1
|
Kumaresan V, Ingle TM, Kilgore N, Zhang G, Hermann BP, Seshu J. Cellular and transcriptome signatures unveiled by single-cell RNA-Seq following ex vivo infection of murine splenocytes with Borrelia burgdorferi. Front Immunol 2023; 14:1296580. [PMID: 38149246 PMCID: PMC10749944 DOI: 10.3389/fimmu.2023.1296580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/06/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction Lyme disease, the most common tick-borne infectious disease in the US, is caused by a spirochetal pathogen Borrelia burgdorferi (Bb). Distinct host responses are observed in susceptible and resistant strains of inbred of mice following infection with Bb reflecting a subset of inflammatory responses observed in human Lyme disease. The advent of post-genomic methodologies and genomic data sets enables dissecting the host responses to advance therapeutic options for limiting the pathogen transmission and/or treatment of Lyme disease. Methods In this study, we used single-cell RNA-Seq analysis in conjunction with mouse genomics exploiting GFP-expressing Bb to sort GFP+ splenocytes and GFP- bystander cells to uncover novel molecular and cellular signatures that contribute to early stages of immune responses against Bb. Results These data decoded the heterogeneity of splenic neutrophils, macrophages, NK cells, B cells, and T cells in C3H/HeN mice in response to Bb infection. Increased mRNA abundance of apoptosis-related genes was observed in neutrophils and macrophages clustered from GFP+ splenocytes. Moreover, complement-mediated phagocytosis-related genes such as C1q and Ficolin were elevated in an inflammatory macrophage subset, suggesting upregulation of these genes during the interaction of macrophages with Bb-infected neutrophils. In addition, the role of DUSP1 in regulating the expression of Casp3 and pro-inflammatory cytokines Cxcl1, Cxcl2, Il1b, and Ccl5 in Bb-infected neutrophils were identified. Discussion These findings serve as a growing catalog of cell phenotypes/biomarkers among murine splenocytes that can be exploited for limiting spirochetal burden to limit the transmission of the agent of Lyme disease to humans via reservoir hosts.
Collapse
Affiliation(s)
- Venkatesh Kumaresan
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Taylor MacMackin Ingle
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Nathan Kilgore
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Guoquan Zhang
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Brian P. Hermann
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Janakiram Seshu
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
2
|
Gaber AM, Mandric I, Nitirahardjo C, Piontkivska H, Hillhouse AE, Threadgill DW, Zelikovsky A, Rogovskyy AS. Comparative transcriptome analysis of Peromyscus leucopus and C3H mice infected with the Lyme disease pathogen. Front Cell Infect Microbiol 2023; 13:1115350. [PMID: 37113133 PMCID: PMC10126474 DOI: 10.3389/fcimb.2023.1115350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Lyme disease (LD), the most prevalent tick-borne disease of humans in the Northern Hemisphere, is caused by the spirochetal bacterium of Borreliella burgdorferi (Bb) sensu lato complex. In nature, Bb spirochetes are continuously transmitted between Ixodes ticks and mammalian or avian reservoir hosts. Peromyscus leucopus mice are considered the primary mammalian reservoir of Bb in the United States. Earlier studies demonstrated that experimentally infected P. leucopus mice do not develop disease. In contrast, C3H mice, a widely used laboratory strain of Mus musculus in the LD field, develop severe Lyme arthritis. To date, the exact tolerance mechanism of P. leucopus mice to Bb-induced infection remains unknown. To address this knowledge gap, the present study has compared spleen transcriptomes of P. leucopus and C3H/HeJ mice infected with Bb strain 297 with those of their respective uninfected controls. Overall, the data showed that the spleen transcriptome of Bb-infected P. leucopus mice was much more quiescent compared to that of the infected C3H mice. To date, the current investigation is one of the few that have examined the transcriptome response of natural reservoir hosts to Borreliella infection. Although the experimental design of this study significantly differed from those of two previous investigations, the collective results of the current and published studies have consistently demonstrated very limited transcriptomic responses of different reservoir hosts to the persistent infection of LD pathogens. Importance The bacterium Borreliella burgdorferi (Bb) causes Lyme disease, which is one of the emerging and highly debilitating human diseases in countries of the Northern Hemisphere. In nature, Bb spirochetes are maintained between hard ticks of Ixodes spp. and mammals or birds. In the United States, the white-footed mouse, Peromyscus leucopus, is one of the main Bb reservoirs. In contrast to humans and laboratory mice (e.g., C3H mice), white-footed mice rarely develop clinical signs (disease) despite being (persistently) infected with Bb. How the white-footed mouse tolerates Bb infection is the question that the present study has attempted to address. Comparisons of genetic responses between Bb-infected and uninfected mice demonstrated that, during a long-term Bb infection, C3H mice reacted much stronger, whereas P. leucopus mice were relatively unresponsive.
Collapse
Affiliation(s)
- Alhussien M. Gaber
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Igor Mandric
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| | - Caroline Nitirahardjo
- Department of Biological Sciences, and School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Helen Piontkivska
- Department of Biological Sciences, and School of Biomedical Sciences, Kent State University, Kent, OH, United States
- Brain Health Research Institute, Kent State University, Kent, OH, United States
| | - Andrew E. Hillhouse
- Texas A&M Institute for Genomics Sciences and Society, Texas A&M University, College Station, TX, United States
| | - David W. Threadgill
- Texas A&M Institute for Genomics Sciences and Society, Texas A&M University, College Station, TX, United States
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Texas A&M University, College Station, TX, United States
| | - Alex Zelikovsky
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| | - Artem S. Rogovskyy
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
3
|
Ariyaratne A, Kim SY, Pollo SMJ, Perera S, Liu H, Nguyen WNT, Coria AL, Luzzi MDC, Bowron J, Szabo EK, Patel KD, Wasmuth JD, Nair MG, Finney CAM. Trickle infection with Heligmosomoides polygyrus results in decreased worm burdens but increased intestinal inflammation and scarring. Front Immunol 2022; 13:1020056. [PMID: 36569914 PMCID: PMC9773095 DOI: 10.3389/fimmu.2022.1020056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Intestinal roundworms cause chronic debilitating disease in animals, including humans. Traditional experimental models of these types of infection use a large single-dose infection. However, in natural settings, hosts are exposed to parasites on a regular basis and when mice are exposed to frequent, smaller doses of Heligmosomoides polygyrus, the parasites are cleared more quickly. Whether this more effective host response has any negative consequences for the host is not known. Results Using a trickle model of infection, we found that worm clearance was associated with known resistance-related host responses: increased granuloma and tuft cell numbers, increased levels of granuloma IgG and decreased intestinal transit time, as well as higher serum IgE levels. However, we found that the improved worm clearance was also associated with an inflammatory phenotype in and around the granuloma, increased smooth muscle hypertrophy/hyperplasia, and elevated levels of Adamts gene expression. Discussion To our knowledge, we are the first to identify the involvement of this protein family of matrix metalloproteinases (MMPs) in host responses to helminth infections. Our results highlight the delicate balance between parasite clearance and host tissue damage, which both contribute to host pathology. When continually exposed to parasitic worms, improved clearance comes at a cost.
Collapse
Affiliation(s)
- Anupama Ariyaratne
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - Sang Yong Kim
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| | - Stephen M. J. Pollo
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Shashini Perera
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - Hongrui Liu
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - William N. T. Nguyen
- Departments of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Aralia Leon Coria
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - Mayara de Cassia Luzzi
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - Joel Bowron
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - Edina K. Szabo
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| | - Kamala D. Patel
- Departments of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - James D. Wasmuth
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Meera G. Nair
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| | - Constance A. M. Finney
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Host Parasite Interactions Training Network, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
4
|
Zhong X, Lundberg M, Råberg L. Divergence in Coding Sequence and Expression of Different Functional Categories of Immune Genes between Two Wild Rodent Species. Genome Biol Evol 2021; 13:6132239. [PMID: 33565592 PMCID: PMC7936018 DOI: 10.1093/gbe/evab023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Differences in immune function between species could be a result of interspecific divergence in coding sequence and/or expression of immune genes. Here, we investigate how the degree of divergence in coding sequence and expression differs between functional categories of immune genes, and if differences between categories occur independently of other factors (expression level, pleiotropy). To this end, we compared spleen transcriptomes of wild-caught yellow-necked mice and bank voles. Immune genes expressed in the spleen were divided into four categories depending on the function of the encoded protein: pattern recognition receptors (PRR); signal transduction proteins; transcription factors; and cyto- and chemokines and their receptors. Genes encoding PRR and cyto-/chemokines had higher sequence divergence than genes encoding signal transduction proteins and transcription factors, even when controlling for potentially confounding factors. Genes encoding PRR also had higher expression divergence than genes encoding signal transduction proteins and transcription factors. There was a positive correlation between expression divergence and coding sequence divergence, in particular for PRR genes. We propose that this is a result of that divergence in PRR coding sequence leads to divergence in PRR expression through positive feedback of PRR ligand binding on PRR expression. When controlling for sequence divergence, expression divergence of PRR genes did not differ from other categories. Taken together, the results indicate that coding sequence divergence of PRR genes is a major cause of differences in immune function between species.
Collapse
Affiliation(s)
| | | | - Lars Råberg
- Department of Biology, Lund University, Sweden
| |
Collapse
|