1
|
Krutovsky KV. Dendrogenomics Is a New Interdisciplinary Field of Research of the Adaptive Genetic Potential of Forest Tree Populations Integrating Dendrochronology, Dendroecology, Dendroclimatology, and Genomics. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422110059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
2
|
Heterogeneous Responses of Alpine Treelines to Climate Warming across the Tibetan Plateau. FORESTS 2022. [DOI: 10.3390/f13050788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The Tibetan Plateau hosts a continuous distribution of alpine treelines from the Qilian Mountains to the Hengduan Mountains and the Himalaya Mountains. However, not much is known about the broadscale alpine treeline dynamics and their responses to climate warming across the Tibetan Plateau. Herein, we collected a total of 59 treeline sites across different forest regions of the Tibetan Plateau and the related field data (i.e., upward advance magnitude, tree recruitment and height growth), expansion potential (i.e., elevational difference between the current treeline and the tree species line (EP)) and vegetation TI (an index of species interactions) from the published references. Site characteristics (e.g., elevation, slope and aspect) and the related environmental factors were used to analyze the relationships between treeline shifts and environmental variables. Despite increases in the recruitment and growth of trees at most treeline sites, alpine treeline positions showed heterogeneous responses to climate warming. Most treelines advanced over the last century, while some treelines showed long-term stability. EP was significantly and positively linked to the summer warming rate and treeline shifts, suggesting that the position of current tree species line is of crucial importance in evaluating treeline dynamics under climate change. In addition, warming-induced treeline advances were modulated by plant–plant interactions. Overall, this study highlighted the heterogeneous responses of regional-scale alpine treelines to climate warming on the Tibetan Plateau.
Collapse
|
3
|
Zacharias M, Pampuch T, Heer K, Avanzi C, Würth DG, Trouillier M, Bog M, Wilmking M, Schnittler M. Population structure and the influence of microenvironment and genetic similarity on individual growth at Alaskan white spruce treelines. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149267. [PMID: 34332391 DOI: 10.1016/j.scitotenv.2021.149267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Knowledge on the adaptation of trees to rapid environmental changes is essential to preserve forests and their ecosystem services under climate change. Treeline populations are particularly suitable for studying adaptation processes in trees, as environmental stress together with reduced gene flow can enhance local adaptation. We investigated white spruce (Picea glauca) populations in Alaska on one moisture-limited and two cold-limited treeline sites with a paired plot design of one forest and one treeline population each, resulting in six plots. Additionally, one forest plot in the middle of the distribution range complements the study design. We combined spatial, climatic and dendrochronological data with neutral genetic marker of 2203 trees to investigate population genetic structure and drivers of tree growth. We used several individual-based approaches including random slope mixed-effects models to test the influence of genetic similarity and microenvironment on growth performance. A high degree of genetic diversity was found within each of the seven plots associated with high rates of gene flow. We discovered a low genetic differentiation between the three sites which was better explained by geographic distances than by environmental differences, indicating genetic drift as the main driver of population differentiation. Our findings indicated that microenvironmental features had an overall larger influence on growth performances than genetic similarity among individuals. The effects of climate on growth differed between sites but were smaller than the effect of tree size. Overall, our results suggest that the high genetic diversity of white spruce may result in a wider range of phenotypes which enhances the efficiency of selection when the species is facing rapid climatic changes. In addition, the large intra-individual variability in growth responses may indicate the high phenotypic plasticity of white spruce which can buffer short-term environmental changes and, thus, allow enduring the present changing climate conditions.
Collapse
Affiliation(s)
- Melanie Zacharias
- Institute of Botany und Landscape Ecology, University of Greifswald, Soldmannstr. 15, 17487 Greifswald, Germany.
| | - Timo Pampuch
- Institute of Botany und Landscape Ecology, University of Greifswald, Soldmannstr. 15, 17487 Greifswald, Germany.
| | - Katrin Heer
- Conservation Biology, University of Marburg, Karl-von-Frisch-Strasse 8, 35043 Marburg, Germany.
| | - Camilla Avanzi
- Institute of Biosciences and BioResources, National Research Council of Italy, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy.
| | - David G Würth
- Institute of Botany und Landscape Ecology, University of Greifswald, Soldmannstr. 15, 17487 Greifswald, Germany
| | - Mario Trouillier
- Institute of Botany und Landscape Ecology, University of Greifswald, Soldmannstr. 15, 17487 Greifswald, Germany.
| | - Manuela Bog
- Institute of Botany und Landscape Ecology, University of Greifswald, Soldmannstr. 15, 17487 Greifswald, Germany.
| | - Martin Wilmking
- Institute of Botany und Landscape Ecology, University of Greifswald, Soldmannstr. 15, 17487 Greifswald, Germany.
| | - Martin Schnittler
- Institute of Botany und Landscape Ecology, University of Greifswald, Soldmannstr. 15, 17487 Greifswald, Germany.
| |
Collapse
|
4
|
Shen X, Chen Y, Wang L, Guo L, Zheng H, Zhang J, Xu Z, Tan B, Zhang L, Li H, You C, Liu Y. Mixture of plant functional groups inhibits the release of multiple metallic elements during litter decomposition in alpine timberline ecotone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141298. [PMID: 32791413 DOI: 10.1016/j.scitotenv.2020.141298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/12/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
Mixed litter decomposition is a common phenomenon in nature and is very important for the circulation of material through an ecosystem. Different plant functional groups (PFGs) are likely to interact during decomposition. It is unclear how mixed decomposition influences the release of multiple metallic elements, and the biogeochemical circulation mechanism in the alpine ecosystem remains elusive. In this study, a two-year experiment on decomposition of mixed litter from six dominant PFGs was conducted at two elevations in an alpine timberline ecotone using the litterbag method. First, the results suggested that PFG identity had greater impacts on the release of all metallic elements than elevation. The release rates of potassium (K), calcium (Ca), magnesium (Mg) and copper (Cu) in graminoid, deciduous shrub and forb litter were significantly higher than those in evergreen conifer, evergreen shrub and mixed litter. Second, the release of metallic elements showed non-additive effects during mixed litter decomposition. K, Ca, Mg, sodium (Na), Cu, and aluminium (Al) exhibited antagonistic effects, while Fe exhibited a synergistic effect. The antagonistic effects on Na, K, Ca and Cu release increased with increasing elevation, while the antagonistic effects on Mg, Al and Mn release decreased with increasing elevation. Third, Al and Fe showed high levels of accumulation. The K release rate decreased while Al and Fe accumulation increased with plant litter upward shift. In conclusion, mixtures of PFGs inhibits the release of multiple metallic elements during litter decomposition in the alpine timberline ecotone. We speculate that an upward shift in PFGs in response to climate warming will slow the release of K and accelerate the enrichment of Fe and Al in alpine timberline ecotones.
Collapse
Affiliation(s)
- Xian Shen
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, Long-term Research Station of Alpine Forest Ecosystems, Institute of Ecology & Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yamei Chen
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, Long-term Research Station of Alpine Forest Ecosystems, Institute of Ecology & Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Lifeng Wang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, Long-term Research Station of Alpine Forest Ecosystems, Institute of Ecology & Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Guo
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Haifeng Zheng
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark
| | - Jian Zhang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, Long-term Research Station of Alpine Forest Ecosystems, Institute of Ecology & Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhenfeng Xu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, Long-term Research Station of Alpine Forest Ecosystems, Institute of Ecology & Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Tan
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, Long-term Research Station of Alpine Forest Ecosystems, Institute of Ecology & Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, Long-term Research Station of Alpine Forest Ecosystems, Institute of Ecology & Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Han Li
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, Long-term Research Station of Alpine Forest Ecosystems, Institute of Ecology & Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengming You
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, Long-term Research Station of Alpine Forest Ecosystems, Institute of Ecology & Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Liu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, Long-term Research Station of Alpine Forest Ecosystems, Institute of Ecology & Forestry, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
5
|
Naoe S, Tayasu I, Sakai Y, Masaki T, Kobayashi K, Nakajima A, Sato Y, Yamazaki K, Kiyokawa H, Koike S. Downhill seed dispersal by temperate mammals: a potential threat to plant escape from global warming. Sci Rep 2019; 9:14932. [PMID: 31624326 PMCID: PMC6797773 DOI: 10.1038/s41598-019-51376-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 09/13/2019] [Indexed: 01/08/2023] Open
Abstract
Vertical seed dispersal, i.e. seed dispersal towards a higher or lower altitude, is considered a critical process for plant escape from climate change. However, studies exploring vertical seed dispersal are scarce, and thus, its direction, frequency, and mechanisms are little known. In the temperate zone, evaluating vertical seed dispersal of animal-dispersed plants fruiting in autumn and/or winter is essential considering the dominance of such plants in temperate forests. We hypothesized that their seeds are dispersed towards lower altitudes because of the downhill movement of frugivorous animals following the autumn-to-winter phenology of their food plants which proceeds from the mountain tops to the foot in the temperate zone. We evaluated the vertical seed dispersal of the autumn-fruiting wild kiwi, Actinidia arguta, which is dispersed by temperate mammals. We collected dispersed seeds from mammal faeces in the Kanto Mountains of central Japan and estimated the distance of vertical seed dispersal using the oxygen isotope ratios of the dispersed seeds. We found the intensive downhill seed dispersal of wild kiwi by all seed dispersers, except the raccoon dog (bear: mean −393.1 m; marten: −245.3 m; macaque: −98.5 m; and raccoon dog: +4.5 m). Mammals with larger home ranges dispersed seeds longer towards the foot of the mountains. Furthermore, we found that seeds produced at higher altitudes were dispersed a greater distance towards the foot of the mountains. Altitudinal gradients in autumn-to-winter plant phenology and other mountain characteristics, i.e. larger surface areas and more attractive human crops at lower altitudes compared to higher altitudes, were considered drivers of downhill seed dispersal via animal movement. Strong downhill seed dispersal by mammals suggests that populations of autumn-to-winter fruiting plants dispersed by animals may not be able to sufficiently escape from current global warming in the temperate zone.
Collapse
Affiliation(s)
- Shoji Naoe
- Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki, 305-8687, Japan. .,Tohoku Research Center, Forestry and Forest Products Research Institute, 92-25 Nabeyashiki, Shimokuriyagawa, Morioka, Iwate, 020-0123, Japan.
| | - Ichiro Tayasu
- Research Institute for Humanity and Nature, 457-4 Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8047, Japan.,Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, Shiga, 520-2113, Japan
| | - Yoichiro Sakai
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, Shiga, 520-2113, Japan.,Lake Biwa Environmental Research Institute, 5-34 Yanagasaki, Ohtsu, Shiga, 520-0022, Japan
| | - Takashi Masaki
- Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki, 305-8687, Japan
| | - Kazuki Kobayashi
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-8510, Japan
| | - Akiko Nakajima
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-8510, Japan
| | - Yoshikazu Sato
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-8510, Japan.,Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido, 069-8501, Japan
| | - Koji Yamazaki
- Ibaraki Nature Museum, 700 Ohsaki, Bando, Ibaraki, 306-0622, Japan.,Department of Forest Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Hiroki Kiyokawa
- Laboratory of Biodiversity Science, School of Agriculture and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shinsuke Koike
- Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo, 183-8509, Japan
| |
Collapse
|
6
|
Rogers HS, Beckman NG, Hartig F, Johnson JS, Pufal G, Shea K, Zurell D, Bullock JM, Cantrell RS, Loiselle B, Pejchar L, Razafindratsima OH, Sandor ME, Schupp EW, Strickland WC, Zambrano J. The total dispersal kernel: a review and future directions. AOB PLANTS 2019; 11:plz042. [PMID: 31579119 PMCID: PMC6757349 DOI: 10.1093/aobpla/plz042] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 07/18/2019] [Indexed: 05/22/2023]
Abstract
The distribution and abundance of plants across the world depends in part on their ability to move, which is commonly characterized by a dispersal kernel. For seeds, the total dispersal kernel (TDK) describes the combined influence of all primary, secondary and higher-order dispersal vectors on the overall dispersal kernel for a plant individual, population, species or community. Understanding the role of each vector within the TDK, and their combined influence on the TDK, is critically important for being able to predict plant responses to a changing biotic or abiotic environment. In addition, fully characterizing the TDK by including all vectors may affect predictions of population spread. Here, we review existing research on the TDK and discuss advances in empirical, conceptual modelling and statistical approaches that will facilitate broader application. The concept is simple, but few examples of well-characterized TDKs exist. We find that significant empirical challenges exist, as many studies do not account for all dispersal vectors (e.g. gravity, higher-order dispersal vectors), inadequately measure or estimate long-distance dispersal resulting from multiple vectors and/or neglect spatial heterogeneity and context dependence. Existing mathematical and conceptual modelling approaches and statistical methods allow fitting individual dispersal kernels and combining them to form a TDK; these will perform best if robust prior information is available. We recommend a modelling cycle to parameterize TDKs, where empirical data inform models, which in turn inform additional data collection. Finally, we recommend that the TDK concept be extended to account for not only where seeds land, but also how that location affects the likelihood of establishing and producing a reproductive adult, i.e. the total effective dispersal kernel.
Collapse
Affiliation(s)
- Haldre S Rogers
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
- Corresponding author’s e-mail address:
| | - Noelle G Beckman
- Department of Biology and Ecology Center, Utah State University, Logan, UT, USA
| | - Florian Hartig
- Theoretical Ecology, Faculty of Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | - Jeremy S Johnson
- School of Forestry, Northern Arizona University, Flagstaff, AZ, USA
| | - Gesine Pufal
- Department of Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany
| | - Katriona Shea
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Damaris Zurell
- Geography Department, Humboldt-University Berlin, Berlin, Germany
- Dynamic Macroecology, Department of Landscape Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - James M Bullock
- Centre for Ecology and Hydrology, Benson Lane, Wallingford, Oxfordshire, UK
| | | | - Bette Loiselle
- Department of Wildlife Ecology and Conservation & Center for Latin American Studies, University of Florida, Gainesville, FL, USA
| | - Liba Pejchar
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Manette E Sandor
- School of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, AZ, USA
| | - Eugene W Schupp
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT, USA
| | - W Christopher Strickland
- Department of Mathematics and Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| | - Jenny Zambrano
- Department of Biology, University of Maryland, College Park, MD, USA
- School of Biological Sciences, Washington State University, Pullman WA, USA
| |
Collapse
|
7
|
Liang Y, Zhang Y, Wen J, Su X, Ren Z. Evolutionary History of Rhus chinensis (Anacardiaceae) From the Temperate and Subtropical Zones of China Based on cpDNA and Nuclear DNA Sequences and Ecological Niche Model. Front Genet 2019; 10:171. [PMID: 30891066 PMCID: PMC6411847 DOI: 10.3389/fgene.2019.00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 02/15/2019] [Indexed: 11/28/2022] Open
Abstract
To explore the origin and evolution of local flora and vegetation, we examined the evolutionary history of Rhus chinensis, which is widely distributed in China’s temperate and subtropical zones, by sequencing three maternally inherited chloroplast DNAs (cpDNA: trnL-trnF, psbA-trnH, and rbcL) and the biparentally inherited nuclear DNA (nuDNA: LEAFY) from 19 natural populations of R. chinensis as well as the ecological niche modeling. In all, 23 chloroplast haplotypes (M1–M23) and 15 nuclear alleles (N1–N15) were detected. The estimation of divergence time showed that the most recent common ancestor dated at 4.2 ± 2.5 million years ago (Mya) from cpDNA, and the initial divergence of genotypes occurred at 4.8 ± 3.6 Mya for the nuDNA. Meanwhile, the multimodality mismatch distribution curves and positive Tajima’s D values indicated that R. chinensis did not experience population expansion after the last glacial maximum. Besides, our study was also consistent with the hypothesis that most refugia in the temperate and subtropical zones of China were in situ during the glaciation.
Collapse
Affiliation(s)
- Yukang Liang
- School of Life Science, Shanxi University, Taiyuan, China
| | - Yang Zhang
- Natural History Research Center, Shanghai Natural History Museum, Branch of Shanghai Science and Technology Museum, Shanghai, China
| | - Jun Wen
- School of Life Science, Shanxi University, Taiyuan, China.,Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Xu Su
- Key Laboratory of Medicinal Animal and Plant Resources of the Qinghai-Tibetan Plateau in Qinghai Province, School of Life Science, Qinghai Normal University, Xining, China
| | - Zhumei Ren
- School of Life Science, Shanxi University, Taiyuan, China
| |
Collapse
|
8
|
Evidence of within-species specialization by soil microbes and the implications for plant community diversity. Proc Natl Acad Sci U S A 2019; 116:7371-7376. [PMID: 30842279 DOI: 10.1073/pnas.1810767116] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Microbes are thought to maintain diversity in plant communities by specializing on particular species, but it is not known whether microbes that specialize within species (i.e., on genotypes) affect diversity or dynamics in plant communities. Here we show that soil microbes can specialize at the within-population level in a wild plant species, and that such specialization could promote species diversity and seed dispersal in plant communities. In a shadehouse experiment in Panama, we found that seedlings of the native tree species, Virola surinamensis (Myristicaceae), had reduced performance in the soil microbial community of their maternal tree compared with in the soil microbial community of a nonmaternal tree from the same population. Performance differences were unrelated to soil nutrients or to colonization by mycorrhizal fungi, suggesting that highly specialized pathogens were the mechanism reducing seedling performance in maternal soils. We then constructed a simulation model to explore the ecological and evolutionary consequences of genotype-specific pathogens in multispecies plant communities. Model results indicated that genotype-specific pathogens promote plant species coexistence-albeit less strongly than species-specific pathogens-and are most effective at maintaining species richness when genetic diversity is relatively low. Simulations also revealed that genotype-specific pathogens select for increased seed dispersal relative to species-specific pathogens, potentially helping to create seed dispersal landscapes that allow pathogens to more effectively promote diversity. Combined, our results reveal that soil microbes can specialize within wild plant populations, affecting seedling performance near conspecific adults and influencing plant community dynamics on ecological and evolutionary time scales.
Collapse
|
9
|
Flanagan SP, Jones AG. The future of parentage analysis: From microsatellites to SNPs and beyond. Mol Ecol 2019; 28:544-567. [PMID: 30575167 DOI: 10.1111/mec.14988] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022]
Abstract
Parentage analysis is a cornerstone of molecular ecology that has delivered fundamental insights into behaviour, ecology and evolution. Microsatellite markers have long been the king of parentage, their hypervariable nature conferring sufficient power to correctly assign offspring to parents. However, microsatellite markers have seen a sharp decline in use with the rise of next-generation sequencing technologies, especially in the study of population genetics and local adaptation. The time is ripe to review the current state of parentage analysis and see how it stands to be affected by the emergence of next-generation sequencing approaches. We find that single nucleotide polymorphisms (SNPs), the typical next-generation sequencing marker, remain underutilized in parentage analysis but are gaining momentum, with 58 SNP-based parentage analyses published thus far. Many of these papers, particularly the earlier ones, compare the power of SNPs and microsatellites in a parentage context. In virtually every case, SNPs are at least as powerful as microsatellite markers. As few as 100-500 SNPs are sufficient to resolve parentage completely in most situations. We also provide an overview of the analytical programs that are commonly used and compatible with SNP data. As the next-generation parentage enterprise grows, a reliance on likelihood and Bayesian approaches, as opposed to strict exclusion, will become increasingly important. We discuss some of the caveats surrounding the use of next-generation sequencing data for parentage analysis and conclude that the future is bright for this important realm of molecular ecology.
Collapse
Affiliation(s)
- Sarah P Flanagan
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Adam G Jones
- Department of Biological Sciences, University of Idaho, Moscow, Idaho
| |
Collapse
|
10
|
Traveling waves and spatial patterns from dispersal on homogeneous and gradient habitats. ECOLOGICAL COMPLEXITY 2018. [DOI: 10.1016/j.ecocom.2017.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Landscape Genomics: Understanding Relationships Between Environmental Heterogeneity and Genomic Characteristics of Populations. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/13836_2017_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Growth and Its Relationship to Individual Genetic Diversity of Mountain Hemlock (Tsuga mertensiana) at Alpine Treeline in Alaska: Combining Dendrochronology and Genomics. FORESTS 2017. [DOI: 10.3390/f8110418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Johnson JS, Gaddis KD, Cairns DM, Konganti K, Krutovsky KV. Landscape genomic insights into the historic migration of mountain hemlock in response to Holocene climate change. AMERICAN JOURNAL OF BOTANY 2017; 104:439-450. [PMID: 28325831 DOI: 10.3732/ajb.1600262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 02/17/2017] [Indexed: 06/06/2023]
Abstract
PREMISE OF THE STUDY Untangling alternative historic dispersal pathways in long-lived tree species is critical to better understand how temperate tree species may respond to climatic change. However, disentangling these alternative pathways is often difficult. Emerging genomic technologies and landscape genetics techniques improve our ability to assess these pathways in natural systems. We address the question to what degree have microrefugial patches and long-distance dispersal been responsible for the colonization of mountain hemlock (Tsuga mertensiana) on the Alaskan Kenai Peninsula. METHODS We used double-digest restriction-associated DNA sequencing (ddRADseq) to identify genetic variants across eight mountain hemlock sample sites on the Kenai Peninsula, Alaska. We assessed genetic diversity and linkage disequilibrium using landscape and population genetics approaches. Alternative historic dispersal pathways were assessed using discriminant analysis of principle components and electrical circuit theory. KEY RESULTS A combination of decreasing diversity, high gene flow, and landscape connectivity indicates that mountain hemlock colonization on the Kenai Peninsula is the result of long-distance dispersal. We found that contemporary climate best explained gene flow patterns and that isolation by resistance was a better model explaining genetic variation than isolation by distance. CONCLUSIONS Our findings support the conclusion that mountain hemlock colonization is the result of several long-distance dispersal events following Pleistocene glaciation. The high dispersal capability suggests that mountain hemlock may be able to respond to future climate change and expand its range as new habitat opens along its northern distribution.
Collapse
Affiliation(s)
- Jeremy S Johnson
- Department of Geography, Texas A&M University, 810 Eller O&M Building, MS 3147 TAMU, College Station, Texas 77843-3147 USA
| | - Keith D Gaddis
- Department of Geography, Texas A&M University, 810 Eller O&M Building, MS 3147 TAMU, College Station, Texas 77843-3147 USA
| | - David M Cairns
- Department of Geography, Texas A&M University, 810 Eller O&M Building, MS 3147 TAMU, College Station, Texas 77843-3147 USA
| | - Kranti Konganti
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University Veterinary Medical Research Building, MS 2470 TAMU, College Station, Texas 77433-2470 USA
| | - Konstantin V Krutovsky
- Department of Forest Genetics and Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, D-37077 Göttingen, Germany
- Department of Ecosystem Science & Management, Texas A&M University, 305 Horticulture and Forest Science Building, MS 2138 TAMU, College Station, Texas 77843-2138 USA
- N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina Str., Moscow 119333, Russia
- Genome Research and Education Center, Siberian Federal University, 50a/2 Akademgorodok, Krasnoyarsk 660036, Russia
| |
Collapse
|