1
|
Gaston MV, Barnas AF, Smith RM, Murray S, Fisher JT. Native prey, not landscape change or novel prey, drive cougar ( Puma concolor) distribution at a boreal forest range edge. Ecol Evol 2024; 14:e11146. [PMID: 38571804 PMCID: PMC10985369 DOI: 10.1002/ece3.11146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 04/05/2024] Open
Abstract
Many large carnivores, despite widespread habitat alteration, are rebounding in parts of their former ranges after decades of persecution and exploitation. Cougars (Puma concolor) are apex predator with their remaining northern core range constricted to mountain landscapes and areas of western North America; however, cougar populations have recently started rebounding in several locations across North America, including northward in boreal forest landscapes. A camera-trap survey of multiple landscapes across Alberta, Canada, delineated a range edge; within this region, we deployed an array of 47 camera traps in a random stratified design across a landscape spanning a gradient of anthropogenic development relative to the predicted expansion front. We completed multiple hypotheses in an information-theoretic framework to determine if cougar occurrence is best explained by natural land cover features, anthropogenic development features, or competitor and prey activity. We predicted that anthropogenic development features from resource extraction and invading white-tailed deer (Odocoileus virgianius) explain cougar distribution at this boreal range edge. Counter to our predictions, the relative activity of native prey, predominantly snowshoe hare (Lepus americanus), was the best predictor of cougar occurrence at this range edge. Small-bodied prey items are particularly important for female and sub-adult cougars and may support breeding individuals in the northeast boreal forest. Also, counter to our predictions, there was not a strong relationship detected between cougar occurrence and gray wolf (Canis lupus) activity at this range edge. However, further investigation is recommended as the possibility of cougar expansion into areas of the multi-prey boreal system, where wolves have recently been controlled, could have negative consequences for conservation goals in this region (e.g. the recovery of woodland caribou [Rangifer tarandus caribou]). Our study highlights the need to monitor contemporary distributions to inform conservation management objectives as large carnivores recover across North America.
Collapse
Affiliation(s)
- Millicent V. Gaston
- School of Environmental StudiesUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Andrew F. Barnas
- School of Environmental StudiesUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Rebecca M. Smith
- School of Environmental StudiesUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Sean Murray
- School of Environmental StudiesUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Jason T. Fisher
- School of Environmental StudiesUniversity of VictoriaVictoriaBritish ColumbiaCanada
| |
Collapse
|
2
|
Ahmad M, Uniyal SK, Sharma P, Rathee S, Batish DR, Singh HP. Enhanced plasticity and reproductive fitness of floral and seed traits facilitate non-native species spread in mountain ecosystems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119222. [PMID: 37862892 DOI: 10.1016/j.jenvman.2023.119222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/20/2023] [Accepted: 10/02/2023] [Indexed: 10/22/2023]
Abstract
Floral and seed traits, their relationships, and responses to abiotic constraints are considered the key determinants of the invasion success of non-native plant species. However, studies evaluating the pattern of floral and seed traits of non-native species in mountain ecosystems are lacking. In this study, we determined (a) whether the floral and seed traits of native and non-native species show similarity or dissimilarity across elevations in mountains, and (b) whether the non-native species follow different allometric patterns compared with native species. Functional variations between native and non-native species were assessed through floral and seed traits: flower count, flower display area, flower mass, specific flower area, seed count, and seed mass across an elevational gradient. Permanent plots (20 × 20 m) were laid at each 100 m elevation rise from 2000 to 4000 m a.s.l. for sampling of herbaceous plant species. The mean values of floral and seed traits such as flower display area, specific flower area, and seed count were significantly higher for non-native species compared to native species. A significant difference in trait values (flower display area, flower mass, seed count, and seed mass) between non-native species and native species was observed along the elevational gradient, except for flower count and specific flower area. The bivariate relationship revealed non-native species to exhibit a stronger relationship between flower display area ∼ flower mass, and flower display area ∼ seed mass traits than the native species. Non-native species showed enhanced reproductive ability under varying environmental conditions along an elevational gradient in mountain ecosystems. Greater flower display area and seed mass at lower elevations and a stronger overall trait-trait relationship among non-native species implied resource investment in pollinator visualization, flower mass, and seed quality over seed quantity. The study concludes that enhanced plasticity and reproductive fitness of floral and seed traits would consequently aid non-native species to adapt, become invasive, and displace native species in mountain ecosystems if the climatic barriers acting on non-native species are reduced with climate change.
Collapse
Affiliation(s)
- Mustaqeem Ahmad
- Department of Environment Studies, Panjab University, Chandigarh, India; Department of Environmental Technology, CSIR-IHBT, Palampur, India
| | - Sanjay K Uniyal
- Department of Environmental Technology, CSIR-IHBT, Palampur, India
| | - Padma Sharma
- Department of Environment Studies, Panjab University, Chandigarh, India
| | - Sonia Rathee
- Department of Botany, Panjab University, Chandigarh, India
| | - Daizy R Batish
- Department of Botany, Panjab University, Chandigarh, India
| | - Harminder P Singh
- Department of Environment Studies, Panjab University, Chandigarh, India.
| |
Collapse
|
3
|
Fuller HW, Frey S, Fisher JT. Integration of aerial surveys and resource selection analysis indicates human land use supports boreal deer expansion. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2722. [PMID: 36053995 DOI: 10.1002/eap.2722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Landscape change is a driver of global biodiversity loss. In the western Nearctic, petroleum exploration and extraction is a major contributor to landscape change, with concomitant effects on large mammal populations. One of those effects is the continued expansion of invasive white-tailed deer populations into the boreal forest, with ramifications for the whole ecosystem. We explored deer resource selection within the oil sands region of the boreal forest using a novel application of aerial ungulate survey (AUS) data. Deer locations from AUS were "used" points and together with randomly allocated "available" points informed deer resource selection in relation to landscape variables in the boreal forest. We created a candidate set of generalized linear models representing competing hypotheses about the role of natural landscape features, forest harvesting, cultivation, roads, and petroleum features. We ranked these in an information-theoretic framework. A combination of natural and anthropogenic landscape features best explained deer resource selection. Deer strongly selected seismic lines and other linear features associated with petroleum exploration and extraction, likely as movement corridors and resource subsidies. Forest harvesting and cultivation, important contributors to expansion in other parts of the white-tailed deer range, were not as important here. Stemming deer expansion to conserve native ungulates and maintain key predator-prey processes will likely require landscape management to restore the widespread linear features crossing the vast oil sands region.
Collapse
Affiliation(s)
- Hugh W Fuller
- School of Environmental Studies, University of Victoria, Victoria, British Columbia, Canada
| | - Sandra Frey
- School of Environmental Studies, University of Victoria, Victoria, British Columbia, Canada
| | - Jason T Fisher
- School of Environmental Studies, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
4
|
McKay TL, Finnegan LA. Predator–prey co‐occurrence in harvest blocks: Implications for caribou and forestry. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
5
|
Fisher JT, Ladle A. Syntopic species interact with large boreal mammals' response to anthropogenic landscape change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153432. [PMID: 35090931 DOI: 10.1016/j.scitotenv.2022.153432] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/07/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Landscape change alters species' distributions, and understanding these changes is a key ecological and conservation goal. Species-habitat relationships are often modelled in the absence of syntopic species, but niche theory and emerging empirical research suggests heterospecifics should entrain (and statistically explain) variability in distribution, perhaps synergistically by interacting with landscape features. We examined the effects of syntopic species in boreal mammals' relationship to landscape change, using three years of camera-trap data in the western Nearctic boreal forest. Using an information-theoretic framework, we weighed evidence for additive and interactive variables measuring heterospecifics' co-occurrence in species distribution models built on natural and anthropogenic landscape features. We competed multiple hypotheses about the roles of natural features, anthropogenic features, predators, competitors, and species-habitat interaction terms in explaining relative abundance of carnivores, herbivores, and omnivores/scavengers. For most species, models including heterospecifics explained occurrence frequency better than landscape features alone. Dominant predator (wolf) occurrence was best explained by prey, while prey species were explained by apparent competitors and subdominant predators. Evidence for interactions between landscape features and heterospecifics was strong for coyotes and wolves but variable for other species. Boreal mammals' spatial distribution is a function of heterospecific co-occurrence as well as landscape features, with synergistic effects observed for most species. Understanding species' responses to anthropogenic landscape change thus requires a multi-taxa approach that incorporates interspecific relationships, enabling better inference into underlying processes from observed patterns.
Collapse
Affiliation(s)
- Jason T Fisher
- School of Environmental Studies, University of Victoria, PO Box 1700 STN CSC, Victoria, British Columbia V8W 2Y2, Canada.
| | - Andrew Ladle
- School of Environmental Studies, University of Victoria, PO Box 1700 STN CSC, Victoria, British Columbia V8W 2Y2, Canada
| |
Collapse
|
6
|
Frey S, Tejero D, Baillie‐David K, Burton AC, Fisher JT. Predator control alters wolf interactions with prey and competitor species over the diel cycle. OIKOS 2022. [DOI: 10.1111/oik.08821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sandra Frey
- School of Environmental Studies, Univ. of Victoria Victoria BC Canada
| | - Daniel Tejero
- Univ. de Alcalá de Henares, Alcalá de Henares Madrid Spain
| | | | - A. Cole Burton
- Dept of Forest Resources Management, Univ. of British Columbia Vancouver BC Canada
| | - Jason T. Fisher
- School of Environmental Studies, Univ. of Victoria Victoria BC Canada
| |
Collapse
|
7
|
Roberts DR, Bayne EM, Beausoleil D, Dennett J, Fisher JT, Hazewinkel RO, Sayanda D, Wyatt F, Dubé MG. A synthetic review of terrestrial biological research from the Alberta oil sands region: 10 years of published literature. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:388-406. [PMID: 34510725 PMCID: PMC9292629 DOI: 10.1002/ieam.4519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 05/05/2023]
Abstract
In the past decade, a large volume of peer-reviewed papers has examined the potential impacts of oil and gas resource extraction in the Canadian oil sands (OS). A large proportion focuses on terrestrial biology: wildlife, birds, and vegetation. We provide a qualitative synthesis of the condition of the environment in the oil sands region (OSR) from 2009 to 2020 to identify gaps and progress cumulative effects assessments. Our objectives were to (1) qualitatively synthesize and critically review knowledge from the OSR; (2) identify consistent trends and generalizable conclusions; and (3) pinpoint gaps in need of greater monitoring or research effort. We visualize knowledge and terrestrial monitoring foci by allocating papers to a conceptual model for the OS. Despite a recent increase in publications, focus has remained concentrated on a few key stressors, especially landscape disturbance, and a few taxa of interest. Stressor and response monitoring is well represented, but direct monitoring of pathways (linkages between stressors and responses) is limited. Important knowledge gaps include understanding effects at multiple spatial scales, mammal health effects monitoring, focused monitoring of local resources important to Indigenous communities, and geospatial coverage and availability, including higher attribute resolution in human footprint, comprehensive land cover mapping, and up-to-date LiDAR coverage. Causal attribution based on spatial proximity to operations or spatial orientation of monitoring in the region is common but may be limited in the strength of inference that it provides. Integr Environ Assess Manag 2022;18:388-406. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | - Erin M. Bayne
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | | | - Jacqueline Dennett
- Department of Renewable ResourcesUniversity of AlbertaEdmontonAlbertaCanada
| | - Jason T. Fisher
- School of Environmental StudiesUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | | | | | | | | |
Collapse
|
8
|
Cumulative effects of human footprint, natural features and predation risk best predict seasonal resource selection by white-tailed deer. Sci Rep 2022; 12:1072. [PMID: 35058533 PMCID: PMC8776810 DOI: 10.1038/s41598-022-05018-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 12/22/2021] [Indexed: 01/24/2023] Open
Abstract
Land modified for human use alters matrix shape and composition and is a leading contributor to global biodiversity loss. It can also play a key role in facilitating range expansion and ecosystem invasion by anthrophilic species, as it can alter food abundance and distribution while also influencing predation risk; the relative roles of these processes are key to habitat selection theory. We researched these relative influences by examining human footprint, natural habitat, and predator occurrence on seasonal habitat selection by range-expanding boreal white-tailed deer (Odocoileus virginianus) in the oil sands of western Canada. We hypothesized that polygonal industrial features (e.g. cutblocks, well sites) drive deer distributions as sources of early seral forage, while linear features (e.g. roads, trails, and seismic lines) and habitat associated with predators are avoided by deer. We developed seasonal 2nd -order resource selection models from three years of deer GPS-telemetry data, a camera-trap-based model of predator occurrence, and landscape spatial data to weigh evidence for six competing hypotheses. Deer habitat selection was best explained by the combination of polygonal and linear features, intact deciduous forest, and wolf (Canis lupus) occurrence. Deer strongly selected for linear features such as roads and trails, despite a potential increased risk of wolf encounters. Linear features may attract deer by providing high density forage opportunity in heavily exploited landscapes, facilitating expansion into the boreal north.
Collapse
|
9
|
Russell T, Cullingham C, Ball M, Pybus M, Coltman D. Extent and direction of introgressive hybridization of mule and white-tailed deer in western Canada. Evol Appl 2021; 14:1914-1925. [PMID: 34295372 PMCID: PMC8288014 DOI: 10.1111/eva.13250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 05/02/2021] [Indexed: 01/05/2023] Open
Abstract
Hybridization of mule deer (Odocoileus hemionus) and white-tailed deer (O. virginianus) appears to be a semi-regular occurrence in western North America. Previous studies confirmed the presence of hybrids in a variety of sympatric habitats, but their developing molecular resources limited identification to the earliest, most admixed generations. For this reason, estimates of hybrid production in wild populations often rely on anecdotal reports. As well, white-tailed deer populations' continued encroachment into historically mule deer-occupied habitats due to changes in land use, habitat homogenization, and a warming climate may increase opportunities for interspecific encounters. We sought to quantify the prevalence and extent of hybrid deer in the prairies of western Canada using a SNP assay with enhanced discriminating power. By updating the available molecular resources, we sought to identify and characterize previously cryptic introgression. We also investigated the influence of various parameters on hybridity by way of logistic regression. We observed overall hybridization rates of ~1.0%, slightly lower than that reported by previous studies, and found white-tailed-like hybrids to be more common than their mule deer-like counterparts. Here, we build upon past studies of hybridization in North American deer by increasing hybrid detection power, expanding sample sizes, demonstrating a new molecular resource applicable to future research and observing asymmetrical directionality of introgression.
Collapse
Affiliation(s)
- Ty Russell
- Department of Biological SciencesUniversity of AlbertaEdmontonCanada
- Present address:
LGL Limited Environmental Research AssociatesSidneyCanada
| | | | - Mark Ball
- Alberta Fish and WildlifeEdmontonCanada
| | | | - David Coltman
- Department of Biological SciencesUniversity of AlbertaEdmontonCanada
| |
Collapse
|
10
|
Fisher JT, Grey F, Anderson N, Sawan J, Anderson N, Chai SL, Nolan L, Underwood A, Amerongen Maddison J, Fuller HW, Frey S. Indigenous-led camera-trap research on traditional territories informs conservation decisions for resource extraction. Facets (Ott) 2021. [DOI: 10.1139/facets-2020-0087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The resource extraction that powers global economies is often manifested in Indigenous Peoples’ territories. Indigenous Peoples living on the land are careful observers of resulting biodiversity changes, and Indigenous-led research can provide evidence to inform conservation decisions. In the Nearctic western boreal forest, landscape change from forest harvesting and petroleum extraction is intensive and extensive. A First Nations community in the Canadian oil sands co-created camera-trap research to explore observations of presumptive species declines, seeking to identify the relative contributions of different industrial sectors to changes in mammal distributions. Camera data were analyzed via generalized linear models in a model-selection approach. Multiple forestry and petroleum extraction features positively and negatively affected boreal mammal species. Pipelines had the greatest negative effect size (for wolves), whereas well sites had a large positive effect size for multiple species, suggesting the energy sector as a target for co-management. Co-created research reveals spatial relationships of disturbance, prey, and predators on Indigenous traditional territories. It provides hypotheses, tests, and interpretations unique to outside perspectives; Indigenous participation in conservation management of their territories scales up to benefit global biodiversity conservation.
Collapse
Affiliation(s)
- Jason T Fisher
- University of Victoria, School of Environmental Studies, PO Box 1700 STN CSC Victoria, BC V8W 2Y2, Canada
| | - Fabian Grey
- Whitefish Lake First Nation. General Delivery, Atikameg, AB T0G 0C0, Canada
| | - Nelson Anderson
- Whitefish Lake First Nation. General Delivery, Atikameg, AB T0G 0C0, Canada
| | - Josiah Sawan
- Whitefish Lake First Nation. General Delivery, Atikameg, AB T0G 0C0, Canada
| | - Nicholas Anderson
- Whitefish Lake First Nation. General Delivery, Atikameg, AB T0G 0C0, Canada
| | - Shauna-Lee Chai
- InnoTech Alberta, 250 Karl Clark Road, Edmonton, AB T6N 1E4 Canada
| | - Luke Nolan
- InnoTech Alberta, 250 Karl Clark Road, Edmonton, AB T6N 1E4 Canada
| | - Andrew Underwood
- InnoTech Alberta, 250 Karl Clark Road, Edmonton, AB T6N 1E4 Canada
| | - Julia Amerongen Maddison
- University of Victoria, School of Environmental Studies, PO Box 1700 STN CSC Victoria, BC V8W 2Y2, Canada
| | - Hugh W. Fuller
- University of Victoria, School of Environmental Studies, PO Box 1700 STN CSC Victoria, BC V8W 2Y2, Canada
| | - Sandra Frey
- University of Victoria, School of Environmental Studies, PO Box 1700 STN CSC Victoria, BC V8W 2Y2, Canada
| |
Collapse
|