1
|
Zhao Y, Su C, He B, Nie R, Wang Y, Ma J, Song J, Yang Q, Hao J. Dispersal from the Qinghai-Tibet plateau by a high-altitude butterfly is associated with rapid expansion and reorganization of its genome. Nat Commun 2023; 14:8190. [PMID: 38081828 PMCID: PMC10713551 DOI: 10.1038/s41467-023-44023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Parnassius glacialis is a typical "Out of the QTP" alpine butterfly that originated on the Qinghai-Tibet Plateau (QTP) and dispersed into relatively low-altitude mountainous. Here we assemble a chromosome-level genome of P. glacialis and resequence 9 populations in order to explore the genome evolution and local adaptation of this species. These results indicated that the rapid accumulation and slow unequal recombination of transposable elements (TEs) contributed to the formation of its large genome. Several ribosomal gene families showed extensive expansion and selective evolution through transposon-mediated processed pseudogenes. Additionally, massive structural variations (SVs) of TEs affected the genetic differentiation of low-altitude populations. These low-altitude populations might have experienced a genetic bottleneck in the past and harbor genes with selective signatures which may be responsible for the potential adaptation to low-altitude environments. These results provide a foundation for understanding genome evolution and local adaptation for "Out of the QTP" of P. glacialis.
Collapse
Affiliation(s)
- Youjie Zhao
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
- College of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming, 650224, Yunnan, China
| | - Chengyong Su
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Bo He
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Ruie Nie
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Yunliang Wang
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Junye Ma
- State Key Laboratory of Palaeobiology and Stratigraphy, Center for Excellence in Life and Palaeoenvironment, Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jingyu Song
- College of Animal Science, Shandong Agricultural University, Taian, 271000, China
| | - Qun Yang
- State Key Laboratory of Palaeobiology and Stratigraphy, Center for Excellence in Life and Palaeoenvironment, Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing, 210008, China.
- Nanjing College, University of Chinese Academy of Sciences, Nanjing, 211135, China.
| | - Jiasheng Hao
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
| |
Collapse
|
2
|
Pepi A, Grof-Tisza P, Holyoak M, Karban R. Hilltopping influences spatial dynamics in a patchy population of tiger moths. Proc Biol Sci 2022; 289:20220505. [PMID: 35673863 PMCID: PMC9174710 DOI: 10.1098/rspb.2022.0505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Dispersal is a key driver of spatial population dynamics. Dispersal behaviour may be shaped by many factors, such as mate-finding, the spatial distribution of resources, or wind and currents, yet most models of spatial dynamics assume random dispersal. We examined the spatial dynamics of a day-flying moth species (Arctia virginalis) that forms mating aggregations on hilltops (hilltopping) based on long-term adult and larval population censuses. Using time-series models, we compared spatial population dynamics resulting from empirically founded hilltop-based connectivity indices and modelled the interactive effects of temperature, precipitation and density dependence. Model comparisons supported hilltop-based connectivity metrics including hilltop elevation over random connectivity, suggesting an effect of hilltopping behaviour on dynamics. We also found strong interactive effects of temperature and precipitation on dynamics. Simulations based on fitted time-series models showed lower patch occupancy and regional synchrony, and higher colonization and extinction rates when hilltopping was included, with potential implications for the probability of persistence of the patch network. Overall, our results show the potential for dispersal behaviour to have important effects on spatial population dynamics and persistence, and we advocate the inclusion of such non-random dispersal in metapopulation models.
Collapse
Affiliation(s)
- Adam Pepi
- Department of Entomology and Nematology, University of California Davis, CA, USA,Department of Biology, Tufts University, MA, USA
| | | | - Marcel Holyoak
- Department of Environmental Science and Policy, University of California Davis, CA, USA
| | - Richard Karban
- Department of Entomology and Nematology, University of California Davis, CA, USA
| |
Collapse
|