1
|
Holt JD, Schultz D, Nadell CD. Dispersal of a dominant competitor can drive multispecies coexistence in biofilms. Curr Biol 2024; 34:4129-4142.e4. [PMID: 39163856 DOI: 10.1016/j.cub.2024.07.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/25/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024]
Abstract
Despite competition for both space and nutrients, bacterial species often coexist within structured, surface-attached communities termed biofilms. While these communities play important, widespread roles in ecosystems and are agents of human infection, understanding how multiple bacterial species assemble to form these communities and what physical processes underpin the composition of multispecies biofilms remains an active area of research. Using a model three-species community composed of Pseudomonas aeruginosa, Escherichia coli, and Enterococcus faecalis, we show with cellular-scale resolution that biased dispersal of the dominant community member, P. aeruginosa, prevents competitive exclusion from occurring, leading to the coexistence of the three species. A P. aeruginosa bqsS deletion mutant no longer undergoes periodic mass dispersal, leading to the local competitive exclusion of E. coli. Introducing periodic, asymmetric dispersal behavior into minimal models, parameterized by only maximal growth rate and local density, supports the intuition that biased dispersal of an otherwise dominant competitor can permit coexistence generally. Colonization experiments show that WT P. aeruginosa is superior at colonizing new areas, in comparison to ΔbqsS P. aeruginosa, but at the cost of decreased local competitive ability against E. coli and E. faecalis. Overall, our experiments document how one species' modulation of a competition-dispersal-colonization trade-off can go on to influence the stability of multispecies coexistence in spatially structured ecosystems.
Collapse
Affiliation(s)
- Jacob D Holt
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA; Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Daniel Schultz
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Carey D Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA; Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
2
|
Gómez-Llano M, Boys WA, Ping T, Tye SP, Siepielski AM. Interactions between fitness components across the life cycle constrain competitor coexistence. J Anim Ecol 2023; 92:2297-2308. [PMID: 37087690 DOI: 10.1111/1365-2656.13927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/22/2023] [Indexed: 04/24/2023]
Abstract
Numerous mechanisms can promote competitor coexistence. Yet, these mechanisms are often considered in isolation from one another. Consequently, whether multiple mechanisms shaping coexistence combine to promote or constrain species coexistence remains an open question. Here, we aim to understand how multiple mechanisms interact within and between life stages to determine frequency-dependent population growth, which has a key role stabilizing local competitor coexistence. We conducted field experiments in three lakes manipulating relative frequencies of two Enallagma damselfly species to evaluate demographic contributions of three mechanisms affecting different fitness components across the life cycle: the effect of resource competition on individual growth rate, predation shaping mortality rates, and mating harassment determining fecundity. We then used a demographic model that incorporates carry-over effects between life stages to decompose the relative effect of each fitness component generating frequency-dependent population growth. This decomposition showed that fitness components combined to increase population growth rates for one species when rare, but they combined to decrease population growth rates for the other species when rare, leading to predicted exclusion in most lakes. Because interactions between fitness components within and between life stages vary among populations, these results show that local coexistence is population specific. Moreover, we show that multiple mechanisms do not necessarily increase competitor coexistence, as they can also combine to yield exclusion. Identifying coexistence mechanisms in other systems will require greater focus on determining contributions of different fitness components across the life cycle shaping competitor coexistence in a way that captures the potential for population-level variation.
Collapse
Affiliation(s)
- Miguel Gómez-Llano
- Department of Environmental and Life Sciences, Karlstad University, Karlstad, 65188, Sweden
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, 72701, USA
| | - Wade A Boys
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, 72701, USA
| | - Taylor Ping
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, 72701, USA
| | - Simon P Tye
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, 72701, USA
| | - Adam M Siepielski
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, 72701, USA
| |
Collapse
|
3
|
Zuliani M, Ghazian N, Lortie CJ. A meta‐analysis of shrub density as a predictor of animal abundance. WILDLIFE BIOLOGY 2023. [DOI: 10.1002/wlb3.01042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Mario Zuliani
- Dept of Biological Science, York Univ. Toronto ON Canada
| | - Nargol Ghazian
- Dept of Biological Science, York Univ. Toronto ON Canada
| | | |
Collapse
|
4
|
Thierry M, Pardikes NA, Ximénez-Embún MG, Proudhom G, Hrček J. Multiple parasitoid species enhance top-down control, but parasitoid performance is context-dependent. J Anim Ecol 2022; 91:1929-1939. [PMID: 35861633 DOI: 10.1111/1365-2656.13782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022]
Abstract
Ecological communities are composed of many species, forming complex networks of interactions. Current environmental changes are altering the structure and species composition of ecological networks, which could modify interactions, either directly or indirectly. To predict changes in the functioning of communities, we need to understand whether species interactions are primarily driven by network structure (i.e., topology) or the specific identities of species (i.e., nodes). Yet, this partitioning of effects is challenging and thus rarely explored. Here we disentangled the influence of network structure and the identities of species on the outcome of consumer-resource interactions using a host-parasitoid system. We used four common community modules in host-parasitoid communities to represent network structure (i.e., host-parasitoid, exploitative competition, alternative host, and a combination of exploitative competition and alternative host). We assembled nine different species combinations per community module in a laboratory experiment using a pool of three Drosophila hosts and three larval parasitoid species (Leptopilina sp., Ganaspis sp., and Asobara sp.). We compared host suppression and parasitoid performance across community modules and species assemblages to identify general effects linked to network structure and specific effects due to species community composition. We found that multiple parasitoid species enhanced host suppression due to sampling effect, weaker interspecific than intraspecific competition between parasitoids, and synergism. However, the effects of network structure on parasitoid performance were species-specific and dependent on the identity of co-occurring species. Consequently, multiple parasitoid species generally strengthen top down-control, but the performance of the parasitoids depends on the identity of either the co-occurring parasitoid species, the alternative host species, or both. Our results highlight the importance of preserving parasitoid diversity for ecosystem functioning and show that other effects depend on species community composition, and may therefore be altered by ongoing environmental changes.
Collapse
Affiliation(s)
- Mélanie Thierry
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic.,Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Nicholas A Pardikes
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.,Georgia State University-Perimeter College, Department of Life and Earth Sciences, 55 North Indian Creek Drive, Clarkston, Georgia
| | - Miguel G Ximénez-Embún
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Grégoire Proudhom
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic.,Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jan Hrček
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic.,Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
5
|
Lorusso NS, Faillace CA. Indirect facilitation between prey promotes asymmetric apparent competition. J Anim Ecol 2022; 91:1869-1879. [PMID: 35765925 PMCID: PMC9544837 DOI: 10.1111/1365-2656.13768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 06/17/2022] [Indexed: 11/30/2022]
Abstract
Apparent competition is one mechanism that can contribute to the complex dynamics observed in natural systems, yet it remains understudied in empirical systems. Understanding the dynamics that shape the outcome of processes like apparent competition is vital for appreciating how they influence natural systems. We empirically evaluated the role of indirect trophic interactions in driving apparent competition in a model laboratory system. Our experimental system was designed to let us evaluate combined direct and indirect interactions among species. Here we describe the results of a factorial experiment using two noncompeting prey (Colpidium kleini, a heterotroph, and Chlamydomonas reinhardtii, an autotroph) consumed by a generalist predator Euplotes eurystomus to explore the dynamics of apparent competition. To gain intuition into the potential mechanism driving the asymmetry in the observed results, we further explored the system using structural equation modelling. Our results show an important role of positive interactions and indirect effects contributing to apparent competition in this system with a marked asymmetrical outcome favouring one prey, Chlamydomonas. The selected structural equation supports a role of indirect facilitation; although Chlamydomonas (a photoautotroph) and Colpidium (a bacterivore) use different resources and therefor do not directly compete, Colpidium reduces bacteria that may compete with Chlamydomonas. In addition, formation of colonies by Chlamydomonas in response to predation by Euplotes provides an antipredator defence not available to Colpidium. Asymmetric apparent competition may be more common in natural systems than the symmetric interaction originally proposed in classic theory, suggesting that exploration of the mechanisms driving the asymmetry of the interaction can be a fruitful area of further research to better our understanding of interspecific interactions and community dynamics.
Collapse
Affiliation(s)
- Nicholas S Lorusso
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, Jersey.,Current Institution: Department of Life Sciences, University of North Texas at Dallas, 7500 University Hills Blvd, Dallas, Texas, USA
| | - Cara A Faillace
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, Jersey.,Current Institution: University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Kikuchi DW, Barfield M, Herberstein ME, Mappes J, Holt RD. The Effect of Predator Population Dynamics on Batesian Mimicry Complexes. Am Nat 2022; 199:406-419. [DOI: 10.1086/718162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- David W. Kikuchi
- Wissenschaftskolleg zu Berlin, Wallotstraße 19, Berlin, Germany
- Evolutionary Biology, Universität Bielefeld, Konsequez 45, 33615 Bielefeld, Germany
| | - Michael Barfield
- Department of Biology, University of Florida, Gainesville, Florida 32611
| | - Marie E. Herberstein
- Wissenschaftskolleg zu Berlin, Wallotstraße 19, Berlin, Germany
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Johanna Mappes
- Wissenschaftskolleg zu Berlin, Wallotstraße 19, Berlin, Germany
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Helsinki University, Helsinki, Finland; and Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - Robert D. Holt
- Wissenschaftskolleg zu Berlin, Wallotstraße 19, Berlin, Germany
- Department of Biology, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
7
|
Singh A. Attack by a common parasitoid stabilizes population dynamics of multi-host communities. J Theor Biol 2021; 531:110897. [PMID: 34506808 DOI: 10.1016/j.jtbi.2021.110897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/05/2021] [Accepted: 09/02/2021] [Indexed: 11/27/2022]
Abstract
We model the population dynamics of two host species attacked by a common parasitoid using a discrete-time formalism that captures their population densities from year to year. It is well known starting from the seminal work of Nicholson and Bailey that a constant parasitoid attack rate leads to an unstable host-parasitoid interaction. However, a Type III functional response, where the parasitoid attack rate accelerates with increasing host density stabilizes the population dynamics. We first consider a scenario where both host species are attacked by a parasitoid with the same Type III functional response. Our results show that sufficient fast acceleration of the parasitoid attack rate stabilizes the population dynamics of all three species. For two symmetric host species, the extent of acceleration needed to stabilize the three-species equilibrium is exactly the same as that needed for a single host-parasitoid interaction. However, asymmetry can lead to scenarios where the removal of a host species from a stable interaction destabilizes the interaction between the remaining host species and the parasitoid. Next, we consider a situation where one of the host species is attacked at a constant rate (i.e., Type I functional response), and the other species is attacked via a Type III functional response. We identify parameter regimes where a Type III functional response to just one of the host species stabilizes the three species interaction. In summary, our results show that a generalist parasitoid with a Type III functional response to one or many host species can play a key role in stabilizing population dynamics of host-parasitoid communities in apparent competition.
Collapse
Affiliation(s)
- Abhyudai Singh
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Department of Mathematical Sciences, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19713, United States.
| |
Collapse
|
8
|
Terry JCD, Chen J, Lewis OT. Natural enemies have inconsistent impacts on the coexistence of competing species. J Anim Ecol 2021; 90:2277-2288. [PMID: 34013519 DOI: 10.1111/1365-2656.13534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/30/2021] [Indexed: 11/27/2022]
Abstract
The role of natural enemies in promoting coexistence of competing species has generated substantial debate. Modern coexistence theory provides a detailed framework to investigate this topic, but there have been remarkably few empirical applications to the impact of natural enemies. We tested experimentally the capacity for a generalist enemy to promote coexistence of competing insect species, and the extent to which any impact can be predicted by trade-offs between reproductive rate and susceptibility to natural enemies. We used experimental mesocosms to conduct a fully factorial pairwise competition experiment for six rainforest Drosophila species, with and without a generalist pupal parasitoid. We then parameterised models of competition and examined the coexistence of each pair of Drosophila species within the framework of modern coexistence theory. We found idiosyncratic impacts of parasitism on pairwise coexistence, mediated through changes in fitness differences, not niche differences. There was no evidence of an overall reproductive rate-susceptibility trade-off. Pairwise reproductive rate-susceptibility relationships were not useful shortcuts for predicting the impact of parasitism on coexistence. Our results exemplify the value of modern coexistence theory in multi-trophic contexts and the importance of contextualising the impact of generalist natural enemies to determine their impact. In the set of species investigated, competition was affected by the higher trophic level, but the overall impact on coexistence cannot be easily predicted just from knowledge of relative susceptibility. Methodologically, our Bayesian approach highlights issues with the separability of model parameters within modern coexistence theory and shows how using the full posterior parameter distribution improves inferences. This method should be widely applicable for understanding species coexistence in a range of systems.
Collapse
Affiliation(s)
- J Christopher D Terry
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Jinlin Chen
- Department of Zoology, University of Oxford, Oxford, UK
| | - Owen T Lewis
- Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Pérez-Hernández J, Gavilán RG. Impacts of Land-Use Changes on Vegetation and Ecosystem Functioning: Old-Field Secondary Succession. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10050990. [PMID: 34065656 PMCID: PMC8156868 DOI: 10.3390/plants10050990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
The study of ecological succession to determine how plant communities re-assemble after a natural or anthropogenic disturbance has always been an important topic in ecology. The understanding of these processes forms part of the new theories of community assembly and species coexistence, and is attracting attention in a context of expanding human impacts. Specifically, new successional studies provide answers to different mechanisms of community assemblage, and aim to define the importance of deterministic or stochastic processes in the succession dynamic. Biotic limits, which depend directly on biodiversity (i.e., species competition), and abiotic filtering, which depends on the environment, become particularly important when they are exceeded, making the succession process more complicated to reach the previous disturbance stage. Plant functional traits (PFTs) are used in secondary succession studies to establish differences between abandonment stages or to compare types of vegetation or flora, and are more closely related to the functioning of plant communities. Dispersal limitation is a PFT considered an important process from a stochastic point of view because it is related to the establishing of plants. Related to it the soil seed bank plays an important role in secondary succession because it is essential for ecosystem functioning. Soil compounds and microbial community are important variables to take into account when studying any succession stage. Chronosequence is the best way to study the whole process at different time scales. Finally, our objective in this review is to show how past studies and new insights are being incorporated into the basis of classic succession. To further explore this subject we have chosen old-field recovery as an example of how a number of different plant communities, including annual and perennial grasslands and shrublands, play an important role in secondary succession.
Collapse
|
10
|
Zuliani M, Ghazian N, Lortie CJ. Shrub density effects on the community structure and composition of a desert animal community. WILDLIFE BIOLOGY 2021. [DOI: 10.2981/wlb.00774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
11
|
Gómez-Llano M, Germain RM, Kyogoku D, McPeek MA, Siepielski AM. When Ecology Fails: How Reproductive Interactions Promote Species Coexistence. Trends Ecol Evol 2021; 36:610-622. [PMID: 33785182 DOI: 10.1016/j.tree.2021.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 11/19/2022]
Abstract
That species must differ ecologically is often viewed as a fundamental condition for their stable coexistence in biological communities. Yet, recent work has shown that ecologically equivalent species can coexist when reproductive interactions and sexual selection regulate population growth. Here, we review theoretical models and highlight empirical studies supporting a role for reproductive interactions in maintaining species diversity. We place reproductive interactions research within a burgeoning conceptual framework of coexistence theory, identify four key mechanisms in intra- and interspecific interactions within and between sexes, speculate on novel mechanisms, and suggest future research. Given the preponderance of sexual reproduction in nature, our review suggests that this is a neglected path towards explaining species diversity when traditional ecological explanations have failed.
Collapse
Affiliation(s)
- Miguel Gómez-Llano
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Rachel M Germain
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Daisuke Kyogoku
- The Museum of Nature and Human Activities, Hyogo 669-1546, Japan
| | - Mark A McPeek
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Adam M Siepielski
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
12
|
Rodriguez Messan M, Damaghi M, Freischel A, Miao Y, Brown J, Gillies R, Wallace D. Predicting the results of competition between two breast cancer lines grown in 3-D spheroid culture. Math Biosci 2021; 336:108575. [PMID: 33757835 DOI: 10.1016/j.mbs.2021.108575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 02/09/2021] [Accepted: 02/21/2021] [Indexed: 11/25/2022]
Abstract
This study develops a novel model of a consumer-resource system with mobility included, in order to explain a novel experiment of competition between two breast cancer cell lines grown in 3D in vitro spheroid culture. The model reproduces observed differences in monoculture, such as overshoot phenomena and final size. It also explains both theoretically and through simulation the inevitable triumph of the same cell line in co-culture, independent of initial conditions. The mobility of one cell line (MDA-MB-231) is required to explain both the success and the rapidity with which that species dominates the population and drives the other species (MCF-7) to extinction. It is shown that mobility directly interferes with the other species and that the cost of that mobility is in resource usage rate.
Collapse
Affiliation(s)
- Marisabel Rodriguez Messan
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, 02912, United States of America.
| | - Mehdi Damaghi
- Moffitt Cancer Research Center, Tampa, FL, 33612, United States of America.
| | - Audrey Freischel
- Department of Mathematics, Dartmouth College, Hanover, NH 03755, United States of America.
| | - Yan Miao
- Department of Mathematics, Dartmouth College, Hanover, NH 03755, United States of America.
| | - Joel Brown
- Moffitt Cancer Research Center, Tampa, FL, 33612, United States of America.
| | - Robert Gillies
- Moffitt Cancer Research Center, Tampa, FL, 33612, United States of America.
| | - Dorothy Wallace
- Department of Mathematics, Dartmouth College, Hanover, NH 03755, United States of America.
| |
Collapse
|
13
|
Johnson WM, Alexander H, Bier RL, Miller DR, Muscarella ME, Pitz KJ, Smith H. Auxotrophic interactions: a stabilizing attribute of aquatic microbial communities? FEMS Microbiol Ecol 2020; 96:fiaa115. [PMID: 32520336 PMCID: PMC7609354 DOI: 10.1093/femsec/fiaa115] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/09/2020] [Indexed: 11/14/2022] Open
Abstract
Auxotrophy, or an organism's requirement for an exogenous source of an organic molecule, is widespread throughout species and ecosystems. Auxotrophy can result in obligate interactions between organisms, influencing ecosystem structure and community composition. We explore how auxotrophy-induced interactions between aquatic microorganisms affect microbial community structure and stability. While some studies have documented auxotrophy in aquatic microorganisms, these studies are not widespread, and we therefore do not know the full extent of auxotrophic interactions in aquatic environments. Current theoretical and experimental work suggests that auxotrophy links microbial community members through a complex web of metabolic dependencies. We discuss the proposed ways in which auxotrophy may enhance or undermine the stability of aquatic microbial communities, highlighting areas where our limited understanding of these interactions prevents us from being able to predict the ecological implications of auxotrophy. Finally, we examine an example of auxotrophy in harmful algal blooms to place this often theoretical discussion in a field context where auxotrophy may have implications for the development and robustness of algal bloom communities. We seek to draw attention to the relationship between auxotrophy and community stability in an effort to encourage further field and theoretical work that explores the underlying principles of microbial interactions.
Collapse
Affiliation(s)
- Winifred M Johnson
- MIT/WHOI Joint Program in Oceanography/Applied Ocean Sciences and Engineering, Department of Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA
| | - Harriet Alexander
- Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA
| | - Raven L Bier
- Stroud Water Research Center, 970 Spencer Rd., Avondale, PA 19311, USA
| | - Dan R Miller
- PureMagic LTD, Rambam 67, Yad Rambam 9979300, Israel
| | - Mario E Muscarella
- Department of Plant Biology, University of Illinois, 505 South Goodwin Avenue, Urbana, IL, 61801, USA
| | - Kathleen J Pitz
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Heidi Smith
- Center for Biofilm Engineering, Department of Microbiology and Immunology, Montana State University, 366 Barnard Hall, Bozeman, MT 59717, USA
| |
Collapse
|
14
|
Mutualistic networks emerging from adaptive niche-based interactions. Nat Commun 2020; 11:5470. [PMID: 33122629 PMCID: PMC7596068 DOI: 10.1038/s41467-020-19154-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 09/25/2020] [Indexed: 11/09/2022] Open
Abstract
Mutualistic networks are vital ecological and social systems shaped by adaptation and evolution. They involve bipartite cooperation via the exchange of goods or services between actors of different types. Empirical observations of mutualistic networks across genres and geographic conditions reveal correlated nested and modular patterns. Yet, the underlying mechanism for the network assembly remains unclear. We propose a niche-based adaptive mechanism where both nestedness and modularity emerge simultaneously as complementary facets of an optimal niche structure. Key dynamical properties are revealed at different timescales. Foremost, mutualism can either enhance or reduce the network stability, depending on competition intensity. Moreover, structural adaptations are asymmetric, exhibiting strong hysteresis in response to environmental change. Finally, at the evolutionary timescale we show that the adaptive mechanism plays a crucial role in preserving the distinctive patterns of mutualism under species invasions and extinctions. Nested and modular patterns are vastly observed in mutualistic networks across genres and geographic conditions. Here, the authors show a unified mechanism that underlies the assembly and evolution of such networks, based on adaptive niche interactions of the participants.
Collapse
|
15
|
Martinez ND. Allometric Trophic Networks From Individuals to Socio-Ecosystems: Consumer–Resource Theory of the Ecological Elephant in the Room. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
16
|
Hale KRS, Valdovinos FS, Martinez ND. Mutualism increases diversity, stability, and function of multiplex networks that integrate pollinators into food webs. Nat Commun 2020; 11:2182. [PMID: 32358490 PMCID: PMC7195475 DOI: 10.1038/s41467-020-15688-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 03/19/2020] [Indexed: 01/10/2023] Open
Abstract
Ecosystems are composed of complex networks of many species interacting in different ways. While ecologists have long studied food webs of feeding interactions, recent studies increasingly focus on mutualistic networks including plants that exchange food for reproductive services provided by animals such as pollinators. Here, we synthesize both types of consumer-resource interactions to better understand the controversial effects of mutualism on ecosystems at the species, guild, and whole-community levels. We find that consumer-resource mechanisms underlying plant-pollinator mutualisms can increase persistence, productivity, abundance, and temporal stability of both mutualists and non-mutualists in food webs. These effects strongly increase with floral reward productivity and are qualitatively robust to variation in the prevalence of mutualism and pollinators feeding upon resources in addition to rewards. This work advances the ability of mechanistic network theory to synthesize different types of interactions and illustrates how mutualism can enhance the diversity, stability, and function of complex ecosystems.
Collapse
Affiliation(s)
- Kayla R S Hale
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Ave, Biological Sciences Building, Ann Arbor, MI, 48109, USA.
| | - Fernanda S Valdovinos
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Ave, Biological Sciences Building, Ann Arbor, MI, 48109, USA
- Center for the Study of Complex Systems, University of Michigan, Weiser Hall Suite 700, 500 Church St, Ann Arbor, MI, 48109, USA
| | - Neo D Martinez
- School of Informatics, Computing, and Engineering, Indiana University, Room 302, 919 E. 10th Street, Bloomington, IN, 47408, USA
- Pacific Ecoinformatics and Computational Ecology Lab, Berkeley, CA, 94703, USA
| |
Collapse
|
17
|
Romanuk TN, Binzer A, Loeuille N, Carscallen WMA, Martinez ND. Simulated evolution assembles more realistic food webs with more functionally similar species than invasion. Sci Rep 2019; 9:18242. [PMID: 31796765 PMCID: PMC6890687 DOI: 10.1038/s41598-019-54443-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/08/2019] [Indexed: 01/13/2023] Open
Abstract
While natural communities are assembled by both ecological and evolutionary processes, ecological assembly processes have been studied much more and are rarely compared with evolutionary assembly processes. We address these disparities here by comparing community food webs assembled by simulating introductions of species from regional pools of species and from speciation events. Compared to introductions of trophically dissimilar species assumed to be more typical of invasions, introducing species trophically similar to native species assumed to be more typical of sympatric or parapatric speciation events caused fewer extinctions and assembled more empirically realistic networks by introducing more persistent species with higher trophic generality, vulnerability, and enduring similarity to native species. Such events also increased niche overlap and the persistence of both native and introduced species. Contrary to much competition theory, these findings suggest that evolutionary and other processes that more tightly pack ecological niches contribute more to ecosystem structure and function than previously thought.
Collapse
Affiliation(s)
- Tamara N Romanuk
- Department of Biology, Dalhousie University, Halifax, Canada
- Pacific Informatics and Computational Ecology Lab, Berkeley, CA, USA
| | - Amrei Binzer
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
- Institute of Ecology and Environmental Sciences, Université Pierre et Marie Curie, Paris, France
| | - Nicolas Loeuille
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IA, United States
| | | | - Neo D Martinez
- Pacific Informatics and Computational Ecology Lab, Berkeley, CA, USA.
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IA, United States.
| |
Collapse
|
18
|
Ousterhout BH, Serrano M, Bried JT, Siepielski AM. A framework for linking competitor ecological differences to coexistence. J Anim Ecol 2019; 88:1534-1548. [DOI: 10.1111/1365-2656.13048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/27/2019] [Indexed: 11/30/2022]
Affiliation(s)
| | - Mabel Serrano
- Department of Biological Sciences University of Arkansas Fayetteville Arkansas
| | - Jason T. Bried
- Department of Biological Sciences University of Arkansas Fayetteville Arkansas
| | - Adam M. Siepielski
- Department of Biological Sciences University of Arkansas Fayetteville Arkansas
| |
Collapse
|