1
|
Ma P, Zhao J, Zhang H, Zhang L, Luo T. Increased precipitation leads to earlier green-up and later senescence in Tibetan alpine grassland regardless of warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162000. [PMID: 36739031 DOI: 10.1016/j.scitotenv.2023.162000] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
It is debatable whether warming or increased precipitation primarily drives the changes of spring and autumn phenology in alpine grasslands at high elevations like the Tibetan Plateau. We aim to test the hypothesis that increased precipitation and soil moisture rather than warming significantly advance spring green-up dates (GUD) of dominant species in a semiarid alpine grassland, while both increases of temperature and precipitation delay their autumn senescence dates (SD). We conducted a 2-year manipulative experiment with infrared warming (ambient, +2 °C) and precipitation increase for each of rainfall events (ambient, +15 %, +30 %) during the growing season in a Tibetan alpine grassland. GUD and SD of three dominant species and the relevant soil temperature (ST) and moisture (SM) were observed. Rainy season onset as well as Pre-GUD or Pre-SD (30 days before GUD or SD) mean air-temperature (T-30d) and precipitation (P-30d) and relevant soil temperature (ST-30d) and moisture (SM-30d) were calculated for each experimental treatment. GUD dates of the three dominant species were advanced by increased precipitation rather than by warming, which showed a robust positive correlation with rainy season onset. SD dates were independently delayed by both increases of temperature and precipitation. There was no interactive effect of warming and increased precipitation on GUD and SD across species and years. In general, GUD had a significant negative correlation with Pre-GUD P-30d (SM-30d) but not with Pre-GUD T-30d (ST-30d), while SD showed a significant positive correlation with Pre-SD T-30d and P-30d or Pre-SD ST-30d and SM-30d. Our data support the hypothesis, indicating that spring and autumn phenology of monsoon-adapted alpine vegetation are more sensitive to precipitation change than to warming. The prolonged growing season length under increased temperature and precipitation is more depended on the delay of autumn senescence than the advance of spring green-up.
Collapse
Affiliation(s)
- Pengfei Ma
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingxue Zhao
- College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Haoze Zhang
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Zhang
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianxiang Luo
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
2
|
Lu C, Zhang J, Min X, Chen J, Huang Y, Zhao H, Yan T, Liu X, Wang H, Liu H. Contrasting responses of early‐ and late‐season plant phenophases to altered precipitation. OIKOS 2023. [DOI: 10.1111/oik.09829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Chunyan Lu
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal Univ. Shanghai China
- Inst. of Eco‐Chongming (IEC), East China Normal Univ. Shanghai China
| | - Juanjuan Zhang
- State Key Laboratory of Grassland Agro‐Ecosystems, and College of Ecology, Lanzhou Univ. Lanzhou China
| | - Xueting Min
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal Univ. Shanghai China
- Inst. of Eco‐Chongming (IEC), East China Normal Univ. Shanghai China
| | - Jianghui Chen
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal Univ. Shanghai China
- Inst. of Eco‐Chongming (IEC), East China Normal Univ. Shanghai China
| | - Yixuan Huang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal Univ. Shanghai China
- Inst. of Eco‐Chongming (IEC), East China Normal Univ. Shanghai China
| | - Hongfang Zhao
- School of Geographic Sciences, East China Normal Univ. Shanghai China
| | - Tao Yan
- State Key Laboratory of Grassland Agro‐Ecosystems, and College of Ecology, Lanzhou Univ. Lanzhou China
| | - Xiang Liu
- State Key Laboratory of Grassland Agro‐Ecosystems, and College of Ecology, Lanzhou Univ. Lanzhou China
| | - Hao Wang
- State Key Laboratory of Grassland Agro‐Ecosystems, and College of Ecology, Lanzhou Univ. Lanzhou China
| | - Huiying Liu
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal Univ. Shanghai China
- Inst. of Eco‐Chongming (IEC), East China Normal Univ. Shanghai China
| |
Collapse
|
3
|
Chen Y, Collins SL, Zhao Y, Zhang T, Yang X, An H, Hu G, Xin C, Zhou J, Sheng X, He M, Zhang P, Guo Z, Zhang H, Li L, Ma M. Warming reduced flowering synchrony and extended community flowering season in an alpine meadow on the Tibetan Plateau. Ecology 2023; 104:e3862. [PMID: 36062319 DOI: 10.1002/ecy.3862] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/14/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023]
Abstract
The timing of phenological events is highly sensitive to climate change, and may influence ecosystem structure and function. Although changes in flowering phenology among species under climate change have been reported widely, how species-specific shifts will affect phenological synchrony and community-level phenology patterns remains unclear. We conducted a manipulative experiment of warming and precipitation addition and reduction to explore how climate change affected flowering phenology at the species and community levels in an alpine meadow on the eastern Tibetan Plateau. We found that warming advanced the first and last flowering times differently and with no consistent shifts in flowering duration among species, resulting in the entire flowering period of species emerging earlier in the growing season. Early-flowering species were more sensitive to warming than mid- and late-flowering species, thereby reducing flowering synchrony among species and extending the community-level flowering season. However, precipitation and its interactions with warming had no significant effects on flowering phenology. Our results suggest that temperature regulates flowering phenology from the species to community levels in this alpine meadow community, yet how species shifted their flowering timing and duration in response to warming varied. This species-level divergence may reshape flowering phenology in this alpine plant community. Decreasing flowering synchrony among species and the extension of community-level flowering seasons under warming may alter future trophic interactions, with cascading consequences to community and ecosystem function.
Collapse
Affiliation(s)
- Yaya Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Scott L Collins
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Yunpeng Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Tianwu Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xiangrong Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Hang An
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Guorui Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Chunming Xin
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Juan Zhou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xiongjie Sheng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Mingrui He
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Panhong Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Zengpeng Guo
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Hui Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Lanping Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai Province, China
| | - Miaojun Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Zhang H, Zhan C, Xia J, Yeh PJF. Responses of vegetation to changes in terrestrial water storage and temperature in global mountainous regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158416. [PMID: 36049697 DOI: 10.1016/j.scitotenv.2022.158416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
As an important component of terrestrial ecosystem, vegetation acts as a sensitive recorder of changes in hydroclimatic conditions. Long-term time series of remote sensing-based vegetation indices and their influencing environmental driving factors, such as human activities and climate change, have been widely discussed in the literature. Globally, however, little is known about the hydroclimatic processes controlling vegetation changes in mountainous regions, which are conceived as more sensitive to climate change than other landscapes. The present study aims to quantify the respective roles of two dominant hydroclimatic factors, namely, TWS (i.e., terrestrial water storage) and Tair (i.e., temperature), in the spatio-temporal changes of mountainous vegetation over global six contrasting climate zones (i.e., tropical, arid, subtropical, temperate, sub-frigid, and frigid zones) during the period 2003-2016 based on EVI (i.e., enhanced vegetation index), TWS, Tair, and elevation data. Results indicate that the mean EVI shows a larger increasing trend (+0.85 %/decade, p-value < 0.01) and a larger decreasing trend in TWS (-85 mm/decade, p-value < 0.01) across the global mountainous regions than other global regions combined together (+0.61 %/decade, p-value < 0.01), particularly over high latitudes. With the increasing latitudes, the positive effect of temperature more dominates mountainous vegetation growth than moisture, as evidenced by the increasing trends of EVI with warming. However, in certain low-latitude mountainous regions (e.g., East Africa, South Asia, the western Tibetan Plateau, Brazil Plateau, and the southern Rocky Mountains), mountainous vegetation may face degradation due to water deficit induced by increased snowmelt, especially among the high-elevation ecosystems. The water availability controls vegetation activities more than Tair in the mid- and low-latitude regions, including the tropical, arid, and subtropical climate zones. These findings indicate that the potential shifts in mountainous vegetation may occur under the notable interactions with hydroclimatic factors, as the high-latitudes are experiencing ongoing warming and the mid- and low-latitudes are getting dryer.
Collapse
Affiliation(s)
- Haoyue Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Yucheng Comprehensive Experiment Station, Chinese Academy of Sciences, Yucheng 251200, China
| | - Chesheng Zhan
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Yucheng Comprehensive Experiment Station, Chinese Academy of Sciences, Yucheng 251200, China.
| | - Jun Xia
- State Key Laboratory of Water Resources & Hydropower Engineering Sciences, Wuhan University, Wuhan 430072, China
| | - Pat J-F Yeh
- Discipline of Civil Engineering, Monash University, Malaysia Campus, Malaysia
| |
Collapse
|
5
|
Zettlemoyer MA, Wilson JE, DeMarche ML. Estimating phenological sensitivity in contemporary vs. historical data sets: Effects of climate resolution and spatial scale. AMERICAN JOURNAL OF BOTANY 2022; 109:1981-1990. [PMID: 36321486 DOI: 10.1002/ajb2.16087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
PREMISE Phenological sensitivity, or the degree to which a species' phenology shifts in response to warming, is an important parameter for comparing and predicting species' responses to climate change. Phenological sensitivity is often measured using herbarium specimens or local studies in natural populations. These approaches differ widely in spatiotemporal scales, yet few studies explicitly consider effects of the geographic extent and resolution of climate data when comparing phenological sensitivities quantified from different data sets for a given species. METHODS We compared sensitivity of flowering phenology to growing degree days of the alpine plant Silene acaulis using two data sets: herbarium specimens and a 6 yr observational study in four populations at Niwot Ridge, Colorado, USA. We investigated differences in phenological sensitivity obtained using variable spatial scales and climate data sources. RESULTS Herbarium specimens underestimated phenological sensitivity compared to observational data, even when herbarium samples were limited geographically or to nearby weather station data. However, when observational data were paired with broader-scale climate data, as is typically used in herbarium data sets, estimates of phenological sensitivity were more similar. CONCLUSIONS This study highlights the potential for variation in data source, geographic scale, and accuracy of macroclimate data to produce very different estimates of phenological responses to climate change. Accurately predicting phenological shifts would benefit from comparisons between methods that estimate climate variables and phenological sensitivity over a variety of spatial scales.
Collapse
Affiliation(s)
- Meredith A Zettlemoyer
- Department of Plant Biology, University of Georgia, 120 Carlton Street, 2502 Miller Plant Sciences, Athens, Georgia, 30602-5004, USA
| | - Jill E Wilson
- Department of Plant Biology, University of Georgia, 120 Carlton Street, 2502 Miller Plant Sciences, Athens, Georgia, 30602-5004, USA
| | - Megan L DeMarche
- Department of Plant Biology, University of Georgia, 120 Carlton Street, 2502 Miller Plant Sciences, Athens, Georgia, 30602-5004, USA
| |
Collapse
|
6
|
Yan Z, Xu J, Wang X, Yang Z, Liu D, Li G, Huang H. Continued spring phenological advance under global warming hiatus over the Pan-Third Pole. FRONTIERS IN PLANT SCIENCE 2022; 13:1071858. [PMID: 36507380 PMCID: PMC9729745 DOI: 10.3389/fpls.2022.1071858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
The global surface temperature has witnessed a warming hiatus in the first decade of this century, but how this slowing down of warming will impact spring phenology over Pan-Third Pole remains unclear. Here, we combined multiple satellite-derived vegetation indices with eddy covariance datasets to evaluate the spatiotemporal changes in spring phenological changes over the Pan-Third Pole. We found that the spring phenology over Pan-Third Pole continues to advance at the rate of 4.8 days decade-1 during the warming hiatus period, which is contrasted to a non-significant change over the northern hemisphere. Such a significant and continued advance in spring phenology was mainly attributed to an increase in preseason minimum temperature and water availability. Moreover, there is an overall increasing importance of precipitation on changes in spring phenology during the last four decades. We further demonstrated that this increasingly negative correlation was also found across more than two-thirds of the dryland region, tentatively suggesting that spring phenological changes might shift from temperature to precipitation-controlled over the Pan-Third Pole in a warmer world.
Collapse
Affiliation(s)
- Zhengjie Yan
- College of Ecology, Lanzhou University, Lanzhou, China
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, China
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Jinfeng Xu
- College of Ecology, Lanzhou University, Lanzhou, China
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, China
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyi Wang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Yang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Dan Liu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Guoshuai Li
- Heihe Remote Sensing Experimental Research Station, Key Laboratory of Remote Sensing of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Huabing Huang
- School of Geospatial Engineering and Science, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Zhuhai, China
| |
Collapse
|
7
|
Castillioni K, Newman GS, Souza L, Iler AM. Effects of drought on grassland phenology depend on functional types. THE NEW PHYTOLOGIST 2022; 236:1558-1571. [PMID: 36068954 DOI: 10.1111/nph.18462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Shifts in flowering phenology are important indicators of climate change. However, the role of precipitation in driving phenology is far less understood compared with other environmental cues, such as temperature. We use a precipitation reduction gradient to test the direction and magnitude of effects on reproductive phenology and reproduction across 11 plant species in a temperate grassland, a moisture-limited ecosystem. Our experiment was conducted in a single, relatively wet year. We examine the effects of precipitation for species, functional types, and the community. Our results provide evidence that reduced precipitation shifts phenology, alters flower and fruit production, and that the magnitude and direction of the responses depend on functional type and species. For example, early-blooming species shift toward earlier flowering, whereas later-blooming species shift toward later flowering. Because of opposing species-level shifts, there is no overall shift in community-level phenology. This study provides experimental evidence that changes in rainfall can drive phenological shifts. Our results additionally highlight the importance of understanding how plant functional types govern responses to changing climate conditions, which is relevant for forecasting phenology and community-level changes. Specifically, the implications of divergent phenological shifts between early- and late-flowering species include resource scarcity for pollinators and seed dispersers and new temporal windows for invasion.
Collapse
Affiliation(s)
- Karen Castillioni
- Oklahoma Biological Survey, University of Oklahoma, Norman, OK, 73019, USA
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Gregory S Newman
- Oklahoma Biological Survey, University of Oklahoma, Norman, OK, 73019, USA
- Department of Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Lara Souza
- Oklahoma Biological Survey, University of Oklahoma, Norman, OK, 73019, USA
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Amy M Iler
- Chicago Botanic Garden, The Negaunee Institute for Plant Science Conservation and Action, Glencoe, IL, 60022, USA
| |
Collapse
|
8
|
Li S, Dong S, Fu Y, Zhou B, Liu S, Shen H, Xu Y, Gao X, Xiao J, Wu S, Li F. Air or soil temperature matters the responses of alpine plants in biomass accumulation to climate warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157141. [PMID: 35798113 DOI: 10.1016/j.scitotenv.2022.157141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Climate change has substantially affected plant phenology and growth on the Qinghai-Tibetan Plateau (QTP), while it remains unclear how plant phenology and growth impact the plant biomass under climate change. We used long-term data (from 1997 to 2017) for four plants, Stipa purpurea, Artemisia scoparia, Kobresia humilis and Astragalus laxmannii in the alpine meadow to examine the relationships among multiple climate factors, vegetative growth, reproductive growth, intrinsic growth rate and biomass. The order of returning to green determines the growth strategies of different plants, the earliest plants to green (p < 0.05) (e.g., Stipa purpurea and Artemisia scoparia) would choose the strategy of vegetative growth (p < 0.05); the earlier plants (p < 0.05) (e.g., Kobresia humilis) would be regulated by both vegetative growth and reproductive growth (p < 0.05); while the latest plant to green (p < 0.05) such as Astragalus laxmannii, would choose intrinsic growth rate rather than growing season (P < 0.05). Temperature was the most important drivers for key phenological phases and growth patterns of four species, different factors play a role in different stages of the growth period, i.e., in the early and late stage is the soil temperature, while in the middle stage is the average temperature or the maximum temperature, and all the optimum thresholds were >30 day. These findings provide the in-situ evidences of long-term changes in phenology and its associated growth on the biomass of alpine plants on the QTP in the era of climate change.
Collapse
Affiliation(s)
- Shuai Li
- College of Resource and Environment, Shanxi Agricultural University, Taigu 030801, China
| | - Shikui Dong
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China.
| | - Yongshuo Fu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Bingrong Zhou
- Qinghai Institute of Meteorology Sciences, Xining 810001, China
| | - Shiliang Liu
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Hao Shen
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Yudan Xu
- College of Grassland Science, Shanxi Agricultural University, Taigu 030801, China
| | - Xiaoxia Gao
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jiannan Xiao
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Shengnan Wu
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Fu Li
- Qinghai Institute of Meteorology Sciences, Xining 810001, China
| |
Collapse
|
9
|
Distribution of Biodiversity of Wild Beet Species (Genus Beta L.) in Armenia under Ongoing Climate Change Conditions. PLANTS 2022; 11:plants11192502. [PMID: 36235368 PMCID: PMC9573691 DOI: 10.3390/plants11192502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/06/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022]
Abstract
The reported annual temperature increase and significant precipitation drop in Armenia impact the country’s ecosystems and biodiversity. The present study surveyed the geographical distribution of the local wild beet species under the ongoing climate change conditions. We showed that B. lomatogona, B. corolliflora and B. macrorhiza are sensitive to climate change and were affected to various degrees, depending on their location. The most affected species was B. lomatogona, which is at the verge of extinction. Migration for ca. 90 and 200–300 m up the mountain belt was recorded for B. lomatogona and B. macrorhiza, respectively. B. corolliflora was found at 100–150 m lower altitudes than in the 1980s. A general reduction in the beet’s population size in the native habitats was observed, with an increased number of plants within the populations, recorded for B. corolliflora and B. macrorhiza. A new natural hybrid Beta x intermedium Aloyan between B. corolliflora and B. macrorhiza was described and confirmed using chloroplast DNA trnL-trnF intergenic spacer (LF) and partially sequenced alcohol dehydrogenase (adh) of nuclear DNA. An overview of the wild beets reported in Armenia with the taxonomic background, morphological features, and distribution is provided. Conservation measures for preservation of these genetic resources are presented.
Collapse
|
10
|
Phenological Shifts of the Deciduous Forests and Their Responses to Climate Variations in North America. FORESTS 2022. [DOI: 10.3390/f13071137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Forests play a vital role in sequestering carbon dioxide from the atmosphere. Vegetation phenology is sensitive to climate changes and natural environments. Exploring the patterns in phenological events of the forests can provide useful insights for understanding the dynamics of vegetation growth and their responses to climate variations. Deciduous forest in North America is an important part of global forests. Here we apply time-series remote sensing imagery to map the critical dates of vegetation phenological events, including the start of season (SOS), end of season (EOS), and growth length (GL) of the deciduous forests in North America during the past two decades. The findings show that the SOS and EOS present considerable spatial and temporal variations. Earlier SOS, delayed EOS, and therefore extended GL are detected in a large part of the study area from temporal trend analysis over the years, though the magnitude of the trend varies at different locations. The phenological events are found to correlate to the environmental factors and the impact on the vegetation phenology from the factors is location-dependent. The findings confirm that the phenology of the deciduous forests in North America is updated such as advanced SOS and delayed EOS in the last two decades and the climate variations are likely among the driving forces for the updates. Considering that previous studies warn that shifts in vegetation phenology could reverse the role of forests as net emitters or net sinks, we suggest that forest management should be strengthened to forests that experience significant changes in the phenological events.
Collapse
|
11
|
Ma Q, Li X, Wu S, Zeng F. Potential geographical distribution of Stipa purpurea across the Tibetan Plateau in China under climate change in the 21st century. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
12
|
Multi-year monitoring land surface phenology in relation to climatic variables using MODIS-NDVI time-series in Mediterranean forest, Northeast Tunisia. ACTA OECOLOGICA 2022. [DOI: 10.1016/j.actao.2021.103804] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
An S, Chen X, Shen M, Zhang X, Lang W, Liu G. Increasing Interspecific Difference of Alpine Herb Phenology on the Eastern Qinghai-Tibet Plateau. FRONTIERS IN PLANT SCIENCE 2022; 13:844971. [PMID: 35392512 PMCID: PMC8982063 DOI: 10.3389/fpls.2022.844971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
The phenology of alpine grassland on the Qinghai-Tibet Plateau (QTP) is critical to regional climate change through climate-vegetation feedback. Although many studies have examined QTP vegetation dynamics and their climate sensitivities, the interspecific difference in the phenology response to climate change between alpine species is poorly understood. Here, we used a 30-year (1989-2018) record of in situ phenological observation for five typical alpine herbs (Elymus nutans, Kobresia pygmaea, Plantago asiatica, Puccinellia tenuiflora, and Scirpus distigmaticus) and associated climatic records at Henan Station in the eastern QTP to examine the species-level difference in spring and autumn phenology and then quantify their climate sensitivities. Our results show that with significantly warming, the green-up dates of herbs were insignificantly shifted, while the brown-off dates in four out of the five herbs were significantly delayed. Meanwhile, the interspecific difference in brown-off dates significantly increased at a rate of 0.62 days/annual from 1989 to 2016, which was three times larger than that in green-up dates (0.20 days/annual). These diverse rates were attributed to the different climate controls on spring and autumn phenology. In particular, green-up dates in most herbs were sensitive to mean surface temperature, while brown-off dates were sensitive to the night surface temperature. Furthermore, brown-off dates are less sensitive to the warming in high ecological niche (with higher herb height and aboveground biomass) herbs than low niche herbs (with lower herb height and aboveground biomass). The increased phenology interspecific difference highlights the complex responses of herbs to future climate change even under the same alpine environment and indicates a potential alternation in the plants community of alpine QTP, which may further influence the regional climate-vegetation feedback.
Collapse
Affiliation(s)
- Shuai An
- College of Applied Arts and Science, Beijing Union University, Beijing, China
| | - Xiaoqiu Chen
- Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Miaogen Shen
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Xiaoyang Zhang
- Geospatial Sciences Center of Excellence, Department of Geography and Geospatial Sciences, South Dakota State University, Brookings, SD, United States
| | - Weiguang Lang
- Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Guohua Liu
- Jiangsu Key Laboratory of Agricultural Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| |
Collapse
|
14
|
Chu X, Man R, Zhang H, Yuan W, Tao J, Dang QL. Does Climate Warming Favour Early Season Species? FRONTIERS IN PLANT SCIENCE 2021; 12:765351. [PMID: 34868164 PMCID: PMC8639222 DOI: 10.3389/fpls.2021.765351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/25/2021] [Indexed: 05/28/2023]
Abstract
Plant species that start early in spring are generally more responsive to rising temperatures, raising concerns that climate warming may favour early season species and result in altered interspecific interactions and community structure and composition. This hypothesis is based on changes in spring phenology and therefore active growing season length, which would not be indicative of possible changes in growth as would changes in cumulative forcing temperatures (growing degree days/hours) in the Northern Hemisphere. In this study we analysed the effects of a moderate climate warming (2°C warmer than the 1981-2010 baseline) on the leaf-out of hypothetical species without chilling restriction and actual plant species with different chilling and forcing requirements in different parts of the globe. In both cases, early season species had larger phenological shifts due to low leaf-out temperatures, but accumulated fewer forcing gains (changes in cumulative forcing temperatures by warming) from those shifts because of their early spring phenology. Leaf-out time was closely associated with leaf-out temperatures and therefore plant phenological responses to climate warming. All plant species would be equally affected by climate warming in terms of total forcing gains added from higher temperatures when forcing gains occurring between early and late season species are included. Our findings will improve the understanding of possible mechanisms and consequences of differential responses in plant phenology to climate warming.
Collapse
Affiliation(s)
- Xiuli Chu
- Shanghai Botanical Garden, Shanghai Engineering Research Center of Sustainable Plant Innovation, Shanghai, China
| | - Rongzhou Man
- Ontario Ministry of Northern Development, Mines, Natural Resources and Forestry, Ontario Forest Research Institute, Sault Ste. Marie, ON, Canada
| | - Haicheng Zhang
- Department Geoscience, Environment and Society, Université Libre de Bruxelles, Brussels, Belgium
| | - Wenping Yuan
- School of Atmospheric Science, Sun Yat-sen University, Guangzhou, China
| | - Jing Tao
- Jilin Provincial Academy of Forestry Sciences, Changchun, China
| | - Qing-Lai Dang
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON, Canada
| |
Collapse
|
15
|
Conceptual Frameworks for Assessing Climate Change Effects on Urban Areas: A Scoping Review. SUSTAINABILITY 2021. [DOI: 10.3390/su131910794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Urban areas are amongst the most adversely affected regions by current and future climate change effects. One issue when it comes to measuring, for example, impacts, vulnerabilities, and resilience in preparation of adaptation action is the abundance of conceptual frameworks and associated definitions. Frequently, those definitions contradict each other and shift over time. Prominently, in the transition from the IPCC AR (International Panel on Climate Change Assessment Report) 4 to the IPCC AR 5, a number of conceptual understandings have changed. By integrating common concepts, the literature review presented intends to thoroughly investigate frameworks applied to assess climate change effects on urban areas, creating an evidence base for research and politically relevant adaptation. Thereby, questions concerning the temporal development of publication activity, the geographical scopes of studies and authors, and the dominant concepts as applied in the studies are addressed. A total of 50 publications is identified following screening titles, abstracts, and full texts successively based on inclusion and exclusion criteria. Major findings derived from our literature corpus include a recently rising trend in the number of publications, a focus on Chinese cities, an imbalance in favor of authors from Europe and North America, a dominance of the concept of vulnerability, and a strong influence of the IPCC publications. However, confusion regarding various understandings remains. Future research should focus on mainstreaming and unifying conceptual frameworks and definitions as well as on conducting comparative studies.
Collapse
|
16
|
Stuble KL, Bennion LD, Kuebbing SE. Plant phenological responses to experimental warming-A synthesis. GLOBAL CHANGE BIOLOGY 2021; 27:4110-4124. [PMID: 33993588 DOI: 10.1111/gcb.15685] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 04/19/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Although there is abundant evidence that plant phenology is shifting with climatic warming, the magnitude and direction of these shifts can depend on the environmental context, plant species, and even the specific phenophase of study. These disparities have resulted in difficulties predicting future phenological shifts, detecting phenological mismatches and identifying other ecological consequences. Experimental warming studies are uniquely poised to help us understand how climate warming will impact plant phenology, and meta-analyses allow us to expose broader trends from individual studies. Here, we review 70 studies comprised 1226 observations of plant phenology under experimental warming. We find that plants are advancing their early-season phenophases (bud break, leaf-out, and flowering) in response to warming while marginally delaying their late-season phenophases (leaf coloration, leaf fall, and senescence). We find consistency in the magnitude of phenological shifts across latitude, elevation, and habitat types, whereas the effect of warming on nonnative annual plants is two times larger than the effect of warming on native perennial plants. Encouragingly for researchers, plant phenological responses were generally consistent across a variety of experimental warming methods. However, we found numerous gaps in the experimental warming literature, limiting our ability to predict the effects of warming on phenological shifts. In particular, studies outside of temperate ecosystems in the Northern Hemisphere, or those that focused on late-season phenophases, annual plants, nonnative plants, or woody plants and grasses, were underrepresented in our data set. Future experimental warming studies could further refine our understanding of phenological responses to warming by setting up experiments outside of traditionally studied biogeographic zones and measuring multiple plant phenophases (especially late-season phenophases) across species of varying origin, growth form, and life cycle.
Collapse
Affiliation(s)
| | - Leland D Bennion
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Sara E Kuebbing
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
17
|
Egeru A, Magaya JP, Kuule DA, Siya A, Gidudu A, Barasa B, Namaalwa JJ. Savannah Phenological Dynamics Reveal Spatio-Temporal Landscape Heterogeneity in Karamoja Sub-region, Uganda. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.541170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phenological properties are critical in understanding global environmental change patterns. This study analyzed phenological dynamics in a savannah dominated semi-arid environment of Uganda. We used moderate-resolution imaging spectroradiometer normalized difference vegetation index (MODIS NDVI) imagery. TIMESAT program was used to analyse the imagery to determine key phenological metrics; onset of greenness (OGT), onset of greenness value, end of greenness time (EGT), end of greenness value, maximum NDVI, time of maximum NDVI, duration of greenup (DOG) and range of normalized difference vegetation index (RNDVI). Results showed that thicket and shrubs had the earliest OGT on day 85 ± 14, EGT on day 244 ± 32 and a DOG of 158 ± 25 days. Woodland had the highest NDVI value for maximum NDVI, OGT, EGT, and RNDVI. In the bushland, OGT occurs on average around day 90 ± 11, EGT on day 255 ± 33 with a DOG of 163 ± 36 days. The grassland showed that OGT occurs on day 96 ± 13, EGT on day 252 ± 36 with a total DOG of 156 ± 33 days. Early photosynthesis activity was observed in central to eastern Karamoja in the districts of Moroto and Kotido. There was a positive relationship between rainfall and NDVI across all vegetation cover types as well as between phenological parameters and season dynamics. Vegetation senescence in the sub-region occurs around August to mid-September (day 244–253). The varied phenophases observed in the sub-region reveal an inherent landscape heterogeneity that is beneficial to extensive pastoral livestock production. Continuous monitoring of savannah phenological patterns in the sub-region is required to decipher landscape ecosystem processes and functioning.
Collapse
|
18
|
Li L, Zhang Y, Wu J, Li S, Zhang B, Zu J, Zhang H, Ding M, Paudel B. Increasing sensitivity of alpine grasslands to climate variability along an elevational gradient on the Qinghai-Tibet Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:21-29. [PMID: 31075588 DOI: 10.1016/j.scitotenv.2019.04.399] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 05/13/2023]
Abstract
Monitoring and mapping the sensitivity of grassland ecosystems to climate change is crucial for developing sustainable local grassland management strategies. The sensitivity of alpine grasslands to climate change is considered to be high on the Qinghai-Tibet Plateau (QTP), yet little is known about its spatial pattern, and particularly the variations between different elevations. Here, based on the Normalized Difference Vegetation Index (NDVI) and three climate variables (air temperature, precipitation, and solar radiation), we modified a vegetation sensitivity index-approach to capture the relative sensitivity of alpine grassland productivity to climate variability on the QTP during 2000-2016. The results show that alpine grasslands on the southern QTP are more sensitive to climate variability overall, and that the climate factors driving alpine grassland dynamics are spatially heterogeneous. Alpine grasslands on the southern QTP are more sensitive to temperature variability, those on the northeastern QTP display strong responses to precipitation variability, and those on the central QTP are primarily influenced by a combination of radiation and temperature variability. The sensitivity of alpine grasslands to climate variability increases significantly along an elevational gradient, especially to temperature variability. This study underscores that alpine grasslands at higher elevations on the QTP are more sensitive to climate variability than those at lower elevations at the regional scale.
Collapse
Affiliation(s)
- Lanhui Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yili Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS, Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China.
| | - Jianshuang Wu
- Freie Universität Berlin, Institute of Biology, Biodiversity/Theoretical Ecology, Berlin 14195, Germany
| | - Shicheng Li
- School of Public Administration, China University of Geosciences, Wuhan 430074, China
| | - Binghua Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxing Zu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huamin Zhang
- Key Lab of Poyang Lake Wetland and Watershed Research of Ministry of Education, School of Geography and Environment, Jiangxi Normal University, Nanchang 330028, China
| | - Mingjun Ding
- Key Lab of Poyang Lake Wetland and Watershed Research of Ministry of Education, School of Geography and Environment, Jiangxi Normal University, Nanchang 330028, China
| | - Basanta Paudel
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
| |
Collapse
|