1
|
Lucas M, Rašić G, Filazzola A, Matter S, Roland J, Keyghobadi N. Extremes of snow and temperature affect patterns of genetic diversity and differentiation in the alpine butterfly Parnassius smintheus. Mol Ecol 2024; 33:e17503. [PMID: 39162219 DOI: 10.1111/mec.17503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024]
Abstract
Weather is an important short-term, local driver of population size and dispersal, which in turn contribute to patterns of genetic diversity and differentiation within species. Climate change is leading to greater weather variability and more frequent extreme weather events. While the effects of long-term and broad-scale mean climate conditions on genetic variation are well studied, our understanding of the effects of weather variability and extreme conditions on genetic variation is less developed. We assessed the influence of temperature and snow depth on genetic diversity and differentiation of populations of the alpine butterfly, Parnassius smintheus. We examined the relationships between a suite of variables, including those representing extreme conditions, and population-level genetic diversity and differentiation across 1453 single nucleotide polymorphisms, using both linear and gravity models. We additionally examined effects of land cover variables known to influence dispersal and gene flow in this species. We found that extreme low temperature events and the lowest recorded mean snow depth were significant predictors of genetic diversity. Extreme low temperature events, mean snow depth and land cover resistance were significant predictors of genetic differentiation. These results are congruent with known effects of early winter weather on population size and habitat connectivity on dispersal in P. smintheus. Our results demonstrate the potential for changes in the frequency or magnitude of extreme weather events to alter patterns of genetic diversity and differentiation.
Collapse
Affiliation(s)
- Mel Lucas
- Department of Biology, Western University, London, Ontario, Canada
| | - Gordana Rašić
- Pest and Disease Vector Group, Department of Genetics, The University of Melbourne, Melbourne, Victoria, Australia
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Steve Matter
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jens Roland
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Nusha Keyghobadi
- Department of Biology, Western University, London, Ontario, Canada
| |
Collapse
|
2
|
Nespolo RF, Quintero-Galvis JF, Fontúrbel FE, Cubillos FA, Vianna J, Moreno-Meynard P, Rezende EL, Bozinovic F. Climate change and population persistence in a hibernating marsupial. Proc Biol Sci 2024; 291:20240266. [PMID: 38920109 DOI: 10.1098/rspb.2024.0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024] Open
Abstract
Climate change has physiological consequences on organisms, ecosystems and human societies, surpassing the pace of organismal adaptation. Hibernating mammals are particularly vulnerable as winter survival is determined by short-term physiological changes triggered by temperature. In these animals, winter temperatures cannot surpass a certain threshold, above which hibernators arouse from torpor, increasing several fold their energy needs when food is unavailable. Here, we parameterized a numerical model predicting energy consumption in heterothermic species and modelled winter survival at different climate change scenarios. As a model species, we used the arboreal marsupial monito del monte (genus Dromiciops), which is recognized as one of the few South American hibernators. We modelled four climate change scenarios (from optimistic to pessimistic) based on IPCC projections, predicting that northern and coastal populations (Dromiciops bozinovici) will decline because the minimum number of cold days needed to survive the winter will not be attained. These populations are also the most affected by habitat fragmentation and changes in land use. Conversely, Andean and other highland populations, in cooler environments, are predicted to persist and thrive. Given the widespread presence of hibernating mammals around the world, models based on simple physiological parameters, such as this one, are becoming essential for predicting species responses to warming in the short term.
Collapse
Affiliation(s)
- Roberto F Nespolo
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile , Valdivia, Chile
- Millenium Nucleus of Patagonian Limit of Life (LiLi) , Valdivia, Chile
- Center of Applied Ecology and Sustainability (CAPES) , Santiago, Chile
| | - Julian F Quintero-Galvis
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile , Valdivia, Chile
- Millenium Nucleus of Patagonian Limit of Life (LiLi) , Valdivia, Chile
| | - Francisco E Fontúrbel
- Millenium Nucleus of Patagonian Limit of Life (LiLi) , Valdivia, Chile
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso , Valparaíso, Chile
| | - Francisco A Cubillos
- Millenium Nucleus of Patagonian Limit of Life (LiLi) , Valdivia, Chile
- Departamento de Biología y Química, Universidad de Santiago de Chile , Santiago, Chile
- Millennium Institute for Integrative Biology (iBio) , Santiago, Chile
| | - Juliana Vianna
- Millenium Nucleus of Patagonian Limit of Life (LiLi) , Valdivia, Chile
- Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas , Santiago, Chile
- Departamento de Ecosistemas y Medio Ambiente, Millennium Institute Center for Genome Regulation (CRG), Pontificia Universidad Católica de Chile , Santiago, Chile
| | - Paulo Moreno-Meynard
- Millenium Nucleus of Patagonian Limit of Life (LiLi) , Valdivia, Chile
- Centro de Investigación en Ecosistemas de la Patagonia CIEP , Coyhaique, Chile
| | - Enrico L Rezende
- Center of Applied Ecology and Sustainability (CAPES) , Santiago, Chile
- Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas , Santiago, Chile
| | - Francisco Bozinovic
- Millenium Nucleus of Patagonian Limit of Life (LiLi) , Valdivia, Chile
- Center of Applied Ecology and Sustainability (CAPES) , Santiago, Chile
- Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas , Santiago, Chile
| |
Collapse
|
3
|
Rossi AJ, Klinger RC, Hellwig EC, Van Vuren DH. Niches of three sympatric montane ground-dwelling squirrels: Relative importance of climate, topography, and landcover. Ecol Evol 2023; 13:e9949. [PMID: 37013103 PMCID: PMC10065979 DOI: 10.1002/ece3.9949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 04/03/2023] Open
Abstract
Species with different ecological niches will likely exhibit distinct responses to a changing environment. Differences in the magnitude of niche specialization may also indicate which species may be more vulnerable to environmental change, as many life-history characteristics are known to affect climate change vulnerability. We characterized the niche space of three sympatric high-elevation ground-dwelling squirrels, yellow-bellied marmot (Marmota flaviventer), Belding's ground squirrel (Urocitellus beldingi), and golden-mantled ground squirrel (Callospermophilus lateralis), in the alpine and upper subalpine regions of the Sierra Nevada in California. We used 5879 observations of individual squirrels, collected from 4 years (2009-2012) of transect survey data, to quantify which ecogeographical variable types (climate, topography, or landcover) were most important in defining the niche of each species. We conducted Ecological Niche Factor Analysis to quantify the niche and generate indices of "marginality" (magnitude of selection) and "specialization" (narrowness of niche space). All three species demonstrated differential use of niche space when compared to the available niche space. Moreover, the relative importance of the variables shaping the niche differed among these species. For example, the presence of meadows was important in defining the niche for U. beldingi and M. flaviventer, but the presence of conifers was important to C. lateralis. Precipitation was important in defining the niche for all three species, positively so for U. beldingi, and negatively for the other two species. The niche breadth of these three species was also positively associated with geographic range size. Mammals in high-elevation mountain systems often are perceived as vulnerable to climate shifts, but our results underscore the importance of also including non-climate-based factors in defining the niche. The overall magnitude of niche selection for all three species was driven by a combination of topographic, climatic, and landcover factors; thus, efforts to forecast areas where these species can persist in the future need to evaluate from more than just a climatic perspective.
Collapse
Affiliation(s)
- Aviva J. Rossi
- Department of Wildlife, Fish, & Conservation BiologyUniversity of California, DavisOne Shields AvenueDavisCalifornia95616USA
| | - Robert C. Klinger
- Western Ecological Research CenterU.S. Geological Survey2761 Glenbrook WayBishopCalifornia93514USA
| | - Elise C. Hellwig
- Department of Wildlife, Fish, & Conservation BiologyUniversity of California, DavisOne Shields AvenueDavisCalifornia95616USA
| | - Dirk H. Van Vuren
- Department of Wildlife, Fish, & Conservation BiologyUniversity of California, DavisOne Shields AvenueDavisCalifornia95616USA
| |
Collapse
|
4
|
Ferrari C, Cerri J, Rolando A, Bassano B, Hardenberg AV, Bertolino S. See you in spring: overwinter survival is higher than post summer in the Alpine marmot. ETHOL ECOL EVOL 2023. [DOI: 10.1080/03949370.2022.2157891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Caterina Ferrari
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- Alpine Wildlife Research Centre, Gran Paradiso National Park, Aosta, Italy
| | - Jacopo Cerri
- Department of Biodiversity, University of Primorska, Primorska, Slovenia
| | - Antonio Rolando
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Bruno Bassano
- Alpine Wildlife Research Centre, Gran Paradiso National Park, Aosta, Italy
| | - Achaz von Hardenberg
- Conservation Biology Research Group, Department of Biological Sciences, University of Chester, Chester, UK
| | - Sandro Bertolino
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
5
|
Gonnerman M, Shea SA, Sullivan K, Kamath P, Overturf K, Blomberg E. Dynamic winter weather moderates movement and resource selection of wild turkeys at high-latitude range limits. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2734. [PMID: 36057107 DOI: 10.1002/eap.2734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/22/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
For wide-ranging species in temperate environments, populations at high-latitude range limits are subject to more extreme conditions, colder temperatures, and greater snow accumulation compared with their core range. As climate change progresses, these bounding pressures may become more moderate on average, while extreme weather occurs more frequently. Individuals can mitigate temporarily extreme conditions by changing daily activity budgets and exhibiting plasticity in resource selection, both of which facilitate existence at and expansion of high-latitude range boundaries. However, relatively little work has explored how animals moderate movement and vary resource selection with changing weather, and a general framework for such investigations is lacking. We applied hidden Markov models and step selection functions to GPS data from wintering wild turkeys (Meleagris gallopavo) near their northern range limit to identify how weather influenced transition among discrete movement states, as well as state-specific resource selection. We found that turkeys were more likely to spend time in a stationary state as wind chill temperatures decreased and snow depth increased. Both stationary and roosting turkeys selected conifer forests and avoided land covers associated with foraging, such as agriculture and residential areas, while shifting their strength of selection for these features during poor weather. In contrast, mobile turkeys showed relatively weak resource selection, with less response in selection coefficients during poor weather. Our findings illustrate that behavioral plasticity in response to weather was context dependent, but movement behaviors most associated with poor weather were also those in which resource selection was most plastic. Given our results, the potential for wild turkey range expansion will partly be determined by the availability of habitat that allows them to withstand periodic inclement weather. Combining hidden Markov models with step selection functions is broadly applicable for evaluating plasticity in animal behavior and dynamic resource selection in response to changing weather. We studied turkeys at northern range limits, but this approach is applicable for any system expected to experience significant changes in the coming decade, and may be particularly relevant to populations existing at range peripheries.
Collapse
Affiliation(s)
- Matthew Gonnerman
- Department of Wildlife Fisheries and Conservation Biology, University of Maine, Orono, Maine, USA
| | - Stephanie A Shea
- School of Food and Agriculture, University of Maine, Orono, Maine, USA
| | - Kelsey Sullivan
- Maine Department of Inland Fisheries and Wildlife, Bangor, Maine, USA
| | - Pauline Kamath
- School of Food and Agriculture, University of Maine, Orono, Maine, USA
| | - Kaj Overturf
- Department of Wildlife Fisheries and Conservation Biology, University of Maine, Orono, Maine, USA
| | - Erik Blomberg
- Department of Wildlife Fisheries and Conservation Biology, University of Maine, Orono, Maine, USA
| |
Collapse
|
6
|
Combe FJ, Juškaitis R, Trout RC, Bird S, Ellis JS, Norrey J, Al‐Fulaij N, White I, Harris WE. Density and climate effects on age‐specific survival and population growth: consequences for hibernating mammals. Anim Conserv 2022. [DOI: 10.1111/acv.12843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- F. J. Combe
- Division of Biology and Conservation Ecology, School of Science and the Environment Manchester Metropolitan University Manchester UK
- Division of Biology Kansas State University Manhattan KS USA
| | | | | | - S. Bird
- North of England Zoological Society Chester UK
| | - J. S. Ellis
- School of Biological and Marine Sciences University of Plymouth Plymouth UK
| | - J. Norrey
- Division of Biology and Conservation Ecology, School of Science and the Environment Manchester Metropolitan University Manchester UK
| | | | - I. White
- People's Trust for Endangered Species London UK
| | - W. E. Harris
- Agriculture and Environment Sciences Department Harper Adams University Newport UK
| |
Collapse
|
7
|
Ogilvie JE, CaraDonna PJ. The shifting importance of abiotic and biotic factors across the life cycles of wild pollinators. J Anim Ecol 2022; 91:2412-2423. [PMID: 36268682 DOI: 10.1111/1365-2656.13825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/19/2022] [Indexed: 12/14/2022]
Abstract
Organisms living in seasonal environments are exposed to different environmental conditions as they transition from one life stage to the next across their life cycle. How different life stages respond to these varying conditions, and the extent to which different life stages are linked, are fundamental components of the ecology of an organism. Nevertheless, the influence of abiotic and biotic factors on different parts of an organism's life cycle is often not accounted for, which limits our understanding of the ecological consequences of environmental change. We investigated the relative importance of climate conditions, food availability, and previous life-stage abundance in an assemblage of seven wild bumble bee species, asking: how do these three factors directly influence bee abundance at each life stage? To do so, we used a 7-year dataset where we monitored climate conditions, floral resources, and abundances of bees in each life stage across the active colony life cycle in a highly seasonal subalpine ecosystem in the Colorado Rocky Mountains, USA. Bee abundance at different life stages responded to abiotic and biotic conditions in a broadly consistent manner across the seven species: the survival and recruitment stage of the life cycle (overwintered queens) responded negatively to longer winters; the growth stage (workers) responded positively to floral resource availability; and the reproductive stage (males) was positively related to the abundance of the previous life stage (workers). Most species also exhibited some idiosyncratic responses. Our long-term examination of annual bumble bees reveals a general set of responses in the abundance of each life stage to climate conditions, floral resource availability, and previous life stage. Across species, these three factors each directly influenced a distinct life stage, illustrating how their relative importance can shift throughout the life cycle. The life-cycle approach that we have taken highlights that important details about demography can be overlooked without considering life-stage-specific responses. Ultimately, it is these life-stage-specific responses that shape population outcomes, not only for animal pollinators but also for many organisms living in seasonal environments.
Collapse
Affiliation(s)
- Jane E Ogilvie
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA.,Chicago Botanic Garden, Glencoe, Illinois, USA
| | - Paul J CaraDonna
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA.,Chicago Botanic Garden, Glencoe, Illinois, USA.,Plant Biology and Conservation, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
8
|
Billman PD, Beever EA, McWethy DB, Thurman LL, Wilson KC. Factors influencing distributional shifts and abundance at the range core of a climate-sensitive mammal. GLOBAL CHANGE BIOLOGY 2021; 27:4498-4515. [PMID: 34236759 DOI: 10.1111/gcb.15793] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/10/2021] [Accepted: 06/04/2021] [Indexed: 06/13/2023]
Abstract
Species are frequently responding to contemporary climate change by shifting to higher elevations and poleward to track suitable climate space. However, depending on local conditions and species' sensitivity, the nature of these shifts can be highly variable and difficult to predict. Here, we examine how the American pika (Ochotona princeps), a philopatric, montane lagomorph, responds to climatic gradients at three spatial scales. Using mixed-effects modeling in an information-theoretic approach, we evaluated a priori model suites regarding predictors of site occupancy, relative abundance, and elevational-range retraction across 760 talus patches, nested within 64 watersheds across the Northern Rocky Mountains of North America, during 2017-2020. The top environmental predictors differed across these response metrics. Warmer temperatures in summer and winter were associated with lower occupancy, lower relative abundances, and greater elevational retraction across watersheds. Occupancy was also strongly influenced by habitat patch size, but only when combined with climate metrics such as actual evapotranspiration. Using a second analytical approach, acute heat stress and summer precipitation best explained retraction residuals (i.e., the relative extent of retraction given the original elevational range of occupancy). Despite the study domain occurring near the species' geographic-range center, where populations might have higher abundances and be at lower risk of climate-related stress, 33.9% of patches showed evidence of recent extirpations. Pika-extirpated sites averaged 1.44℃ warmer in summer than did occupied sites. Additionally, the minimum elevation of pika occupancy has retracted upslope in 69% of watersheds (mean: 281 m). Our results emphasize the nuance associated with evaluating species' range dynamics in response to climate gradients, variability, and temperature exceedances, especially in regions where species occupy gradients of conditions that may constitute multiple range edges. Furthermore, this study highlights the importance of evaluating diverse drivers across response metrics to improve the predictive accuracy of widely used, correlative models.
Collapse
Affiliation(s)
- Peter D Billman
- Department of Earth Sciences, Montana State University, Bozeman, MT, USA
| | - Erik A Beever
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Bozeman, MT, USA
- Department of Ecology, Montana State University, Bozeman, MT, USA
| | - David B McWethy
- Department of Earth Sciences, Montana State University, Bozeman, MT, USA
| | - Lindsey L Thurman
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Bozeman, MT, USA
- U.S. Geological Survey, Northwest Climate Adaptation Science Center, Corvallis, OR, USA
| | - Kenneth C Wilson
- Department of Earth Sciences, Montana State University, Bozeman, MT, USA
| |
Collapse
|