/2022] Open
Abstract
Biological rhythms mediate important within-host processes such as metabolism, immunity, and behavior which are often linked to combating disease exposure. For many hosts, exposure to pathogens occurs while feeding. However, the link between feeding rhythms and infection risk is unclear because feeding behavior is tightly coupled with immune and metabolic processes which may decrease susceptibility to infection. Here, we use the Daphnia dentifera-Metschnikowia bicuspidata host-pathogen system to determine how rhythms in feeding rate and immune function mediate infection risk. The host is known to have a nocturnal circadian rhythm in feeding rate, yet we found that they do not exhibit a circadian rhythm in phenoloxidase activity. We found that the time of day when individuals are exposed to pathogens affects the probability of infection with higher infection prevalence at night, indicating that infection risk is driven by a host's circadian rhythm in feeding behavior. These results suggest that the natural circadian rhythm of the host should be considered when addressing epidemiological dynamics.
Collapse
Affiliation(s)
| | - David T. Nguyen
- School of Biological SciencesUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Jessica L. Hite
- School of Biological SciencesUniversity of Nebraska‐LincolnLincolnNebraskaUSA
- Department of Pathobiological SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Clayton E. Cressler
- School of Biological SciencesUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| |
Collapse
|
6
|
Rodrigues S, Pinto I, Martins F, Formigo N, Antunes SC. An ecotoxicological approach can complement the assessment of natural waters from Portuguese reservoirs? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:52147-52161. [PMID: 35260979 DOI: 10.1007/s11356-022-19504-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Within the scope of the European Water Framework Directive (WFD), the scientific community recognized clear opportunities to take advantage of the use of ecotoxicological tools in water quality assessments. In this perspective, bioassays and biomarkers were suggested to contribute to the integration of the chemical and biological conditions, and thus to provide an overall insight into the quality of a water body. This study aimed to assess whether current bioassays as feeding rate assays with Daphnia longispina and growth inhibition assays with Lemna minor are suitable to detect potential ecotoxicity, using waters from Portuguese reservoirs. Several sampling sites were defined in reservoirs (Miranda, Pocinho, and Alqueva). The samplings were conducted in autumn of 2018 and spring of 2019. Total chlorophyll, lipid peroxidation, and proline content were also evaluated in L. minor. Results demonstrated that D. longispina showed some sensitivity to water treatments; however, the results were difficult to interpret since no reason or trend can be accurate. All parameters of L. minor did not show sensitivity to detect potential ecotoxicological risks associated with natural water understudy, since no discrimination among the water treatments was recorded. However, biomarkers/bioassays proved to be concordant to each other. Under the conditions evaluated here (reservoirs and sampling periods), the biological responses observed were not consistent, clear, and coherent with the physical-chemical parameters and chemical analyses performed, suggesting that the ecotoxicological tools selected were not sensitive to assess water quality in this type of ecosystems. In this sense, species of different trophic levels are recommended for ecotoxicological analyses due to differences in species sensitivities.
Collapse
Affiliation(s)
- Sara Rodrigues
- Departamento de Biologia, Faculdade de Ciências, Universidade Do Porto, Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal.
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade Do Porto, Terminal de Cruzeiros Do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
| | - Ivo Pinto
- Departamento de Biologia, Faculdade de Ciências, Universidade Do Porto, Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade Do Porto, Terminal de Cruzeiros Do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Fábio Martins
- Departamento de Biologia, Faculdade de Ciências, Universidade Do Porto, Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade Do Porto, Terminal de Cruzeiros Do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Nuno Formigo
- Departamento de Biologia, Faculdade de Ciências, Universidade Do Porto, Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Sara Cristina Antunes
- Departamento de Biologia, Faculdade de Ciências, Universidade Do Porto, Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade Do Porto, Terminal de Cruzeiros Do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| |
Collapse
|
7
|
Pfenning-Butterworth A, Cooper RO, Cressler CE. Daily feeding rhythm linked to microbiome composition in two zooplankton species. PLoS One 2022; 17:e0263538. [PMID: 35113950 PMCID: PMC8812976 DOI: 10.1371/journal.pone.0263538] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/20/2022] [Indexed: 01/04/2023] Open
Abstract
Host-associated microbial communities are impacted by external and within-host factors, i.e., diet and feeding behavior. For organisms known to have a circadian rhythm in feeding behavior, microbiome composition is likely impacted by the different rates of microbe introduction and removal across a daily cycle, in addition to any diet-induced changes in microbial interactions. Here, we measured feeding behavior and used 16S rRNA sequencing to compare the microbial community across a diel cycle in two distantly related species of Daphnia, that differ in their life history traits, to assess how daily feeding patterns impact microbiome composition. We find that Daphnia species reared under similar laboratory conditions have significantly different microbial communities. Additionally, we reveal that Daphnia have daily differences in their microbial composition that correspond with feeding behavior, such that there is greater microbiome diversity at night during the host’s active feeding phase. These results highlight that zooplankton microbiomes are relatively distinct and are likely influenced by host phylogeny.
Collapse
Affiliation(s)
- Alaina Pfenning-Butterworth
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- * E-mail:
| | - Reilly O. Cooper
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Clayton E. Cressler
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| |
Collapse
|
8
|
Pfenning-Butterworth AC, Amato K, Cressler CE. Circadian Rhythm in Feeding Behavior of Daphnia dentifera. J Biol Rhythms 2021; 36:589-594. [PMID: 34753340 DOI: 10.1177/07487304211054404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Circadian rhythms enable organisms to mediate their molecular and physiological processes with changes in their environment. Although feeding behavior directly affects within-organism processes, there are few examples of a circadian rhythm in this key behavior. Here, we show that Daphnia have a nocturnal circadian rhythm in feeding behavior that corresponds with their diel vertical migration (DVM), an important life history strategy for predator and UV avoidance. In addition, this feeding rhythm appears to be temperature compensated, which suggests that feeding behavior is robust to seasonal changes in water temperature. A circadian rhythm in feeding behavior can impact energetically demanding processes like metabolism and immunity, which may have drastic effects on susceptibility to disease, starvation risk, and ultimately, fitness.
Collapse
Affiliation(s)
| | - Kristina Amato
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Clayton E Cressler
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
9
|
Marxsen J, Rütz NK, Schmidt SI. Organic carbon and nutrients drive prokaryote and metazoan communities in a floodplain aquifer. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2020.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|