1
|
Class B, Strickland K, Potvin D, Jackson N, Nakagawa S, Frère C. Sex-Specific Associations between Social Behavior, Its Predictability, and Fitness in a Wild Lizard. Am Nat 2024; 204:501-516. [PMID: 39486032 DOI: 10.1086/732178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
AbstractSocial environments impose a number of constraints on individuals' behavior. These constraints have been hypothesized to generate behavioral variation among individuals, social responsiveness, and within-individual behavioral consistency (also termed "predictability"). In particular, the social niche specialization hypothesis posits that higher levels of competition associated with higher population density should increase among-individual behavioral variation and individual predictability as a way to reduce conflicts. Being predictable should hence have fitness benefits in group-living animals. However, to date empirical studies of the fitness consequences of behavioral predictability remain scarce. In this study, we investigated the associations between social behavior, its predictability, and fitness in the eastern water dragon (Intellagama lesueurii), a wild gregarious lizard. Since this species is sexually dimorphic, we examined these patterns both between sexes and among individuals. Although females were more sociable than males, there was no evidence for sex differences in among-individual variation or predictability. However, females exhibited positive associations between social behavior, its predictability, and survival, while males exhibited only a positive association between mean social behavior and fitness. These findings hence partly support predictions from the social niche specialization hypothesis and suggest that the function of social predictability may be sex dependent.
Collapse
|
2
|
Giraldo-Deck LM, Loveland JL, Goymann W, Lank DB, Küpper C. A supergene affects androgen concentrations during early development in a bird with alternative reproductive morphs. Horm Behav 2024; 166:105645. [PMID: 39342750 DOI: 10.1016/j.yhbeh.2024.105645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024]
Abstract
Species with alternative reproductive tactics typically show pronounced phenotypic variation between and within sexes. In some species, this variation culminates in discrete reproductive morphs that are genetically determined, facilitating studies on how genetic variation translates into phenotypic variation. In ruffs (Calidris pugnax), an autosomal inversion polymorphism underlies three reproductive morphs (Independents, Satellites and Faeders), which differ in circulating steroid concentrations in adults. Yet, it remains unknown whether morph differences in steroid concentrations already arise before adulthood. We examined variation in circulating testosterone, androstenedione and progesterone concentrations between morphs and sexes in ruff chicks and juveniles and compared the differences to those in adults. Since measured hormone concentrations only provide momentary states and show high within- and between-individual variation, we took repeated measurements to compare means, variances and skewness between groups. We found clear differences between morphs but not the sexes in early life. Between morphs, androgen concentrations in young ruffs differed in variance and skewness, but not in their means. For testosterone, Independents had a higher variance than Satellites/Faeders, whereas for androstenedione, we observed the opposite pattern. For progesterone, we did not detect clear differences between groups. Skewness values mirrored differences in morph variances. Compared to adults, premature ruffs had lower androgen concentrations. In both life stages, we detected morph-specific associations between androgen concentrations: androstenedione concentrations increased with testosterone concentrations more in Satellites/Faeders than in Independents. These observed morph differences during early life are consistent with a supergene-mediated regulation of androgen variation that underlies the diversification of adult behavioural phenotypes.
Collapse
Affiliation(s)
- Lina M Giraldo-Deck
- Research Group Behavioural Genetics and Evolutionary Ecology, Max Planck Institute for Biological Intelligence, Eberhard-Gwinner-Straße, 82319 Seewiesen, Germany; Research Group Evolutionary Physiology, Max Planck Institute for Biological Intelligence, Eberhard-Gwinner-Straße, 82319 Seewiesen, Germany.
| | - Jasmine L Loveland
- Department of Behavioral and Cognitive Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.
| | - Wolfgang Goymann
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Eberhard-Gwinner-Straße, 82319 Seewiesen, Germany; Department Biologie II, Ludwig-Maximilians University Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany.
| | - David B Lank
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| | - Clemens Küpper
- Research Group Behavioural Genetics and Evolutionary Ecology, Max Planck Institute for Biological Intelligence, Eberhard-Gwinner-Straße, 82319 Seewiesen, Germany.
| |
Collapse
|
3
|
Horváth G, Sos T, Bóné G, Lőrincz CE, Pap PL, Herczeg G. Integrating behavioural thermoregulatory strategy into the animal personality framework using the common lizard, Zootoca vivipara as a model. Sci Rep 2024; 14:14200. [PMID: 38902323 PMCID: PMC11189939 DOI: 10.1038/s41598-024-64305-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/07/2024] [Indexed: 06/22/2024] Open
Abstract
The study of consistent between-individual behavioural variation in single (animal personality) and across two or more behavioural traits (behavioural syndrome) is a central topic of behavioural ecology. Besides behavioural type (individual mean behaviour), behavioural predictability (environment-independent within-individual behavioural variation) is now also seen as an important component of individual behavioural strategy. Research focus is still on the 'Big Five' traits (activity, exploration, risk-taking, sociability and aggression), but another prime candidate to integrate to the personality framework is behavioural thermoregulation in small-bodied poikilotherms. Here, we found animal personality in thermoregulatory strategy (selected body temperature, voluntary thermal maximum, setpoint range) and 'classic' behavioural traits (activity, sheltering, risk-taking) in common lizards (Zootoca vivipara). Individual state did not explain the between-individual variation. There was a positive behavioural type-behavioural predictability correlation in selected body temperature. Besides an activity-risk-taking syndrome, we also found a risk-taking-selected body temperature syndrome. Our results suggest that animal personality and behavioural syndrome are present in common lizards, both including thermoregulatory and 'classic' behavioural traits, and selecting high body temperature with high predictability is part of the risk-prone behavioural strategy. We propose that thermoregulatory behaviour should be considered with equal weight to the 'classic' traits in animal personality studies of poikilotherms employing active behavioural thermoregulation.
Collapse
Affiliation(s)
- Gergely Horváth
- Department of Systematic Zoology and Ecology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/c, 1117, Budapest, Hungary.
- HUN-REN-ELTE-MTM Integrative Ecology Research Group, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary.
| | - Tibor Sos
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Centre for Systems Biology, Biodiversity and Bioresources, Babeş-Bolyai University, Clinicilor street 5-7, Cluj-Napoca, Romania
- "Milvus Group" Bird and Nature Protection Association, B-dul 1 Decembrie 1918 121, 540445, Tîrgu Mureș, Romania
| | - Gábor Bóné
- "Milvus Group" Bird and Nature Protection Association, B-dul 1 Decembrie 1918 121, 540445, Tîrgu Mureș, Romania
| | - Csanád Endre Lőrincz
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
| | - Péter László Pap
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Centre for Systems Biology, Biodiversity and Bioresources, Babeş-Bolyai University, Clinicilor street 5-7, Cluj-Napoca, Romania
| | - Gábor Herczeg
- Department of Systematic Zoology and Ecology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/c, 1117, Budapest, Hungary
- HUN-REN-ELTE-MTM Integrative Ecology Research Group, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| |
Collapse
|
4
|
Biro PA. Testing personality-pace-of-life associations via artificial selection: insights from selected lines of rainbow trout on the context-dependence of correlations. Biol Lett 2024; 20:20240181. [PMID: 38949039 DOI: 10.1098/rsbl.2024.0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/16/2024] [Indexed: 07/02/2024] Open
Abstract
More than a decade of study since the personality pace-of-life syndrome (POLS) hypotheses were first proposed, there is little support for it within species. Lack of experimental control, insufficient sampling in the face of highly labile behavioural and metabolic traits, and context dependency of trait correlations are suggested as reasons. Here, I argue that artificial selection and/or use of existing selected lines represents a powerful but under-used approach to furthering our understanding of the POLS. To illustrate this potential, I conducted a focussed review of studies that compared the behaviour, metabolism, growth and survival of an artificially selected fast-growing rainbow trout relative to wild unselected strains, under varying food and risk conditions in the laboratory and field. Resting metabolic rate, food intake, and behaviours that enhance feeding but increase energy expenditure (activity, aggression, boldness), were all higher in the fast strain in paired contrasts, under all food and risk conditions, both in the laboratory and the field. Fast-strain fish grew faster in almost every food and risk situation except where food was highly limited (or absent), had higher survival under low or zero predation risk, but had lower survival under high risk. Several other traits rarely considered in POLS studies were also higher in the fast strain, including maximum swimming speed, and hormones (growth hormone (GH), thyroid hormone (T3) and insulin-like growth factor (IGF-1)). I conclude: (i) assumptions and predictions of the POLS hypothesis are well supported, and (ii) context-dependency was largely absent, but when present revealed trade-offs between food acquisition and predation risk. This focused review highlights the potential of artificial selection in testing POLS ideas, and will hopefully motivate further studies using other animals.
Collapse
Affiliation(s)
- Peter A Biro
- School of Life and Environmental Science, Deakin University, Geelong 3216, Australia
| |
Collapse
|
5
|
Mitchell DJ, Beckmann C, Biro PA. Maintenance of Behavioral Variation under Predation Risk: Effects on Personality, Plasticity, and Predictability. Am Nat 2024; 203:347-361. [PMID: 38358809 DOI: 10.1086/728421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
AbstractClassic evolutionary theory predicts that predation will shift trait means and erode variance within prey species; however, several studies indicate higher behavioral trait variance and trait integration in high-predation populations. These results come predominately from field-sampled animals comparing low- and high-predation sites and thus cannot isolate the role of predation from other ecological factors, including density effects arising from higher predation. Here, we study the role of predation on behavioral trait (co)variation in experimental populations of guppies (Poecilia reticulata) living with and without a benthic ambush predator (Jaguar cichlid) to better evaluate the role of predation and where density was equalized among replicates twice per year. At 2.5 years after introduction of the predators (∼10 overlapping generations), 40 males were sampled from each of the six replicate populations and extensively assayed for activity rates, water column use, and latency to feed following disturbance. Individual variation was pronounced in both treatments, with substantial individual variation in means, temporal plasticity, and predictability (inverse residual variance). Predators had little effect on mean behavior, although there was some evidence for greater use of the upper water column in predator-exposed fish. There was greater variance among individuals in water column use in predator-exposed fish, and they habituated more quickly over time; individuals higher in the water column fed slower and had a reduced positive correlation with activity, although again this effect was time specific. Predators also affected the integration of personality and plasticity-among-individual variances in water column use increased, and those in activity decreased, through time-which was absent in controls. Our results contrast with the extensive guppy literature showing rapid evolution in trait means, demonstrating either increases or maintenance of behavioral variance under predation.
Collapse
|
6
|
Klaassen H, Tissot S, Meliani J, Boutry J, Miltiadous A, Biro PA, Mitchell DJ, Ujvari B, Schultz A, Thomas F, Dujon AM. Behavioural ecology meets oncology: quantifying the recovery of animal behaviour to a transient exposure to a cancer risk factor. Proc Biol Sci 2024; 291:20232666. [PMID: 38351808 PMCID: PMC10865010 DOI: 10.1098/rspb.2023.2666] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Wildlife is increasingly exposed to sublethal transient cancer risk factors, including mutagenic substances, which activates their anti-cancer defences, promotes tumourigenesis, and may negatively impact populations. Little is known about how exposure to cancer risk factors impacts the behaviour of wildlife. Here, we investigated the effects of a sublethal, short-term exposure to a carcinogen at environmentally relevant concentrations on the activity patterns of wild Girardia tigrina planaria during a two-phase experiment, consisting of a 7-day exposure to cadmium period followed by a 7-day recovery period. To comprehensively explore the effects of the exposure on activity patterns, we employed the double hierarchical generalized linear model framework which explicitly models residual intraindividual variability in addition to the mean and variance of the population. We found that exposed planaria were less active compared to unexposed individuals and were able to recover to pre-exposure activity levels albeit with a reduced variance in activity at the start of the recovery phase. Planaria showing high activity levels were less predictable with larger daily activity variations and higher residual variance. Thus, the shift in behavioural variability induced by an exposure to a cancer risk factor can be quantified using advanced tools from the field of behavioural ecology. This is required to understand how tumourous processes affect the ecology of species.
Collapse
Affiliation(s)
- Hiske Klaassen
- Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria 3216, Australia
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Sophie Tissot
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Jordan Meliani
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Justine Boutry
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Anna Miltiadous
- Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Peter A. Biro
- Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria 3216, Australia
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | | | - Beata Ujvari
- Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria 3216, Australia
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Aaron Schultz
- Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria 3216, Australia
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Frédéric Thomas
- Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria 3216, Australia
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Antoine M. Dujon
- Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria 3216, Australia
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| |
Collapse
|
7
|
Stamps JA, Biro PA. Time-specific convergence and divergence in individual differences in behavior: Theory, protocols and analyzes. Ecol Evol 2023; 13:e10615. [PMID: 38034332 PMCID: PMC10682899 DOI: 10.1002/ece3.10615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 12/02/2023] Open
Abstract
Over the years, theoreticians and empiricists working in a wide range of disciplines, including physiology, ethology, psychology, and behavioral ecology, have suggested a variety of reasons why individual differences in behavior might change over time, such that different individuals become more similar (convergence) or less similar (divergence) to one another. Virtually none of these investigators have suggested that convergence or divergence will continue forever, instead proposing that these patterns will be restricted to particular periods over the course of a longer study. However, to date, few empiricists have documented time-specific convergence or divergence, in part because the experimental designs and statistical methods suitable for describing these patterns are not widely known. Here, we begin by reviewing an array of influential hypotheses that predict convergence or divergence in individual differences over timescales ranging from minutes to years, and that suggest how and why such patterns are likely to change over time (e.g., divergence followed by maintenance). Then, we describe experimental designs and statistical methods that can be used to determine if (and when) individual differences converged, diverged, or were maintained at the same level at specific periods during a longitudinal study. Finally, we describe why the concepts described herein help explain the discrepancy between what theoreticians and empiricists mean when they describe the "emergence" of individual differences or personality, how they might be used to study situations in which convergence and divergence patterns alternate over time, and how they might be used to study time-specific changes in other attributes of behavior, including individual differences in intraindividual variability (predictability), or genotypic differences in behavior.
Collapse
Affiliation(s)
- Judy A. Stamps
- Department of Evolution and EcologyUniversity of California, DavisDavisCaliforniaUSA
| | - Peter A. Biro
- School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| |
Collapse
|
8
|
Araya-Ajoy YG, Dingemanse NJ, Westneat DF, Wright J. The evolutionary ecology of variation in labile traits: selection on its among- and within-individual components. Evolution 2023; 77:2246-2256. [PMID: 37490354 DOI: 10.1093/evolut/qpad136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 07/03/2023] [Accepted: 07/21/2023] [Indexed: 07/27/2023]
Abstract
Closer integration between behavioral ecology and quantitative genetics has resulted in a recent increase in studies partitioning sources of variation in labile traits. Repeatable between-individual differences are commonly documented, and their existence is generally explained using adaptive arguments, implying that selection has shaped variation at the among- and within-individual level. However, predicting the expected pattern of non-adaptive phenotypic variation around an optimal phenotypic value is difficult, hampering our ability to provide quantitative assessments of the adaptive nature of observed patterns of phenotypic variation within a population. We argue that estimating the strength of selection on trait variation among and within individuals provides a way to test adaptive theory concerned with phenotypic variation. To achieve this aim, we describe a nonlinear selection analysis that enables the study of the selective pressures on trait means and their among- and within-individual variation. By describing an integrative approach for studying the strength of selection on phenotypic variation at different levels, we hope to stimulate empirical studies investigating the ecological factors that can shape the repeatability, heritability, and coefficients of variation of labile and other repeatedly expressed traits.
Collapse
Affiliation(s)
- Yimen G Araya-Ajoy
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Niels J Dingemanse
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich, Planegg-Martinsried, Germany
| | - David F Westneat
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Jonathan Wright
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
9
|
Winter G, Wirsching L, Schielzeth H. Condition dependence of (un)predictability in escape behavior of a grasshopper species. Behav Ecol 2023; 34:741-750. [PMID: 37744172 PMCID: PMC10516674 DOI: 10.1093/beheco/arad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/03/2023] [Accepted: 05/23/2023] [Indexed: 09/26/2023] Open
Abstract
(Un)predictability has only recently been recognized as an important dimension of animal behavior. Currently, we neither know if (un)predictability encompasses one or multiple traits nor how (un)predictability is dependent on individual conditions. Knowledge about condition dependence, in particular, could inform us about whether predictability or unpredictability is costly in a specific context. Here, we study the condition dependence of (un)predictability in the escape behavior of the steppe grasshopper Chorthippus dorsatus. Predator-prey interactions represent a behavioral context in which we expect unpredictability to be particularly beneficial. By exposing grasshoppers to an immune challenge, we explore if individuals in poor condition become more or less predictable. We quantified three aspects of escape behavior (flight initiation distance, jump distance, and jump angle) in a standardized setup and analyzed the data using a multivariate double-hierarchical generalized linear model. The immune challenge did not affect (un)predictability in flight initiation distance and jump angle, but decreased unpredictability in jump distances, suggesting that unpredictability can be costly. Variance decomposition shows that 3-7% of the total phenotypic variance was explained by individual differences in (un)predictability. Covariation between traits was found both among averages and among unpredictabilities for one of the three trait pairs. The latter might suggest an (un)predictability syndrome, but the lack of (un)predictability correlation in the third trait suggests modularity. Our results indicated condition dependence of (un)predictability in grasshopper escape behavior in one of the traits, and illustrate the value of mean and residual variance decomposition for analyzing animal behavior.
Collapse
Affiliation(s)
- Gabe Winter
- Population Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
| | - Luis Wirsching
- Population Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
| | - Holger Schielzeth
- Population Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
| |
Collapse
|
10
|
Horváth G, Garamszegi LZ, Herczeg G. Phylogenetic meta-analysis reveals system-specific behavioural type-behavioural predictability correlations. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230303. [PMID: 37680498 PMCID: PMC10480700 DOI: 10.1098/rsos.230303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/24/2023] [Indexed: 09/09/2023]
Abstract
The biological significance of behavioural predictability (environment-independent within-individual behavioural variation) became accepted recently as an important part of an individual's behavioural strategy besides behavioural type (individual mean behaviour). However, we do not know how behavioural type and predictability evolve. Here, we tested different evolutionary scenarios: (i) the two traits evolve independently (lack of correlations) and (ii) the two traits' evolution is constrained (abundant correlations) due to either (ii/a) proximate constraints (direction of correlations is similar) or (ii/b) local adaptations (direction of correlations is variable). We applied a set of phylogenetic meta-analyses based on 93 effect sizes across 44 vertebrate and invertebrate species, focusing on activity and risk-taking. The general correlation between behavioural type and predictability did not differ from zero. Effect sizes for correlations showed considerable heterogeneity, with both negative and positive correlations occurring. The overall absolute (unsigned) effect size was high (Zr = 0.58), and significantly exceeded the null expectation based on randomized data. Our results support the adaptive scenario: correlations between behavioural type and predictability are abundant in nature, but their direction is variable. We suggest that the evolution of these behavioural components might be constrained in a system-specific way.
Collapse
Affiliation(s)
- Gergely Horváth
- Department of Systematic Zoology and Ecology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
- ELKH-ELTE-MTM Integrative Ecology Research Group, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - László Zsolt Garamszegi
- Centre for Ecological Research, Institute of Ecology and Botany, Alkotmány u. 2-4, 2163 Vácrátót, Hungary
- National Laboratory for Health Security, Centre for Ecological Research, Budapest, Hungary
| | - Gábor Herczeg
- Department of Systematic Zoology and Ecology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
- ELKH-ELTE-MTM Integrative Ecology Research Group, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| |
Collapse
|
11
|
Cornwell T, Mitchell D, Beckmann C, Joynson A, Biro P. Multilevel repeatability shows selection may act on both personality and predictability, but neither is state dependent. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Brand JA, Henry J, Melo GC, Wlodkowic D, Wong BBM, Martin JM. Sex differences in the predictability of risk-taking behavior. Behav Ecol 2023; 34:108-116. [PMID: 36789395 PMCID: PMC9918862 DOI: 10.1093/beheco/arac105] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/05/2022] [Accepted: 10/18/2022] [Indexed: 12/15/2022] Open
Abstract
Recent research has found that individuals often vary in how consistently they express their behavior over time (i.e., behavioral predictability) and suggested that these individual differences may be heritable. However, little is known about the intrinsic factors that drive variation in the predictability of behavior. Indeed, whether variation in behavioral predictability is sex-specific is not clear. This is important, as behavioral predictability has been associated with vulnerability to predation, suggesting that the predictability of behavioral traits may have key fitness implications. We investigated whether male and female eastern mosquitofish (Gambusia holbrooki) differed in the predictability of their risk-taking behavior. Specifically, over a total of 954 behavioral trials, we repeatedly measured risk-taking behavior with three commonly used assays-refuge-use, thigmotaxis, and foraging latency. We predicted that there would be consistent sex differences in both mean-level risk-taking behavior and behavioral predictability across the assays. We found that risk-taking behavior was repeatable within each assay, and that some individuals were consistently bolder than others across all three assays. There were also consistent sex differences in mean-level risk-taking behavior, with males being bolder across all three assays compared to females. In contrast, both the magnitude and direction of sex differences in behavioral predictability were assay-specific. Taken together, these results highlight that behavioral predictability may be independent from underlying mean-level behavioral traits and suggest that males and females may differentially adjust the consistency of their risk-taking behavior in response to subtle changes in environmental conditions.
Collapse
Affiliation(s)
- Jack A Brand
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Jason Henry
- School of Science, RMIT University, Melbourne, Victoria 3083, Australia
| | - Gabriela C Melo
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Donald Wlodkowic
- School of Science, RMIT University, Melbourne, Victoria 3083, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Jake M Martin
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå SE-901 83, Sweden
| |
Collapse
|
13
|
Lerma M, Dehnhard N, Castillo-Guerrero JA, Fernández G. Nutritional state variations in a tropical seabird throughout its breeding season. J Comp Physiol B 2022; 192:775-787. [PMID: 36100755 PMCID: PMC9550769 DOI: 10.1007/s00360-022-01456-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/15/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022]
Abstract
Individual body condition is frequently used to explain differences in foraging and breeding ecology in seabirds. However, little is known about the covariations of body mass with the nutritional state of animals as measured through plasma metabolites and how these different measures vary between and within individuals during breeding. Here, we assessed intra-individual variations of plasma metabolites (triglycerides, cholesterol, protein, and ß-hydroxybutyrate concentrations) and in body mass of Blue-footed boobies (Sula nebouxii) throughout their breeding season 2011-2012 in Isla El Rancho, Mexico. We found breeding-stage and sex-specific variations in individuals' plasma metabolite concentrations, but these did not mirror variations in body mass. Before egg-laying, females had higher triglycerides, cholesterol, and protein concentrations than males. In contrast, males used their nutritional reserves (higher ß-hydroxybutyrate concentrations) more than females during the breeding season (except for early chick-rearing). At the individual level, males gained weight during the breeding season, whereas females lost weight. We also found that between-individual differences in plasma metabolite concentrations and changes in body mass were not consistent throughout the breeding season, while individual body mass was significantly repeatable. This study contributes to a better understanding of seabird breeding ecology and physiology by showing that sex-specific breeding roles might highly influence the nutritional state. Similar patterns might occur in other seabird species, helping to explain why we can find stage- and sex-specific foraging behaviors even in monomorphic species.
Collapse
Affiliation(s)
- Miriam Lerma
- Posgrado de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Ciudad de Mexico, México. .,Research and Technology Center (FTZ), University of Kiel, Hafentörn 1, 25761, Büsum, Germany.
| | - Nina Dehnhard
- Norwegian Institute for Nature Research (NINA), Høgskoleringen 9, NO-7034, Trondheim, Norway
| | - José Alfredo Castillo-Guerrero
- Departamento de Estudios para el Desarrollo Sustentable de la Zona Costera, Centro Universitario de la Costa Sur, Universidad de Guadalajara, San Patricio-Melaque, Municipio de Cihuatlán, Jalisco, 48980, México
| | - Guillermo Fernández
- Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mazatlán, Sinaloa, 82040, México
| |
Collapse
|
14
|
Hutfluss A, Bermúdez-Cuamatzin E, Mouchet A, Briffa M, Slabbekoorn H, Dingemanse NJ. Male song stability shows cross-year repeatability but does not affect reproductive success in a wild passerine bird. J Anim Ecol 2022; 91:1507-1520. [PMID: 35509187 DOI: 10.1111/1365-2656.13736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/18/2022] [Indexed: 12/01/2022]
Abstract
Predictable behaviour (or "behavioural stability") might be favoured in certain ecological contexts, e.g. when representing a quality signal. Costs associated with producing stable phenotypes imply selection should favour plasticity in stability when beneficial. Repeatable among-individual differences in degree of stability are simultaneously expected if individuals differ in ability to pay these costs, or in how they resolve cost-benefit trade-offs. Bird song represents a prime example, where stability may be costly yet beneficial when stable singing is a quality signal favoured by sexual selection. Assuming energetic costs, ecological variation (e.g. in food availability) should result in both within- and among-individual variation in stability. If song stability represents a quality signal, we expect directional selection favouring stable singers. For a three-year period, we monitored 12 nest box plots of great tits Parus major during breeding. We recorded male songs during simulated territory intrusions, twice during their mate's laying stage, and twice during incubation. Each preceding winter, we manipulated food availability. Assuming that stability is costly, we expected food-supplemented males to sing more stable songs. We also expected males to sing more stable songs early in the breeding season (when paternity is not decided), and stable singers to have increased reproductive success. We found strong support for plasticity in stability for two key song characteristics: minimum frequency and phrase length. Males were plastic because they became more stable over the season, contrary to expectations. Food-supplementation did not affect body condition but increased stability in minimum frequency. This treatment effect occurred only in one year, implying that food supplementation affected stability only in interaction with (unknown) year-specific ecological factors. We found no support for directional, correlational, or fluctuating selection on the stability in minimum frequency (i.e., the song trait whose stability exhibited cross-year repeatability): stable singers did not have higher reproductive success. Our findings imply that stability in minimum frequency is not a fitness quality indicator unless males enjoy fitness benefits via pathways not studied here. Future studies should thus address the mechanisms shaping and maintaining individual repeatability of song stability in the wild.
Collapse
Affiliation(s)
- Alexander Hutfluss
- Behavioural Ecology, Department of Biology, Ludwig Maximilian University of Munich (LMU), Martinsried, Germany
| | | | - Alexia Mouchet
- Behavioural Ecology, Department of Biology, Ludwig Maximilian University of Munich (LMU), Martinsried, Germany.,Laboratoire Evolution Génomes Comportement et Ecologie (EGCE), UMR Université Paris-Saclay-CNRS-IRD, Gif-sur-Yvette, France
| | - Mark Briffa
- School of Biological and Marine Sciences, Animal Behaviour Research Group, University of Plymouth, Plymouth, Devon, UK
| | - Hans Slabbekoorn
- Behavioural Biology, Institute of Biology, BE, Leiden, The Netherlands
| | - Niels J Dingemanse
- Behavioural Ecology, Department of Biology, Ludwig Maximilian University of Munich (LMU), Martinsried, Germany
| |
Collapse
|
15
|
Carslake C, Occhiuto F, Vázquez-Diosdado JA, Kaler J. Repeatability and Predictability of Calf Feeding Behaviors-Quantifying Between- and Within-Individual Variation for Precision Livestock Farming. Front Vet Sci 2022; 9:827124. [PMID: 35433916 PMCID: PMC9009244 DOI: 10.3389/fvets.2022.827124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/16/2022] [Indexed: 11/28/2022] Open
Abstract
Individual calves show substantial between- and within-individual variation in their feeding behavior, the existence and extent of which are not fully researched. In this study, 57,196 feeding records, collected by a computerized milk feeder from 48 pre-weaned calves over 5 weeks, were collated and analyzed for individual differences in three different feeding behaviors using a multi-level modeling approach. For each feeding behavior, we quantified behavioral variation by calculating repeatability and the coefficient of variation in predictability. Our results indicate that calves differed from each other in their average behavioral expression (behavioral type) and in their residual, within individual variation around their behavioral type (predictability). Feeding rate and total meals had the highest repeatability (>0.4) indicating that substantial, temporally stable between-individual differences exist for these behaviors. Additionally, for some behaviors (e.g., feeding rate) calves varied from more to less predictable whereas for other behaviors (e.g., meal size) calves were more homogenous in their within-individual variation around their behavioral type. Finally, we show that for individual calves, behavioral types for feeding rate and total meals were positively correlated which may suggest the existence of an underlying factor responsible for driving the (co)expression of these two behaviors. Our results highlight how the application of methods from the behavioral ecology literature can assist in improving our understanding of individual differences in calf feeding behavior. Furthermore, by uncovering consistencies between individual behavioral differences in calves, our results indicate that animal personality may play a role in driving variability in calf feeding behavior.
Collapse
Affiliation(s)
- Charles Carslake
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, United Kingdom
| | | | | | | |
Collapse
|
16
|
O'Dea RE, Noble DWA, Nakagawa S. Unifying individual differences in personality, predictability and plasticity: A practical guide. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Rose E. O'Dea
- Evolution & Ecology Research Centre School of Biological and Environmental Sciences University of New South Wales Sydney NSW Australia
- Diabetes and Metabolism Division Garvan Institute of Medical Research Sydney NSW Australia
| | - Daniel W. A. Noble
- Division of Ecology and Evolution Research School of Biology The Australian National University Canberra ACT Australia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre School of Biological and Environmental Sciences University of New South Wales Sydney NSW Australia
- Diabetes and Metabolism Division Garvan Institute of Medical Research Sydney NSW Australia
| |
Collapse
|
17
|
Patrick SC, Martin JGA, Ummenhofer CC, Corbeau A, Weimerskirch H. Albatrosses respond adaptively to climate variability by changing variance in a foraging trait. GLOBAL CHANGE BIOLOGY 2021; 27:4564-4574. [PMID: 34089551 DOI: 10.1111/gcb.15735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
The ability of individuals and populations to adapt to a changing climate is a key determinant of population dynamics. While changes in mean behaviour are well studied, changes in trait variance have been largely ignored, despite being assumed to be crucial for adapting to a changing environment. As the ability to acquire resources is essential to both reproduction and survival, changes in behaviours that maximize resource acquisition should be under selection. Here, using foraging trip duration data collected over 7 years on black-browed albatrosses (Thalassarche melanophris) on the Kerguelen Islands in the southern Indian Ocean, we examined the importance of changes in the mean and variance in foraging behaviour, and the associated effects on fitness, in response to the El Niño Southern Oscillation (ENSO). Using double hierarchical models, we found no evidence that individuals change their mean foraging trip duration in response to a changing environment, but found strong evidence of changes in variance. Younger birds showed greater variability in foraging trip duration in poor conditions as did birds with higher fitness. However, during brooding, birds showed greater variability in foraging behaviour under good conditions, suggesting that optimal conditions allow the alteration between chick provisioning and self-maintenance trips. We found weak correlations between sea surface temperature and the ENSO, but stronger links with sea-level pressure. We suggest that variability in behavioural traits affecting resource acquisition is under selection and offers a mechanism by which individuals can adapt to a changing climate. Studies which look only at effects on mean behaviour may underestimate the effects of climate change and fail to consider variance in traits as a key evolutionary force.
Collapse
Affiliation(s)
- Samantha C Patrick
- School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | | | - Caroline C Ummenhofer
- Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Alexandre Corbeau
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS - La Rochelle Université, Villiers-en-Bois, France
| | - Henri Weimerskirch
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS - La Rochelle Université, Villiers-en-Bois, France
| |
Collapse
|
18
|
Sanmartín-Villar I, Jeanson R. Early social context does not influence behavioral variation at adulthood in ants. Curr Zool 2021; 68:335-344. [PMID: 35592349 PMCID: PMC9113369 DOI: 10.1093/cz/zoab063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/27/2021] [Indexed: 01/15/2023] Open
Abstract
Early experience can prepare offspring to adapt their behaviors to the environment they are likely to encounter later in life. In several species of ants, colonies show ontogenic changes in the brood-to-worker ratio that are known to have an impact on worker morphology. However, little information is available on the influence of fluctuations in the early social context on the expression of behavior in adulthood. Using the ant Lasius niger, we tested whether the brood-to-worker ratio during larval stages influenced the level of behavioral variability at adult stages. We raised batches of 20 or 180 larvae in the presence of 60 workers until adulthood. We then quantified the activity level and wall-following tendency of callow workers on 10 successive trials to test the prediction that larvae reared under a high brood-to-worker ratio should show greater behavioral variations. We found that manipulation of the brood-to-worker ratio influenced the duration of development and the size of individuals at emergence. We detected no influence of early social context on the level of between- or within-individual variation measured for individual activity level or on wall-following behavior. Our study suggests that behavioral traits may be more canalized than morphological traits.
Collapse
Affiliation(s)
- Iago Sanmartín-Villar
- Centre de Recherches Sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
- Universidade de Vigo, ECOEVO Lab, Escola de Enxeñaría Forestal, Campus A Xunqueira, Pontevedra, Spain
| | - Raphaël Jeanson
- Centre de Recherches Sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|