1
|
Hanberry BB, Faison EK. Re-framing deer herbivory as a natural disturbance regime with ecological and socioeconomic outcomes in the eastern United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161669. [PMID: 36681343 DOI: 10.1016/j.scitotenv.2023.161669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Natural disturbances are critical ecosystem processes, with both ecological and socioeconomic benefits and disadvantages. Large herbivores are natural disturbances that have removed plant biomass for millions of years, although herbivore influence likely has declined during the past thousands of years corresponding with extinctions and declines in distributions and abundances of most animal species. Nonetheless, the conventional view, particularly in eastern North America, is that herbivory by large wild herbivores is at unprecedented levels, resulting in unnatural damage to forests. Here, we propose consideration of large herbivores as a natural disturbance that also imparts many crucial ecological advantages, using white-tailed deer (Odocoileus virginianus), the only wild large herbivore remaining throughout the eastern U.S., as our focal species. We examined evidence of detrimental effects of browsing on trees and forbs. We then considered that deer contribute to both fuel reduction and ecological restoration of herbaceous plants and historical open forests of savannas and woodlands by controlling tree and shrub densities, mimicking the consumer role of fire. Similarly to other disturbances, deer disturbance 'regimes' are uneven in severity across different ecosystems and landscapes, resulting in heterogeneity and diversity. In addition to biodiversity support and fuel reduction, socioeconomic benefits include >$20 billion dollars per year by 10 million hunters that support jobs and wildlife agencies, non-consumptive enjoyment of nature by 80 million people, cultural importance, and deer as ecological ambassadors, whereas costs include about $5 billion and up to 450 human deaths per year for motor vehicle accidents, along with crop damage and disease transmission. From a perspective of historical ecology rather than current baselines, deer impart a fundamental disturbance process with many ecological benefits and a range of socioeconomic effects.
Collapse
Affiliation(s)
- Brice B Hanberry
- USDA Forest Service, Rocky Mountain Research Station, Rapid City, SD 57702, United States of America.
| | - Edward K Faison
- Highstead, PO Box 1097, Redding, CT 06875, United States of America
| |
Collapse
|
2
|
Thomassen EE, Sigsgaard EE, Jensen MR, Olsen K, Hansen MDD, Svenning JC, Thomsen PF. Contrasting seasonal patterns in diet and dung-associated invertebrates of feral cattle and horses in a rewilding area. Mol Ecol 2023; 32:2071-2091. [PMID: 36744391 DOI: 10.1111/mec.16847] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/16/2022] [Accepted: 01/09/2023] [Indexed: 02/07/2023]
Abstract
Trophic rewilding is increasingly applied in restoration efforts, with the aim of reintroducing the ecological functions provided by large-bodied mammals and thereby promote self-regulating, biodiverse ecosystems. However, empirical evidence for the effects of megafauna introductions on the abundance and richness of other organisms such as plants and invertebrates, and the mechanisms involved still need strengthening. In this study, we use environmental DNA (eDNA) metabarcoding of dung from co-existing feral cattle and horses to assess the seasonal variation in plant diet and dung-associated arthropods and nematodes. We found consistently high diet richness of horses, with low seasonal variability, while the generally lower dietary diversity of cattle increased substantially during summer. Intriguingly, season-specific diets differed, with a greater proportion of trees in the horses' diet during winter, where cattle relied more on shrubs. Graminoids were predominantly found in the diet of horses, but were generally underrepresented compared to previous studies, possibly due to the high prevalence of forbs in the study area. Dung-associated arthropod richness was higher for cattle, largely due to a high richness of flies during summer. Several species of dung-associated arthropods were found primarily in dung from one of the two herbivores, and our data confirmed known patterns of seasonal activity. Nematode richness was constantly higher for horses, and nematode communities were markedly different between the two species. Our results demonstrate complementary effects of cattle and horses through diet differences and dung-associated invertebrate communities, enhancing our understanding of large herbivore effects on vegetation and associated biodiversity. These results are directly applicable for decision-making in rewilding projects, suggesting biodiversity-benefits by inclusion of functionally different herbivores.
Collapse
Affiliation(s)
| | | | | | - Kent Olsen
- Department of Research and Collections, Natural History Museum Aarhus, Aarhus C, Denmark
| | - Morten D D Hansen
- Department of Research and Collections, Natural History Museum Aarhus, Aarhus C, Denmark
| | - Jens-Christian Svenning
- Department of Biology, Aarhus University, Aarhus C, Denmark.,Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Aarhus University, Aarhus C, Denmark
| | | |
Collapse
|
3
|
Guiden PW, Burke A, Fliginger J, Rowland-Schaefer EG, Savage K, Jones HP. Reintroduced megaherbivores indirectly shape small-mammal responses to moonlight. Ecology 2023; 104:e3884. [PMID: 36208094 DOI: 10.1002/ecy.3884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/15/2022] [Accepted: 09/01/2022] [Indexed: 02/03/2023]
Abstract
Moonlight structures activity patterns of many nocturnal species. Bright moonlight often limits the activity of nocturnal prey, but dense vegetation weakens this effect. Using 8 years of live-trapping data, we asked whether reintroduced megaherbivores (Bison bison) indirectly altered moonlight avoidance by small mammals in tallgrass prairies. In plots with bison, plants intercepted 20% less light, allowing more moonlight to reach ground level. During nights with no moonlight, Peromyscus maniculatus activity was similar in plots with and without bison. During nights with peak moonlight, P. maniculatus activity was four times greater in plots without bison compared to plots with bison. Conversely, Microtus ochrogaster activity was twice as great during full moons compared to new moons, but only in plots with bison. We also equipped a subset of traps with temperature sensors to estimate trap-entry time. Although M. ochrogaster was more active on bright nights, most activity occurred before moonrise or after moonset, avoiding periods of bright moonlight. We conclude that megaherbivores play an unappreciated but important indirect role in tallgrass prairies by inducing behavioral shifts in other animal species. Because overlap in activity patterns can predict the likelihood of predator-prey encounters, such activity shifts have important implications for trophic interactions throughout restored prairie food webs. Additional work to understand interspecific and intraspecific variation in response to moonlight may improve efforts to forecast changes in community assembly due to restoration and land-use change.
Collapse
Affiliation(s)
- P W Guiden
- Biology Department, Hamilton College, Clinton, New York, USA
| | - Angela Burke
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Jessica Fliginger
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | | | - Kirstie Savage
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Holly P Jones
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA.,Institute for the Study of the Environment, Sustainability and Energy, Northern Illinois University, DeKalb, Illinois, USA
| |
Collapse
|
4
|
Spatially associated or composite life traces from Holocene paleosols and dune sands provide evidence for past biotic interactions. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2023; 110:9. [PMID: 36809360 PMCID: PMC9944729 DOI: 10.1007/s00114-023-01837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023]
Abstract
Biotic interactions (e.g., predation, competition, commensalism) where organisms directly or indirectly influenced one another are of great interest to those studying the history of life but have been difficult to ascertain from fossils. Considering the usual caveats about the temporal resolution of paleontological data, traces and trace fossils in the sedimentary record can record co-occurrences of organisms or their behaviours with relatively high spatial fidelity in a location. Neoichnological studies and studies on recently buried traces, where direct trophic links or other connections between tracemakers are well-known, may help interpret when and where overlapping traces represented true biotic interactions. Examples from Holocene paleosols and other buried continental sediments in Poland include the tight association between mole and earthworm burrows, forming an ichnofabric representing a predator-prey relationship, and that of intersecting insect and root traces demonstrating the impact of trees as both ecosystem engineers and the basis for food chains. Trampling by ungulates, which leaves hoofprints and other sedimentary disturbances, may result in amensal or commensal effects on some biota in the short term and create heterogeneity that later trace-making organisms, such as invertebrate burrowers, can also respond to in turn, though such modified or composite traces may be challenging to interpret.
Collapse
|
5
|
Boyce AJ, Shamon H, McShea WJ. Bison Reintroduction to Mixed-Grass Prairie Is Associated With Increases in Bird Diversity and Cervid Occupancy in Riparian Areas. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.821822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In grassland ecosystems, grazing by large herbivores is a highly influential process that affects biodiversity by modifying the vegetative environment through selective consumption. Here, we test whether restoration of bison is associated with increased bird diversity and cervid occupancy in networks of riparian habitat within a temperate grassland ecosystem, mixed-grass prairie in northcentral Montana, United States. We used a long time-series of remote sensing imagery to examine changes in riparian vegetation structure in stream networks within bison and cattle pastures. We then assessed how vegetation structure influenced diversity of bird communities and detection rates of mammals in these same riparian networks. We found that percent cover of woody vegetation, and native grasses and forbs increased more rapidly over time in bison pastures, and that these changes in vegetation structure were associated with increased bird diversity and cervid occupancy. In conclusion, bison reintroduction appears to function as a passive riparian restoration strategy with positive diversity outcomes for birds and mammals.
Collapse
|
6
|
Shamon H, Cosby OG, Andersen CL, Augare H, BearCub Stiffarm J, Bresnan CE, Brock BL, Carlson E, Deichmann JL, Epps A, Guernsey N, Hartway C, Jørgensen D, Kipp W, Kinsey D, Komatsu KJ, Kunkel K, Magnan R, Martin JM, Maxwell BD, McShea WJ, Mormorunni C, Olimb S, Rattling Hawk M, Ready R, Smith R, Songer M, Speakthunder B, Stafne G, Weatherwax M, Akre TS. The Potential of Bison Restoration as an Ecological Approach to Future Tribal Food Sovereignty on the Northern Great Plains. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.826282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Future climate projections of warming, drying, and increased weather variability indicate that conventional agricultural and production practices within the Northern Great Plains (NGP) will become less sustainable, both ecologically and economically. As a result, the livelihoods of people that rely on these lands will be adversely impacted. This is especially true for Native American communities, who were relegated to reservations where the land is often vast but marginal and non-tribal operators have an outsized role in food production. In addition, NGP lands are expected to warm and dry disproportionately relative to the rest of the United States. It is therefore critical to identify models of sustainable land management that can improve ecological function and socio-economic outcomes for NGP communities, all while increasing resilience to a rapidly changing climate. Efforts led by Native American Nations to restore North American Plains bison (Bison bison bison) to tribal lands can bring desired socio-ecological benefits to underserved communities while improving their capacity to influence the health of their lands, their people, and their livelihoods. Ecological sustainability will depend on the restoration of bison herds and bison’s ability to serve as ecosystem engineers of North America’s Plains. The historically broad distribution of bison suggests they can adapt to a variety of conditions, making them resilient to a wide range of management systems and climates. Here we review bison’s ecological, cultural, and economic value using four case studies from tribal communities within the NGP. We discuss the potential contributions of bison to food sovereignty, sustainable economies, and conservation of a working landscape with limited protections and significant risk of conversion. The ecological role of bison within this setting has potential due to cultural acceptance and the vast availability of suitable lands; however, it is critical to address tribal needs for funding support, enhanced community capacity, and solving complex landownership for these goals to be achieved.
Collapse
|
7
|
The Sustainability of Bison Production in North America: A Scoping Review. SUSTAINABILITY 2021. [DOI: 10.3390/su132413527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The American bison (Bison bison) is iconic of the Great Plains of North America, yet the genus has had to overcome near extinction in the recent past prior to being re-established for food production. This scoping review summarizes the literature on the Plains Bison as a large ruminant species adequate for modern-day meat production in order to evaluate the species’ appropriateness as a sustainable meat source and to identify knowledge gaps hindering the sustainability evaluation of bison production. To date, we can anecdotally assume that bison husbandry could contribute to sustainability based on its positive contribution to biodiversity, physiological robustness, economically higher price per kg, and nutritive values, despite their decreased growth and performance rates compared to beef cattle. However, targeted and system-based research is required in order to unequivocally assess the sustainability of bison production in North America.
Collapse
|
8
|
Wagner TC, Uiseb K, Fischer C. Rolling pits of Hartmann's mountain zebra ( Zebra equus hartmannae) increase vegetation diversity and landscape heterogeneity in the Pre-Namib. Ecol Evol 2021; 11:13036-13051. [PMID: 34646451 PMCID: PMC8495834 DOI: 10.1002/ece3.7983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 11/07/2022] Open
Abstract
Microsites created by soil-disturbing animals are important landscape elements in arid environments. In the Pre-Namib, dust-bathing behavior of the near-endemic Hartmann's mountain zebra creates unique rolling pits that persist in the landscape. However, the ecohydrological characteristics and the effects of those microsites on the vegetation and on organisms of higher trophic levels are still unknown. In our study, we characterized the soil grain size composition and infiltration properties of rolling pits and reference sites and recorded vegetation and arthropod assemblages during the rainy season of five consecutive years with different amounts of seasonal rainfall. We further used the excess green vegetation index derived from drone imagery to demonstrate the different green up and wilting of pits and references after a rainfall event. In contrast to the surrounding grassland, rolling pits had finer soil with higher nutrient content, collected runoff, showed a higher infiltration, and kept soil moisture longer. Vegetation in the rolling pits was denser, dominated by annual forbs and remained green for longer periods. The denser vegetation resulted in a slightly higher activity density of herbivorous arthropods, which in turn increased the activity density of omnivorous and predatory arthropods. In times of drought, the rolling pits could act as safe sites and refuges for forbs and arthropods. With their rolling pits, Hartmann's mountain zebras act as ecosystem engineers, contributing to the diversity of forb communities and heterogeneity of the landscape in the Pre-Namib.
Collapse
Affiliation(s)
- Thomas C. Wagner
- Restoration EcologySchool of Life SciencesTechnische Universität MünchenFreisingGermany
| | - Kenneth Uiseb
- Directorate of Scientific ServicesNamibia Ministry of Environment, Forestry and TourismWindhoekNamibia
| | - Christina Fischer
- Restoration EcologySchool of Life SciencesTechnische Universität MünchenFreisingGermany
- Faunistics and Wildlife ConservationDepartment of Agriculture, Ecotrophology, and Landscape DevelopmentAnhalt University of Applied SciencesBernburgGermany
| |
Collapse
|
9
|
Gulick AG, Johnson RA, Pollock CG, Hillis-Starr Z, Bolten AB, Bjorndal KA. Recovery of a large herbivore changes regulation of seagrass productivity in a naturally grazed Caribbean ecosystem. Ecology 2020; 101:e03180. [PMID: 32882749 DOI: 10.1002/ecy.3180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/19/2020] [Accepted: 07/14/2020] [Indexed: 11/05/2022]
Abstract
What happens in meadows after populations of natural grazers rebound following centuries of low abundance? Many seagrass ecosystems are now experiencing this phenomenon with the recovery of green turtles (Chelonia mydas), large-bodied marine herbivores that feed on seagrasses. These seagrass ecosystems provide a rare opportunity to study ecosystem-wide shifts that result from a recovery of herbivores. We evaluate changes in regulation of seagrass productivity in a naturally grazed tropical ecosystem by (1) comparing Thalassia testudinum productivity in grazed and ungrazed areas and (2) evaluating potential regulating mechanisms of T. testudinum productivity. We established 129 green turtle exclusion cages in grazed and ungrazed areas to quantify T. testudinum growth (linear, area, mass, productivity : biomass [P:B]). In each exclosure, we recorded temperature, irradiance, water depth, nitrogen : phosphorus ratio (N:P) of blade tissue, grazing intensity before cage placement, and T. testudinum structural and nutrient characteristics. Thalassia testudinum exhibited compensatory growth in grazed areas via stimulated blade linear growth, blade area growth, and P:B across seasonal high and low growth periods and in shallow (3-4 m) and deep (9-10 m) seagrass meadows. Irradiance, depth, and N:P ratios had significant roles in regulating mass growth and P:B of T. testudinum in ungrazed areas. Depth was a significant regulating factor of mass growth and P:B in grazed areas; rates were higher and more variable in shallow meadows than in deep meadows. Grazing intensity was also a significant regulating factor for P:B, stimulating tissue turnover with increasing grazing pressure. This study provides important insights into how recovery of a large marine herbivore can result in dramatic, sustainable changes in the regulation of seagrass productivity. We also highlight the need for a historical perspective and use of appropriate indicators, including P:B and grazing intensity, when evaluating seagrass response to green turtle grazing as meadows are returned to a natural grazed state. In an age of green turtle recovery and global seagrass decline due to anthropogenic threats, a thorough understanding of green turtle-seagrass interactions at the ecosystem level is critical to ensure the restoration of seagrass ecosystems and continued recovery of green turtle populations.
Collapse
Affiliation(s)
- Alexandra G Gulick
- Archie Carr Center for Sea Turtle Research and Department of Biology, University of Florida, Gainesville, Florida, 32611, USA
| | - Robert A Johnson
- Archie Carr Center for Sea Turtle Research and Department of Biology, University of Florida, Gainesville, Florida, 32611, USA
| | - Clayton G Pollock
- Division of Resource Management and Research, Buck Island Reef National Monument, National Park Service, Christiansted, U.S. Virgin Islands, 00820, USA
| | - Zandy Hillis-Starr
- Division of Resource Management and Research, Buck Island Reef National Monument, National Park Service, Christiansted, U.S. Virgin Islands, 00820, USA
| | - Alan B Bolten
- Archie Carr Center for Sea Turtle Research and Department of Biology, University of Florida, Gainesville, Florida, 32611, USA
| | - Karen A Bjorndal
- Archie Carr Center for Sea Turtle Research and Department of Biology, University of Florida, Gainesville, Florida, 32611, USA
| |
Collapse
|
10
|
Varriano S, Patel K, Lefler L, Kirksey C, Turner A, Moran MD. Effects of Lespedeza cuneata invasion on tallgrass prairie plant and arthropod communities. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02310-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Pierotti R. Historical links between Ethnobiology and Evolution: Conflicts and possible resolutions. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2020; 81:101277. [PMID: 32238300 DOI: 10.1016/j.shpsc.2020.101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/11/2020] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
In recent years there have been several attempts to examine Ethnobiology from an evolutionary perspective. I discuss several potential sources of confusion in applying Evolutionary concepts to Ethnobiology. Ethnobiological discussions of evolution have focused more on changes in human populations, or on human impacts upon plants used by humans for a variety of purposes, than on the processes typically emphasized in discussions by biologists studying evolution. There has been little acknowledgment of how the field of biological evolution is changing in the 21st Century. In this article I focus on recent developments in evolutionary thinking that could be effectively integrated into Ethnobiological concepts. These include: 1) The increased importance of individual organisms in understanding both population dynamics and microevolutionary change (i.e. natural selection). This change in focus creates the potential for incorporating understandings from Indigenous people who recognize a different set of dynamics that govern how both plant and animal populations are regulated, leading to new insights into how conservation practices should be enacted; 2) Niche Construction, which is a 21st century concept that argues that organisms shape their own environments and those of other species. This approach creates a new way of looking at how Natural Selection can act upon a wide range of organisms; and finally, 3) Reticulate Evolution, in which different species exchange genetic material as a result of behavioral or physiological interactions with major evolutionary consequences. These concepts relate strongly to fundamental Indigenous conceptions of ecosystem functioning, including the ideas that All Things are Connected and that All Life Forms are Related. I argue that Ethnobiology and Indigenous Knowledge are strongest in dealing with phenomena linked to behavior and ecology, which are fields being neglected by many contemporary molecular approaches to understanding evolution. Attempts to deal with Conservation in a world subject to climate change would be greatly improved by working closely with Indigenous peoples and incorporating concepts from these traditions into practices on a global scale.
Collapse
Affiliation(s)
- Raymond Pierotti
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA.
| |
Collapse
|
12
|
Wilkins K, Pejchar L, Garvoille R. Ecological and social consequences of bison reintroduction in Colorado. CONSERVATION SCIENCE AND PRACTICE 2019. [DOI: 10.1002/csp2.9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Kate Wilkins
- Graduate Degree Program in Ecology; Colorado State University; Fort Collins Colorado
| | - Liba Pejchar
- Department of Fish, Wildlife, and Conservation Biology; Colorado State University; Fort Collins Colorado
| | - Rebecca Garvoille
- Department of Conservation and Research; Denver Zoo; Denver Colorado
| |
Collapse
|
13
|
Wilkins K, Pejchar L, Garvoille R. Ecological and social consequences of bison reintroduction in Colorado. CONSERVATION SCIENCE AND PRACTICE 2019. [DOI: 10.1111/csp2.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Kate Wilkins
- Graduate Degree Program in EcologyColorado State University Fort Collins Colorado
| | - Liba Pejchar
- Department of Fish, Wildlife, and Conservation BiologyColorado State University Fort Collins Colorado
| | | |
Collapse
|