1
|
Gacad JLJ, Yurlova NI, Tanabe-Hosoi S, Urabe M. TREMATODE SPECIES DETECTION AND QUANTIFICATION BY ENVIRONMENTAL DNA-qPCR ASSAY IN LAKE CHANY, RUSSIA. J Parasitol 2024; 110:221-231. [PMID: 38897603 DOI: 10.1645/23-87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Environmental DNA (eDNA) surveys promise to be a sensitive and powerful tool for the detection of trematodes. This can contribute to the limited studies on trematode ecology, specifically in aquatic ecosystems. Here, we developed species-specific primer and probe sets for Moliniella anceps, Opisthioglyphe ranae, and Plagiorchis multiglandularis cercariae and applied a novel eDNA qPCR assay to detect larval trematodes quantitatively. We evaluated the effectiveness of the assays using filtered lake water samples collected from different sites of Lake Fadikha and Kargat River Estuary in Lake Chany, Russia, showing high species specificity and sensitivity in all 3 assays. Further, all 3 assays had high efficiencies ranging from 94.9 to 105.8%. Moliniella anceps, O. ranae, and P. multiglandularis were detected in the environmental water samples through real-time PCR. Thus, we anticipate that our approach will be beneficial for biomonitoring, measuring, and managing ecological systems.
Collapse
Affiliation(s)
- Janelle Laura J Gacad
- Division of Environmental Dynamics, Graduate School of Environmental Science, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga 522-8533, Japan
| | - Natalia I Yurlova
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, 11 Frunze Street, Novosibirsk 630091, Russia
| | - Shoko Tanabe-Hosoi
- Department of Ecosystem Studies, Faculty of Environmental Science, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga 522-8533, Japan
| | - Misako Urabe
- Department of Ecosystem Studies, Faculty of Environmental Science, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga 522-8533, Japan
| |
Collapse
|
2
|
Moore SE, Siwertsson A, Lafferty KD, Kuris AM, Soldánová M, Morton D, Primicerio R, Amundsen PA. Parasites alter food-web topology of a subarctic lake food web and its pelagic and benthic compartments. Oecologia 2024; 204:257-277. [PMID: 38326516 PMCID: PMC10907417 DOI: 10.1007/s00442-023-05503-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 12/10/2023] [Indexed: 02/09/2024]
Abstract
We compared three sets of highly resolved food webs with and without parasites for a subarctic lake system corresponding to its pelagic and benthic compartments and the whole-lake food web. Key topological food-web metrics were calculated for each set of compartments to explore the role parasites play in food-web topology in these highly contrasting webs. After controlling for effects from differences in web size, we observed similar responses to the addition of parasites in both the pelagic and benthic compartments demonstrated by increases in trophic levels, linkage density, connectance, generality, and vulnerability despite the contrasting composition of free-living and parasitic species between the two compartments. Similar effects on food-web topology can be expected with the inclusion of parasites, regardless of the physical characteristics and taxonomic community compositions of contrasting environments. Additionally, similar increases in key topological metrics were found in the whole-lake food web that combines the pelagic and benthic webs, effects that are comparable to parasite food-web analyses from other systems. These changes in topological metrics are a result of the unique properties of parasites as infectious agents and the links they participate in. Trematodes were key contributors to these results, as these parasites have distinct characteristics in aquatic systems that introduce new link types and increase the food web's generality and vulnerability disproportionate to other parasites. Our analysis highlights the importance of incorporating parasites, especially trophically transmitted parasites, into food webs as they significantly alter key topological metrics and are thus essential for understanding an ecosystem's structure and functioning.
Collapse
Affiliation(s)
- Shannon E Moore
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Anna Siwertsson
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Kevin D Lafferty
- U.S. Geological Survey, Western Ecological Research Center, at Marine Science Institute, University of California, Santa Barbara, CA, USA
| | - Armand M Kuris
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Miroslava Soldánová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
| | - Dana Morton
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Raul Primicerio
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Per-Arne Amundsen
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
3
|
Born-Torrijos A, Riekenberg P, van der Meer MTJ, Nachev M, Sures B, Thieltges DW. Parasite effects on host's trophic and isotopic niches. Trends Parasitol 2023; 39:749-759. [PMID: 37451950 DOI: 10.1016/j.pt.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023]
Abstract
Wild animals are usually infected with parasites that can alter their hosts' trophic niches in food webs as can be seen from stable isotope analyses of infected versus uninfected individuals. The mechanisms influencing these effects of parasites on host isotopic values are not fully understood. Here, we develop a conceptual model to describe how the alteration of the resource intake or the internal resource use of hosts by parasites can lead to differences of trophic and isotopic niches of infected versus uninfected individuals and ultimately alter resource flows through food webs. We therefore highlight that stable isotope studies inferring trophic positions of wild organisms in food webs would benefit from routine identification of their infection status.
Collapse
Affiliation(s)
- Ana Born-Torrijos
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands.
| | - Philip Riekenberg
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands
| | - Marcel T J van der Meer
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands
| | - Milen Nachev
- Department of Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Bernd Sures
- Department of Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany; Research Center One Health Ruhr, Research Alliance Ruhr, University Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - David W Thieltges
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands; Groningen Institute for Evolutionary Life-Sciences, GELIFES, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
4
|
Yoshioka RM, Brown S, Treneman NC, Schram JB, Galloway AWE. A Rhizocephalan Parasite Induces Pervasive Effects on Its Shrimp Host. THE BIOLOGICAL BULLETIN 2023; 244:201-216. [PMID: 38457679 DOI: 10.1086/729497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
AbstractRhizocephalan barnacles are parasites of crustaceans that are known for dramatic effects on hosts, including parasitic castration, feminization, molt inhibition, and the facilitation of epibiosis. Most research on rhizocephalans has focused on carcinized hosts, with relatively little research directed to shrimp hosts that may experience distinct consequences of infection. Here, we describe a high-prevalence rhizocephalan-shrimp system in which multiple host changes are associated with infection: the dock shrimp Pandalus danae infected by the rhizocephalan Sylon hippolytes. In field-collected P. danae, infection by Sylon was associated with development of female sex characters at a smaller size and greater probability of epibiosis. Standardized video observations showed that infected P. danae performed grooming activities at higher rates than uninfected shrimp, suggesting that inhibited molting rather than direct behavioral modification is a likely mechanism for higher epibiosis rates. There was no difference in the composition of grooming behavior types or in general activity between infected and uninfected shrimp. Fatty acid compositions differed with infection, but total lipid concentrations did not, suggesting that parasite-driven shifts in host resource allocation were compensated or redirected from unmeasured tissues. Our results show that Sylon alters its host's role by provisioning an epibiotic substrate and also that it influences host physiology, resulting in feminization and fatty acid shifts. This study lays the groundwork for expanding rhizocephalan-shrimp research and encourages recognition of oft-ignored roles of parasitism in ecological communities.
Collapse
|
5
|
Faltýnková A, Kudlai O, Pantoja C, Jouet D, Skírnisson K. Prey-mimetism in cercariae of Apatemon (Digenea, Strigeidae) in freshwater in northern latitudes. Parasitol Res 2023; 122:815-831. [PMID: 36670312 DOI: 10.1007/s00436-023-07779-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/08/2023] [Indexed: 01/22/2023]
Abstract
Cercariae, the free-living larval stages of trematodes, have adopted an amazing variety of transmission strategies. One of them is prey-mimetism, i.e. cercariae mimicking prey to attract motile hosts to be eaten. In a period between 2002 and 2019, we examined small planorbid snails, Bathyomphalus contortus, Gyraulus parvus and Planorbis planorbis from lakes in Finland and Iceland and from the Curonian Lagoon in Lithuania. Cercariae with conspicuously enlarged tails and unusual swimming behaviour, likely mimicking invertebrate prey, were detected and studied by the use of morphological and molecular (cox1, ITS1-5.8S-ITS2 and 28S rDNA) methods. Cercariae of two species belonging to the genus Apatemon (Strigeidae) were recognised. We consider Apatemon sp. 5 ex P. planorbis from the Curonian Lagoon identical to Cercaria globocaudata U. Szidat, 1940. Cercariae ex G. parvus from Iceland and ex B. contortus from Finland were conspecific, and we named them Apatemon sp. 6; these cercariae could not be associated with any known species. For the first time, we verified that cercariae of the Bulbocauda group belong to the genus Apatemon. We provide a mini-review on records of furcocercariae of the family Strigeidae with enlarged tails reported in freshwaters of the northern hemisphere and reveal that it is not only Apatemon but also Australapatemon and most likely Strigea which belong to the Bulbocauda group, rendering it a purely ecological assemblage. Understanding which invertebrate swimming behaviour these cercariae are mimicking will enhance our knowledge of the processes behind trematode transmission and will help to assess evolutionary pathways of host-finding strategies in trematodes.
Collapse
Affiliation(s)
- Anna Faltýnková
- Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, Brno, 613 00, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Olena Kudlai
- Institute of Ecology, Nature Research Centre, Akademijos 2, 08412, Vilnius, Lithuania.
| | - Camila Pantoja
- Institute of Ecology, Nature Research Centre, Akademijos 2, 08412, Vilnius, Lithuania
| | - Damien Jouet
- BioSpecT EA7506, Faculty of Pharmacy, University of Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51096, Reims Cedex, France
| | - Karl Skírnisson
- Laboratory of Parasitology, Institute for Experimental Pathology, Keldur, University of Iceland, IS-112, Reykjavík, Iceland
| |
Collapse
|
6
|
Morton DN, Lafferty KD. Parasites in kelp‐forest food webs increase food‐chain length, complexity, and specialization, but reduce connectance. ECOL MONOGR 2022; 92:e1506. [PMID: 35865510 PMCID: PMC9286845 DOI: 10.1002/ecm.1506] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Dana N. Morton
- Department of Ecology, Evolution, and Marine Biology University of California Santa Barbara California USA
- Marine Science Institute University of California Santa Barbara California USA
| | - Kevin D. Lafferty
- U.S. Geological Survey, Western Ecological Research Center, at Marine Science Institute University of California Santa Barbara California USA
| |
Collapse
|