1
|
Bartáková V, Bryjová A, Polačik M, Alila DO, Nagy B, Watters B, Bellstedt D, Blažek R, Žák J, Reichard M. Phylogenomics and population genomics of Nothobranchius in lowland Tanzania: species delimitation and comparative genetic structure. Mol Phylogenet Evol 2025; 208:108357. [PMID: 40254113 DOI: 10.1016/j.ympev.2025.108357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/11/2025] [Accepted: 04/13/2025] [Indexed: 04/22/2025]
Abstract
Annual killifishes of the genus Nothobranchius are widespread across East Africa, with a particularly high biodiversity in lowland Tanzania. While they are typically found in ephemeral pools, the pools vary greatly in size, connectivity and inundation patterns. It was previously suggested that main river channels formed significant barriers to Nothobranchius dispersal. Here, we study the distribution of genetic lineages in an equatorial part of their range where main river channels that may act as barriers occur and closely related lineages frequently coexist in secondary contact zones. We used single-nucleotide polymorphism (SNP) dataset from double-digest restriction site-associated DNA (ddRAD) sequencing to investigate how genetic diversity is structured in Nothobranchius species from the coastal lowlands of Tanzania. Our analyses resolved some uncertain phylogenetic relationships within the N. melanospilus and N. guentheri species groups and placed N. flammicomantis outside the Coastal clade. Rather than a shared intraspecific genetic diversity pattern across four coexisting and widely distributed species, we found highly diverse patterns of intra-specific genetic structure among N. eggersi, N. janpapi, N. melanospilus and N. ocellatus. Populations of Nothobranchius species from the humid coastal lowlands of Tanzania are therefore structured, but not constrained by barriers formed by river channels or by basins - in contrast to Nothobranchius species from the dry part of their distribution. Some of the genetic relationships determined call for a re-evaluation of taxonomic delimitations.
Collapse
Affiliation(s)
- Veronika Bartáková
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic.
| | - Anna Bryjová
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - Matej Polačik
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - David O Alila
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution, and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79 CH-6047 Kastanienbaum, Switzerland; Division of Aquatic Ecology and Evolution, Institute of Ecology & Evolution, University of Bern 3012 Bern, Switzerland; Department of Biological Sciences, Mkwawa University College of Education, University of Dar es salaam, P.O Box 2513 Iringa, Tanzania
| | - Béla Nagy
- 30, rue du Mont Ussy 77300 Fontainebleau, France
| | - Brian Watters
- 6141 Parkwood Drive, Nanaimo, British Columbia V9T6A2, Canada
| | - Dirk Bellstedt
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Radim Blažek
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jakub Žák
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martin Reichard
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic; University of Lodz, Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, Lodz, Poland
| |
Collapse
|
2
|
Lukšíková K, Pavlica T, Altmanová M, Štundlová J, Pelikánová Š, Simanovsky SA, Krysanov EY, Jankásek M, Hiřman M, Reichard M, Ráb P, Sember A. Conserved satellite DNA motif and lack of interstitial telomeric sites in highly rearranged African Nothobranchius killifish karyotypes. JOURNAL OF FISH BIOLOGY 2023; 103:1501-1514. [PMID: 37661806 DOI: 10.1111/jfb.15550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Using African annual killifishes of the genus Nothobranchius from temporary savannah pools with rapid karyotype and sex chromosome evolution, we analysed the chromosomal distribution of telomeric (TTAGGG)n repeat and Nfu-SatC satellite DNA (satDNA; isolated from Nothobranchius furzeri) in 15 species across the Nothobranchius killifish phylogeny, and with Fundulosoma thierryi as an out-group. Our fluorescence in situ hybridization experiments revealed that all analysed taxa share the presence of Nfu-SatC repeat but with diverse organization and distribution on chromosomes. Nfu-SatC landscape was similar in conspecific populations of Nothobranchius guentheri and Nothobranchius melanospilus but slightly-to-moderately differed between populations of Nothobranchius pienaari, and between closely related Nothobranchius kuhntae and Nothobranchius orthonotus. Inter-individual variability in Nfu-SatC patterns was found in N. orthonotus and Nothobranchius krysanovi. We revealed mostly no sex-linked patterns of studied repetitive DNA distribution. Only in Nothobranchius brieni, possessing multiple sex chromosomes, Nfu-SatC repeat occupied a substantial portion of the neo-Y chromosome, similarly as formerly found in the XY sex chromosome system of turquoise killifish N. furzeri and its sister species Nothobranchius kadleci-representatives not closely related to N. brieni. All studied species further shared patterns of expected telomeric repeats at the ends of all chromosomes and no additional interstitial telomeric sites. In summary, we revealed (i) the presence of conserved satDNA class in Nothobranchius clades (a rare pattern among ray-finned fishes); (ii) independent trajectories of Nothobranchius sex chromosome differentiation, with recurrent and convergent accumulation of Nfu-SatC on the Y chromosome in some species; and (iii) genus-wide shared tendency to loss of telomeric repeats during interchromosomal rearrangements. Collectively, our findings advance our understanding of genome structure, mechanisms of karyotype reshuffling, and sex chromosome differentiation in Nothobranchius killifishes from the genus-wide perspective.
Collapse
Affiliation(s)
- Karolína Lukšíková
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomáš Pavlica
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Marie Altmanová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jana Štundlová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
| | - Šárka Pelikánová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Sergey A Simanovsky
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Eugene Yu Krysanov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Marek Jankásek
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Matyáš Hiřman
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Reichard
- Institute of Vertebrate Biology, Czech Academy of Sciences, Czech Republic
- Department of Ecology and Vertebrate Zoology, University of Łódź, Łódź, Poland
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Ráb
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Alexandr Sember
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| |
Collapse
|