1
|
Rose NH, Shepard JJ, Ayala D. Establishing Colonies from Field-Collected Mosquitoes: Special Accommodations for Wild Strains. Cold Spring Harb Protoc 2024; 2024:pdb.top107654. [PMID: 37208146 DOI: 10.1101/pdb.top107654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A researcher may have many reasons for wanting to establish new laboratory colonies from field-collected mosquitoes. In particular, the ability to study the diversity found within and among natural populations in a controlled laboratory environment opens up a wide range of possibilities for understanding how and why burdens of vector-borne disease vary over space and time. However, field-collected mosquitoes are often more difficult to work with than established laboratory strains, and considerable logistical challenges are involved in safely transporting field-collected mosquitoes into the laboratory. Here, we provide advice for researchers working with Aedes aegypti, Anopheles gambiae, and Culex pipiens, as well as notes on other closely related species. We provide guidance on each stage of the life cycle and highlight the life stages for which it is easiest to initiate new laboratory colonies for each species. In accompanying protocols, we provide methods detailing Ae. aegypti egg collection and hatching as well as how to transport larvae and pupae from the field.
Collapse
Affiliation(s)
- Noah H Rose
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA
| | - John J Shepard
- Department of Entomology and Center for Vector Biology and Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, USA
| | - Diego Ayala
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier BP 64501, 34394, France
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo BP1274, 101, Madagascar
| |
Collapse
|
2
|
Boerlijst SP, van der Gaast A, Adema LMW, Bouman RW, Boelee E, van Bodegom PM, Schrama M. Taking it with a grain of salt: tolerance to increasing salinization in Culex pipiens (Diptera: Culicidae) across a low-lying delta. Parasit Vectors 2024; 17:251. [PMID: 38858771 PMCID: PMC11165877 DOI: 10.1186/s13071-024-06268-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/01/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Salinity, exacerbated by rising sea levels, is a critical environmental cue affecting freshwater ecosystems. Predicting ecosystem structure in response to such changes and their implications for the geographical distribution of arthropod disease vectors requires further insights into the plasticity and adaptability of lower trophic level species in freshwater systems. Our study investigated whether populations of the mosquito Culex pipiens, typically considered sensitive to salt, have adapted due to gradual exposure. METHODS Mesocosm experiments were conducted to evaluate responses in life history traits to increasing levels of salinity in three populations along a gradient perpendicular to the North Sea coast. Salt concentrations up to the brackish-marine transition zone (8 g/l chloride) were used, upon which no survival was expected. To determine how this process affects oviposition, a colonization experiment was performed by exposing the coastal population to the same concentrations. RESULTS While concentrations up to the currently described median lethal dose (LD50) (4 g/l) were surprisingly favored during egg laying, even the treatment with the highest salt concentration was incidentally colonized. Differences in development rates among populations were observed, but the influence of salinity was evident only at 4 g/l and higher, resulting in only a 1-day delay. Mortality rates were lower than expected, reaching only 20% for coastal and inland populations and 41% for the intermediate population at the highest salinity. Sex ratios remained unaffected across the tested range. CONCLUSIONS The high tolerance to salinity for all key life history parameters across populations suggests that Cx. pipiens is unlikely to shift its distribution in the foreseeable future, with potential implications for the disease risk of associated pathogens.
Collapse
Affiliation(s)
- Sam Philip Boerlijst
- Center for Environmental Research Leiden, Department of Environmental Biology, Leiden University, Einsteinweg 2, 2333 CC, Leiden, The Netherlands.
- Division of Inland Water Systems, Deltares, 177, 2600 MH, Delft, The Netherlands.
| | - Antje van der Gaast
- Center for Environmental Research Leiden, Department of Environmental Biology, Leiden University, Einsteinweg 2, 2333 CC, Leiden, The Netherlands
| | - Lisa Maria Wilhelmina Adema
- Center for Environmental Research Leiden, Department of Environmental Biology, Leiden University, Einsteinweg 2, 2333 CC, Leiden, The Netherlands
| | - Roderick Wiebe Bouman
- Hortus Botanicus Leiden, 9500, 2300 RA, Leiden, The Netherlands
- Naturalis Biodiversity Center, 9517, 2300 RA, Leiden, Netherlands
- Institute of Biology Leiden, Leiden University, 9505, 2300 RA, Leiden, Netherlands
| | - Eline Boelee
- Division of Inland Water Systems, Deltares, 177, 2600 MH, Delft, The Netherlands
| | - Peter Michiel van Bodegom
- Center for Environmental Research Leiden, Department of Environmental Biology, Leiden University, Einsteinweg 2, 2333 CC, Leiden, The Netherlands
| | - Maarten Schrama
- Center for Environmental Research Leiden, Department of Environmental Biology, Leiden University, Einsteinweg 2, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
3
|
Jiang Y, Burroughs S. Interactive Effects of Salinity and Mosquito Larvicides Toxicity to Larvae of Aedes Taeniorhynchus. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2024; 40:26-31. [PMID: 38369954 DOI: 10.2987/23-7151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Understanding the influence of salinity on the efficacy of mosquito larvicides in brackish water habitats is crucial for effective salt-marsh Aedes taeniorhynchus control. This study investigated the interactive effects of salinity on the toxicity of 3 commonly used mosquito larvicides: Bacillus thuringiensis israelensis (VectoBac® 12AS), spinosad (Natular® SC), and S-methoprene (Altosid® 12AS) against Ae. taeniorhynchus larvae. Four salinity levels (0 ppt [parts per thousand], 8 ppt, 16 ppt, and 32 ppt) were tested in laboratory bioassays. The results revealed distinct responses of these larvicides to varying salinity levels. VectoBac 12AS displayed consistent efficacy across all salinity levels, indicating its suitability for brackish water habitats. In contrast, Natular 2EC exhibited increased effectiveness with higher salinity, making it a preferable choice for saline environments. Altosid 12AS showed its highest efficacy in freshwater, with reduced effectiveness as salinity increased. These findings underscore the need to consider salinity levels when selecting and applying mosquito larvicides in diverse aquatic habitats. Understanding the complex interplay between salinity and larvicide performance is essential for optimizing mosquito control strategies and mitigating mosquito-borne diseases in various environments.
Collapse
|
4
|
Blanco-Sierra L, Savvidou EC, Mpakovasili ED, Ioannou CS, Bartumeus F, Papadopoulos NT. Effect of water salinity on immature performance and lifespan of adult Asian tiger mosquito. Parasit Vectors 2024; 17:24. [PMID: 38238765 PMCID: PMC10797731 DOI: 10.1186/s13071-023-06069-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/26/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Aedes albopictus (Skuse, 1894) is a vector for pathogens like dengue, chikungunya, and Zika viruses. Its adaptive capacity enables reproduction in temperate climates and development mainly in artificial containers with fresh water in urbanized areas. Nevertheless, breeding in coastal areas may also occur along with its aggressive invasiveness. Global warming and the consequent rise in sea levels will increase saline (> 30 ppt) or brackish (0.5-30 ppt salt) water in coastal regions. To address whether Ae. albopictus can breed in brackish water, we initiated the current study that analyses the survival of immature stages at different salinity concentrations and explores whether carryover effects occur in the resulting adults. This possible adaptation is important when considering the potential for development in new habitats and expansion of one of the world's most invasive species. METHODS We investigated the influence of salinity on the survival of Ae. albopictus larvae and adults under laboratory-controlled conditions. First instar larvae were exposed to different salinity concentrations (0 to 30 ppt) and their development time, pupation, adult emergence, and overall survival were monitored daily. We used Kaplan-Meier and Cox regression models to analyze the survival rates at different salinity levels. Furthermore, life tables were constructed under each salinity concentration. RESULTS Increasing salt concentrations significantly increased the mortality risk during immature development, while no significant effect was observed on adult mortality risk. A comparison between distilled and bottled water revealed a notable increase in overall mortality risk for individuals developing in distilled water. However, no significant effects were found when analyzing survival from the first larval stage to adult emergence and adult lifespan. The life expectancy of immature stages decreased with increasing salt concentrations, although salinity concentration did not significantly impact adult life expectancy. CONCLUSIONS Our findings suggest that Ae. albopictus, previously considered freshwater species, can successfully develop and survive in brackish waters, even in the absence of characteristic structures found in euryhaline species. These adaptations may enable Ae. albopictus to establish new breeding sites and colonize unexplored territories. Knowledge of these physiological adaptations of Ae. albopictus to salinity should be pursued to increase the range of control of the species, and to make more accurate predictions of its dispersal and vectoring ability.
Collapse
Affiliation(s)
- Laura Blanco-Sierra
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Carrer d'Accés Cala Sant Francesc, 17300, Blanes, Girona, Spain.
| | - Eleni C Savvidou
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Phytokou Str, 38446, Nea Ionia, Magnesia, Greece
| | - Evangelia D Mpakovasili
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Phytokou Str, 38446, Nea Ionia, Magnesia, Greece
| | - Charalampos S Ioannou
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Phytokou Str, 38446, Nea Ionia, Magnesia, Greece
| | - Frederic Bartumeus
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Carrer d'Accés Cala Sant Francesc, 17300, Blanes, Girona, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Passeig de Lluís Companys, 23, 08010, Barcelona, Barcelona, Spain
- CREAF, Ecological and Forestry Applications Research Centre, Campus de Bellaterra (UAB), 08193, Barcelona, Barcelona, Spain
| | - Nikos T Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Phytokou Str, 38446, Nea Ionia, Magnesia, Greece
| |
Collapse
|
5
|
Du S, Murray RL. Road salt pollution alters sex ratios in emerging mosquito populations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122203. [PMID: 37453680 DOI: 10.1016/j.envpol.2023.122203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/27/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
De-icing road salt is a persistent emerging pollutant in temperate freshwater systems, where winter salting is necessary for road and pedestrian safety. Experts argue that road salts may increase salt-tolerant mosquito populations and, potentially, disease transmission in urban areas. Only adult females consume bloodmeals and may carry zoonotic diseases. While there are some species with naturally occurring male-biased sex ratios, it is unclear whether road salt differentially affects male and female mosquitoes to alter sex ratios. We hypothesized that road salts would masculinize emergence sex ratios and decrease female success because females may face higher exposure to stressors during their lengthy juvenile development compared to males. We measured mosquito emergence sex ratios of control (0 g/L added salt) and salt (4.5 g/L added salt) mesocosms in southern Ontario, Canada across the West Nile Virus season (May to October). We found female-biased sex ratios (i.e., <50% male frequency) in both 0 and 4.5 g/L. While mosquito abundance was significantly higher in 4.5 g/L compared to 0 g/L, road salt significantly increased the proportion of emerging males from 32.8% to 40.8% (Negative Binomial Model; Estimate ± SE = 0.283 ± 0.108; P = 0.009); mosquitoes shift their sex ratios from female-biased towards parity (50:50) in response to salt. Our study illustrates the need to evaluate sex-specific abundance in pollution-related mosquito population studies. By showing a shift toward more male mosquitoes emerging in high salinity compared to control treatments, our results suggest that road salts may have the potential to decrease female mosquito success and indirectly reduce disease transmission in cities.
Collapse
Affiliation(s)
- Sherry Du
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON, L5L 1C6, Canada; Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada; Centre for Urban Environments, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON, L5L 1C6, Canada.
| | - Rosalind L Murray
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON, L5L 1C6, Canada; Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada; Centre for Urban Environments, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
6
|
Boerlijst SP, Johnston ES, Ummels A, Krol L, Boelee E, van Bodegom PM, Schrama MJJ. Biting the hand that feeds: Anthropogenic drivers interactively make mosquitoes thrive. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159716. [PMID: 36302419 DOI: 10.1016/j.scitotenv.2022.159716] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/02/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Anthropogenic stressors on the environment are increasing at unprecedented rates and include urbanization, nutrient pollution, water management, altered land use and climate change. Their effects on disease vectors are poorly understood. A series of full factorial experiments investigated how key human induced abiotic pressures, and interactions between these, affect population parameters of the cosmopolitan disease vector, Culex pipiens s.l. Selected pressures include eutrophication, salinity, mean temperature, and temperature fluctuation. Data were collected for each individual pressure and for potential interactions between eutrophication, salinization and temperature. All experiments assessed survival, time to pupation, time to emergence, sex-ratio and ovipositioning behavior. The results show that stressors affect vector survival, may speed up development and alter female to male ratio, although large differences between stressors exist to quite different extents. While positive effects of increasing levels of eutrophication on survival were consistent, negative effects of salinity on survival were only apparent at higher temperatures, thus indicating a strong interaction effect between salinization and temperature. Temperature had no independent effect on larval survival. Overall, increasing eutrophication and temperatures, and the fluctuations thereof, lowered development rate, time to pupation and time to emergence while increasing levels of salinity increased development time. Higher levels of eutrophication positively impacted egg-laying behavior; the reverse was found for salinity while no effects of temperature on egg-laying behavior were observed. Results suggest large and positive impacts of anthropogenically induced habitat alterations on mosquito population dynamics. Many of these effects are exacerbated by increasing temperatures and fluctuations therein. In a world where eutrophication and salinization are increasingly abundant, mosquitoes are likely important benefactors. Ultimately, this study illustrates the importance of including multiple and combined stressors in predictive models as well as in prevention and mitigation strategies, particularly because they resonate with possible, but yet underdeveloped action plans.
Collapse
Affiliation(s)
- S P Boerlijst
- Center for Environmental Research Leiden, Department of Environmental biology, University of Leiden, Einsteinweg 2, 2333CC Leiden, the Netherlands; Deltares, Daltonlaan 600, 3584 BK Utrecht, the Netherlands.
| | - E S Johnston
- University of Utrecht, Department Population Health Sciences, Yalelaan 7, 3584 CL Utrecht, the Netherlands
| | - A Ummels
- Center for Environmental Research Leiden, Department of Environmental biology, University of Leiden, Einsteinweg 2, 2333CC Leiden, the Netherlands
| | - L Krol
- Center for Environmental Research Leiden, Department of Environmental biology, University of Leiden, Einsteinweg 2, 2333CC Leiden, the Netherlands; Deltares, Daltonlaan 600, 3584 BK Utrecht, the Netherlands
| | - E Boelee
- Deltares, Daltonlaan 600, 3584 BK Utrecht, the Netherlands
| | - P M van Bodegom
- Center for Environmental Research Leiden, Department of Environmental biology, University of Leiden, Einsteinweg 2, 2333CC Leiden, the Netherlands
| | - M J J Schrama
- Center for Environmental Research Leiden, Department of Environmental biology, University of Leiden, Einsteinweg 2, 2333CC Leiden, the Netherlands
| |
Collapse
|
7
|
Singh A, Patel NF, Allam M, Chan WY, Mohale T, Ismail A, Oliver SV. Marked Effects of Larval Salt Exposure on the Life History and Gut Microbiota of the Malaria Vector Anopheles merus (Diptera: Culicidae). INSECTS 2022; 13:1165. [PMID: 36555074 PMCID: PMC9787035 DOI: 10.3390/insects13121165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Anopheles merus can breed in a range of saltwater concentrations. The consequences of this ability on the life history of adult An. merus are poorly understood. This study examined the effects of exposure to 0, 2.1875, 4.375, 8.75, and 17.5 g/L of sodium chloride on An. merus. The effects on larval development, adult longevity, fertility, and fecundity, as well as deltamethrin tolerance were examined. The effect of larval salt exposure on the expression of defensin-1 in adults was examined by quantitative Real-Time PCR. Finally, the effect of the larval salt concentration on microbial dynamics was assessed by 16S Next Generation Sequencing. High concentrations of saltwater increased larval development time and number of eggs laid, as well as deltamethrin tolerance. Larval exposure to salt also reduced the expression of defensin-1. The exposure also had a significant effect on microbial diversity in larvae and adults. The diversity of larvae decreased once adults emerged. Salt-tolerant bacterial genera predominated in larvae but were absent in adults. High salt concentrations resulted in greater abundance of Plasmodium-protective genera in adults. Although this study was conducted on a laboratory strain of An. merus, these data suggest that osmoregulation has a significant effect on the life history of the species with potential epidemiological consequences.
Collapse
Affiliation(s)
- Ashmika Singh
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2192, South Africa
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Nashrin F. Patel
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2192, South Africa
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Mushal Allam
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Abu Dhabi 15551, United Arab Emirates
| | - Wai-Yin Chan
- Sequencing Core Facility, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| | - Thabo Mohale
- Sequencing Core Facility, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
| | - Shüné V. Oliver
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2192, South Africa
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| |
Collapse
|
8
|
McNamara JC, Freire CA. Strategies of Invertebrate Osmoregulation: an Evolutionary Blueprint for Transmuting Into Fresh Water from the Sea. Integr Comp Biol 2022; 62:376-387. [PMID: 35671173 DOI: 10.1093/icb/icac081] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Early marine invertebrates like the Branchiopoda began their sojourn into dilute media some 500 million years ago in the Middle Cambrian. Others like the Mollusca, Annelida and many crustacean taxa have followed, accompanying major marine transgressions and regressions, shifting landmasses, orogenies, and glaciations. In adapting to these events and new habitats, such invertebrates acquired novel physiological abilities that attenuate the ion loss and water gain that constitute severe challenges to life in dilute media. Among these taxon-specific adaptations, selected from the subcellular to organismal levels of organization, and constituting a feasible evolutionary blueprint for invading fresh water, are reduced body permeability and surface (S) to volume (V) ratios, lowered osmotic concentrations, increased osmotic gradients, increased surface areas of interface epithelia, relocation of membrane proteins in ion-transporting cells, and augmented transport enzyme abundance, activity and affinity. We examine these adaptations in taxa that have penetrated into fresh water, revealing diversified modifications, a consequence of distinct body plans, morpho-physiological resources, and occupation routes. Contingent on life history and reproductive strategy, numerous patterns of osmotic regulation have emerged, including intracellular isosmotic regulation in weak hyper-regulators and well-developed anisosmotic extracellular regulation in strong hyper-regulators, likely reflecting inertial adaptations to early life in an estuarine environment. In this review, we address osmoregulation in those freshwater invertebrate lineages that have successfully invaded this biotope. Our analyses show that across sixty-six freshwater invertebrate species from six phyla/classes that have transmuted into fresh water from the sea, hemolymph osmolalities decrease logarithmically with increasing S: V ratios. The arthropods have the highest osmolalities, from 300 to 650 mOsmoles/kg H2O in the Decapoda with 220 to 320 mOsmoles/kg H2O in the Insecta; osmolalities in the Annelida range from 150 to 200 mOsmoles/kg H2O, the Mollusca showing the lowest osmolalities at 40 to 120 mOsmoles/kg H2O. Overall, osmolalities reach a cut-off at ∼200 mOsmoles/kg H2O, independently of increasing S: V ratio. The ability of species with small S: V ratios to maintain large osmotic gradients is mirrored in their putatively higher Na+/K+-ATPase activities that drive ion uptake processes. Selection pressures on these morpho-physiological characteristics have led to differential osmoregulatory abilities, rendering possible the conquest of fresh water while retaining some tolerance of the ancestral medium.
Collapse
Affiliation(s)
- John Campbell McNamara
- Departamento de Biologia, FFCLRP, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil.,Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião 11600-000, SP, Brazil
| | - Carolina Arruda Freire
- Departamento de Fisiologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba 81531-980, PR, Brazil
| |
Collapse
|
9
|
Eltaly RI, Mohammed SH, Alakeel KA, Salem HH, Abdelfattah A, Ezzat Ahmed A, El-Tahan AM, El-Saadony MT, Saad AM, Abu El-Hassan GM, Farag SM. Phototoxicity of Eosin yellow Lactone and Phloxine B photosensitizers against mosquito larvae and their associated predators in El-Fayoum (Egypt). Saudi J Biol Sci 2022. [DOI: 10.1016/j.sjbs.2022.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
10
|
Vargas-Chavez C, Longo Pendy NM, Nsango SE, Aguilera L, Ayala D, González J. Transposable element variants and their potential adaptive impact in urban populations of the malaria vector Anopheles coluzzii. Genome Res 2021; 32:189-202. [PMID: 34965939 PMCID: PMC8744685 DOI: 10.1101/gr.275761.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/24/2021] [Indexed: 11/28/2022]
Abstract
Anopheles coluzzii is one of the primary vectors of human malaria in sub-Saharan Africa. Recently, it has spread into the main cities of Central Africa threatening vector control programs. The adaptation of An. coluzzii to urban environments partly results from an increased tolerance to organic pollution and insecticides. Some of the molecular mechanisms for ecological adaptation are known, but the role of transposable elements (TEs) in the adaptive processes of this species has not been studied yet. As a first step toward assessing the role of TEs in rapid urban adaptation, we sequenced using long reads six An. coluzzii genomes from natural breeding sites in two major Central Africa cities. We de novo annotated TEs in these genomes and in an additional high-quality An. coluzzii genome, and we identified 64 new TE families. TEs were nonrandomly distributed throughout the genome with significant differences in the number of insertions of several superfamilies across the studied genomes. We identified seven putatively active families with insertions near genes with functions related to vectorial capacity, and several TEs that may provide promoter and transcription factor binding sites to insecticide resistance and immune-related genes. Overall, the analysis of multiple high-quality genomes allowed us to generate the most comprehensive TE annotation in this species to date and identify several TE insertions that could potentially impact both genome architecture and the regulation of functionally relevant genes. These results provide a basis for future studies of the impact of TEs on the biology of An. coluzzii.
Collapse
Affiliation(s)
- Carlos Vargas-Chavez
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003 Barcelona, Spain
| | - Neil Michel Longo Pendy
- Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon.,École Doctorale Régional (EDR) en Infectiologie Tropicale d'Afrique Centrale, BP 876, Franceville, Gabon
| | - Sandrine E Nsango
- Faculté de Médecine et des Sciences Pharmaceutiques, Université de Douala, BP 2701, Douala, Cameroun
| | - Laura Aguilera
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003 Barcelona, Spain
| | - Diego Ayala
- Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon.,Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Université Montpellier, CNRS, IRD, 64501 Montpellier, France
| | - Josefa González
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003 Barcelona, Spain
| |
Collapse
|
11
|
The Influence of the pH and Salinity of Water in Breeding Sites on the Occurrence and Community Composition of Immature Mosquitoes in the Green Belt of the City of São Paulo, Brazil. INSECTS 2021; 12:insects12090797. [PMID: 34564237 PMCID: PMC8469630 DOI: 10.3390/insects12090797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Immature mosquitoes are found in natural and artificial aquatic habitats. Variations in physicochemical parameters of water, such as pH, salinity, conductivity, and total dissolved solids, in breeding habitats can influence larval occurrence and drive the proliferation of adult mosquitoes. Herein, we investigated the association between different values of physicochemical parameters in a variety of aquatic habitats and the occurrence and community composition of immature mosquito species in two environmentally protected areas in the city of São Paulo, Brazil. The aquatic habitats surveyed included epiphytic and ground bromeliads, bamboo internodes, ponds, tree hollows, lakes, and artificial containers. Our results revealed a statistically significant relationship between species occurrence and the variables of pH and salinity. The type of aquatic habitat also had a significant influence on mosquito species distribution. Investigating the interactions between immature mosquitoes and the environment in which they develop is important to elucidate the factors driving their occurrence and abundance, and could also be an important tool in planning and implementing immature mosquito control practices. Abstract The physicochemical parameters of water, such as pH, salinity, conductivity, and total dissolved solids, can influence mosquito larval development, survival, and abundance. Therefore, it is important to elucidate how these factors influence mosquito occurrence. We hypothesized that the occurrence and community composition of immature mosquito species are driven not only by the availability of suitable aquatic habitats, but also by the physicochemical factors of these habitats. The primary objective of this study was therefore to investigate the influence of the physicochemical parameters of water in different types of aquatic habitats on the occurrence of mosquito species in two remnants of Atlantic Forest in the city of São Paulo, Brazil. Collections of immature mosquitoes and assessment of the physicochemical characteristics of the water in the collection sites were carried out for twelve months. The variation in species composition and occurrence with the measured physicochemical parameters and the type of breeding site was assessed using constrained ordination methods. The results indicate that there was a statistically significant difference in species composition as a function of the different types of aquatic habitats, and that pH had an influence on species occurrence even when the variance explained by the type of aquatic habitat was removed from the analysis. There was a statistically significant association between mosquito species occurrence and pH and salinity, and the former had a significant influence on the mosquito species collected regardless of the type of aquatic habitat, showing that the pH of the breeding site water is an important factor in driving mosquito population dynamics and species distribution.
Collapse
|
12
|
Coalson JE, Anderson EJ, Santos EM, Madera Garcia V, Romine JK, Luzingu JK, Dominguez B, Richard DM, Little AC, Hayden MH, Ernst KC. The Complex Epidemiological Relationship between Flooding Events and Human Outbreaks of Mosquito-Borne Diseases: A Scoping Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:96002. [PMID: 34582261 PMCID: PMC8478154 DOI: 10.1289/ehp8887] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Climate change is expected to increase the frequency of flooding events. Although rainfall is highly correlated with mosquito-borne diseases (MBD) in humans, less research focuses on understanding the impact of flooding events on disease incidence. This lack of research presents a significant gap in climate change-driven disease forecasting. OBJECTIVES We conducted a scoping review to assess the strength of evidence regarding the potential relationship between flooding and MBD and to determine knowledge gaps. METHODS PubMed, Embase, and Web of Science were searched through 31 December 2020 and supplemented with review of citations in relevant publications. Studies on rainfall were included only if the operationalization allowed for distinction of unusually heavy rainfall events. Data were abstracted by disease (dengue, malaria, or other) and stratified by post-event timing of disease assessment. Studies that conducted statistical testing were summarized in detail. RESULTS From 3,008 initial results, we included 131 relevant studies (dengue n = 45 , malaria n = 61 , other MBD n = 49 ). Dengue studies indicated short-term (< 1 month ) decreases and subsequent (1-4 month) increases in incidence. Malaria studies indicated post-event incidence increases, but the results were mixed, and the temporal pattern was less clear. Statistical evidence was limited for other MBD, though findings suggest that human outbreaks of Murray Valley encephalitis, Ross River virus, Barmah Forest virus, Rift Valley fever, and Japanese encephalitis may follow flooding. DISCUSSION Flooding is generally associated with increased incidence of MBD, potentially following a brief decrease in incidence for some diseases. Methodological inconsistencies significantly limit direct comparison and generalizability of study results. Regions with established MBD and weather surveillance should be leveraged to conduct multisite research to a) standardize the quantification of relevant flooding, b) study nonlinear relationships between rainfall and disease, c) report outcomes at multiple lag periods, and d) investigate interacting factors that modify the likelihood and severity of outbreaks across different settings. https://doi.org/10.1289/EHP8887.
Collapse
Affiliation(s)
- Jenna E. Coalson
- Center for Insect Science, University of Arizona, Tucson, Arizona, USA
| | | | - Ellen M. Santos
- Department of Epidemiology and Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | - Valerie Madera Garcia
- Department of Epidemiology and Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | - James K. Romine
- Department of Epidemiology and Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | - Joy K. Luzingu
- Department of Epidemiology and Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | - Brian Dominguez
- Department of Epidemiology and Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | - Danielle M. Richard
- Department of Epidemiology and Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | - Ashley C. Little
- Department of Epidemiology and Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | - Mary H. Hayden
- National Institute for Human Resilience, University of Colorado Colorado Springs, Colorado Springs, Colorado, USA
| | - Kacey C. Ernst
- Department of Epidemiology and Biostatistics, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| |
Collapse
|
13
|
Longo-Pendy NM, Tene-Fossog B, Tawedi RE, Akone-Ella O, Toty C, Rahola N, Braun JJ, Berthet N, Kengne P, Costantini C, Ayala D. Ecological plasticity to ions concentration determines genetic response and dominance of Anopheles coluzzii larvae in urban coastal habitats of Central Africa. Sci Rep 2021; 11:15781. [PMID: 34349141 PMCID: PMC8338965 DOI: 10.1038/s41598-021-94258-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
In Central Africa, the malaria vector Anopheles coluzzii is predominant in urban and coastal habitats. However, little is known about the environmental factors that may be involved in this process. Here, we performed an analysis of 28 physicochemical characteristics of 59 breeding sites across 5 urban and rural sites in coastal areas of Central Africa. We then modelled the relative frequency of An. coluzzii larvae to these physicochemical parameters in order to investigate environmental patterns. Then, we assessed the expression variation of 10 candidate genes in An. coluzzii, previously incriminated with insecticide resistance and osmoregulation in urban settings. Our results confirmed the ecological plasticity of An. coluzzii larvae to breed in a large range of aquatic conditions and its predominance in breeding sites rich in ions. Gene expression patterns were comparable between urban and rural habitats, suggesting a broad response to ions concentrations of whatever origin. Altogether, An. coluzzii exhibits a plastic response to occupy both coastal and urban habitats. This entails important consequences for malaria control in the context of the rapid urban expansion in Africa in the coming years.
Collapse
Affiliation(s)
| | | | - Robert E. Tawedi
- grid.473396.cInstitut de Recherches Géologiques Et Minières / Centre de Recherches Hydrologiques, Yaoundé, Cameroon
| | | | - Celine Toty
- grid.462603.50000 0004 0382 3424MIVEGEC, Univ Montpellier, CNRS, IRD, 911 avenue Agropolis, BP 64501, 34394 Montpellier, France
| | - Nil Rahola
- grid.462603.50000 0004 0382 3424MIVEGEC, Univ Montpellier, CNRS, IRD, 911 avenue Agropolis, BP 64501, 34394 Montpellier, France
| | - Jean-Jacques Braun
- grid.473396.cInstitut de Recherches Géologiques Et Minières / Centre de Recherches Hydrologiques, Yaoundé, Cameroon ,grid.462928.30000 0000 9033 1612Géosciences Environnement Toulouse, Université de Toulouse, CNRS, IRD, Toulouse, France ,International Joint Laboratory DYCOFAC, IRGM-UY1-IRD, BP 1857, Yaoundé, Cameroon
| | - Nicolas Berthet
- grid.418115.80000 0004 1808 058XCIRMF, Franceville, Gabon ,grid.428999.70000 0001 2353 6535Institut Pasteur, Unité Environnement Et Risque Infectieux, Cellule D’Intervention Biologique D’Urgence, Paris, France
| | - Pierre Kengne
- grid.418115.80000 0004 1808 058XCIRMF, Franceville, Gabon ,grid.462603.50000 0004 0382 3424MIVEGEC, Univ Montpellier, CNRS, IRD, 911 avenue Agropolis, BP 64501, 34394 Montpellier, France
| | - Carlo Costantini
- grid.462603.50000 0004 0382 3424MIVEGEC, Univ Montpellier, CNRS, IRD, 911 avenue Agropolis, BP 64501, 34394 Montpellier, France
| | - Diego Ayala
- grid.418115.80000 0004 1808 058XCIRMF, Franceville, Gabon ,grid.462603.50000 0004 0382 3424MIVEGEC, Univ Montpellier, CNRS, IRD, 911 avenue Agropolis, BP 64501, 34394 Montpellier, France
| |
Collapse
|
14
|
Ramasamy R, Thiruchenthooran V, Jayadas TTP, Eswaramohan T, Santhirasegaram S, Sivabalakrishnan K, Naguleswaran A, Uzest M, Cayrol B, Voisin SN, Bulet P, Surendran SN. Transcriptomic, proteomic and ultrastructural studies on salinity-tolerant Aedes aegypti in the context of rising sea levels and arboviral disease epidemiology. BMC Genomics 2021; 22:253. [PMID: 33836668 PMCID: PMC8034070 DOI: 10.1186/s12864-021-07564-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Aedes aegypti mosquito, the principal global vector of arboviral diseases, lays eggs and undergoes larval and pupal development to become adult mosquitoes in fresh water (FW). It has recently been observed to develop in coastal brackish water (BW) habitats of up to 50% sea water, and such salinity tolerance shown to be an inheritable trait. Genomics of salinity tolerance in Ae. aegypti has not been previously studied, but it is of fundamental biological interest and important for controlling arboviral diseases in the context of rising sea levels increasing coastal ground water salinity. RESULTS BW- and FW-Ae. aegypti were compared by RNA-seq analysis on the gut, anal papillae and rest of the carcass in fourth instar larvae (L4), proteomics of cuticles shed when L4 metamorphose into pupae, and transmission electron microscopy of cuticles in L4 and adults. Genes for specific cuticle proteins, signalling proteins, moulting hormone-related proteins, membrane transporters, enzymes involved in cuticle metabolism, and cytochrome P450 showed different mRNA levels in BW and FW L4 tissues. The salinity-tolerant Ae. aegypti were also characterized by altered L4 cuticle proteomics and changes in cuticle ultrastructure of L4 and adults. CONCLUSIONS The findings provide new information on molecular and ultrastructural changes associated with salinity adaptation in FW mosquitoes. Changes in cuticles of larvae and adults of salinity-tolerant Ae. aegypti are expected to reduce the efficacy of insecticides used for controlling arboviral diseases. Expansion of coastal BW habitats and their neglect for control measures facilitates the spread of salinity-tolerant Ae. aegypti and genes for salinity tolerance. The transmission of arboviral diseases can therefore be amplified in multiple ways by salinity-tolerant Ae. aegypti and requires appropriate mitigating measures. The findings in Ae. aegypti have attendant implications for the development of salinity tolerance in other fresh water mosquito vectors and the diseases they transmit.
Collapse
Affiliation(s)
- Ranjan Ramasamy
- ID-FISH Technology Inc., Milpitas, CA, 95035, USA. .,Department of Zoology, University of Jaffna, Jaffna, Sri Lanka.
| | | | | | | | | | | | | | - Marilyne Uzest
- UMR BGPI, University of Montpellier, INRAE, CIRAD, SupAgro, Montpellier, France
| | - Bastien Cayrol
- UMR BGPI, University of Montpellier, INRAE, CIRAD, SupAgro, Montpellier, France
| | | | - Philippe Bulet
- Platform BioPark Archamps, Archamps, France.,CR Université Grenoble Alpes, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Grenoble, France
| | | |
Collapse
|
15
|
Mamai W, Maiga H, Bimbilé Somda NS, Wallner T, Masso OB, Resch C, Yamada H, Bouyer J. Does Tap Water Quality Compromise the Production of Aedes Mosquitoes in Genetic Control Projects? INSECTS 2021; 12:insects12010057. [PMID: 33445407 PMCID: PMC7826741 DOI: 10.3390/insects12010057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/01/2021] [Accepted: 01/07/2021] [Indexed: 12/26/2022]
Abstract
Simple Summary Scientists all over the world are continually rearing and producing insects in laboratories for many purposes including pest control programmes. Aedes aegypti and Ae. albopictus are mosquitoes of public health importance due to their ability to vector human and animal pathogens and thus vector control represents an important component of many disease control programmes. Water is a factor of great importance in the larval environment of mosquito species. However, obtaining sufficient water of reliable quality for mosquito rearing is still challenging, especially in developing and least developed countries, where access even to clean drinking water is limited. In prospect of cost-effective methods for improved mass-rearing toward SIT application, we assessed the impact of using tap water on the development and quality of Aedes mosquitoes. Results showed that, tap water with hardness/electrical conductivity beyond certain levels (140 mg/l CaCO3 or 368 µS/cm) was shown to have a negative impact on the production of Ae. albopictus and Ae. aegypti mosquitoes. These results suggest that the quality of water should be checked when using for rearing mosquitoes for release purposes in order to optimize the production performance of mass-rearing facilities. This may have important implications for the implementation of the sterile insect technique in areas where reverse osmosis water is a scarce or costly resource. Abstract A mosquito’s life cycle includes an aquatic phase. Water quality is therefore an important determinant of whether or not the female mosquitoes will lay their eggs and the resulting immature stages will survive and successfully complete their development to the adult stage. In response to variations in laboratory rearing outputs, there is a need to investigate the effect of tap water (TW) (in relation to water hardness and electrical conductivity) on mosquito development, productivity and resulting adult quality. In this study, we compared the respective responses of Aedes aegypti and Ae. albopictus to different water hardness/electrical conductivity. First-instar larvae were reared in either 100% water purified through reverse osmosis (ROW) (low water hardness/electrical conductivity), 100% TW (high water hardness/electrical conductivity) or a 80:20, 50:50, 20:80 mix of ROW and TW. The immature development time, pupation rate, adult emergence, body size, and longevity were determined. Overall, TW (with higher hardness and electrical conductivity) was associated with increased time to pupation, decreased pupal production, female body size in both species and longevity in Ae. albopictus only. However, Ae. albopictus was more sensitive to high water hardness/EC than Ae. aegypti. Moreover, in all water hardness/electrical conductivity levels tested, Ae. aegypti developed faster than Ae. albopictus. Conversely, Ae. albopictus adults survived longer than Ae. aegypti. These results imply that water with hardness of more than 140 mg/l CaCO3 or electrical conductivity more than 368 µS/cm cannot be recommended for the optimal rearing of Aedes mosquitoes and highlight the need to consider the level of water hardness/electrical conductivity when rearing Aedes mosquitoes for release purposes.
Collapse
Affiliation(s)
- Wadaka Mamai
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria; (H.M.); (N.S.B.S.); (T.W.); (O.B.M.); (H.Y.); (J.B.)
- Institut de Recherche Agricole pour le Développement (IRAD), PO. Box 2123 Yaoundé, Cameroon
- Correspondence:
| | - Hamidou Maiga
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria; (H.M.); (N.S.B.S.); (T.W.); (O.B.M.); (H.Y.); (J.B.)
- Institut de Recherche en Sciences de la Santé/Direction Régionale de l’Ouest (IRSS/DRO), 01 PO. Box 545 Bobo-Dioulasso, Burkina Faso
| | - Nanwintoum Sévérin Bimbilé Somda
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria; (H.M.); (N.S.B.S.); (T.W.); (O.B.M.); (H.Y.); (J.B.)
- Institut de Recherche en Sciences de la Santé/Direction Régionale de l’Ouest (IRSS/DRO), 01 PO. Box 545 Bobo-Dioulasso, Burkina Faso
- Laboratoire d’Entomologie Fondamentale et Appliquée (LEFA), Université Joseph Ki-Zerbo, 03 PO. Box 7021 Ouagadougou, Burkina Faso
| | - Thomas Wallner
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria; (H.M.); (N.S.B.S.); (T.W.); (O.B.M.); (H.Y.); (J.B.)
| | - Odet Bueno Masso
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria; (H.M.); (N.S.B.S.); (T.W.); (O.B.M.); (H.Y.); (J.B.)
| | - Christian Resch
- Soil and Water Management and Crop Nutrition Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria;
| | - Hanano Yamada
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria; (H.M.); (N.S.B.S.); (T.W.); (O.B.M.); (H.Y.); (J.B.)
| | - Jérémy Bouyer
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria; (H.M.); (N.S.B.S.); (T.W.); (O.B.M.); (H.Y.); (J.B.)
| |
Collapse
|
16
|
Ould Lemrabott MA, Le Goff G, Kengne P, Ndiaye O, Costantini C, Mint Lekweiry K, Ould Ahmedou Salem MS, Robert V, Basco L, Simard F, Ould Mohamed Salem Boukhary A. First report of Anopheles (Cellia) multicolor during a study of tolerance to salinity of Anopheles arabiensis larvae in Nouakchott, Mauritania. Parasit Vectors 2020; 13:522. [PMID: 33066796 PMCID: PMC7566140 DOI: 10.1186/s13071-020-04400-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/09/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anopheles multicolor is known to be present in the arid areas of Africa north of the Sahara Desert, especially in oases. To date, its presence in Mauritania has not been reported. Here, we present the first record of its presence in Nouakchott, the capital of Mauritania. The larvae of An. multicolor, together with those of An. arabiensis, the major malaria vector in the city, were found thriving in highly saline surface water collections. METHODS Entomological surveys were carried out during 2016-2017 in Nouakchott. Mosquito larval habitats were investigated through larval surveys while indoor resting culicid fauna were collected using hand-held aspirator. Physicochemical parameters of the larval habitats were measured on-site, at the time mosquitoes were collected. Larvae and pupae were reared to adults in the insectaries. Morphological and polymerase chain reaction (PCR)-based methods were used to identify newly emerged adults. Batches of fourth-instar larvae were used to assess salinity tolerance by exposing them to increasing concentrations of NaCl, and mortality was monitored throughout development. RESULTS Morphological and molecular results confirmed that the specimens were An. multicolor and An. arabiensis. Sequences of 24 An. multicolor adult mosquitoes showed 100% nucleotide identity with the published sequences of An. multicolor from Iran. The physicochemical analysis of the water from the two larval habitats revealed highly saline conditions, with NaCl content ranging between 16.8 and 28.9 g/l (i.e. between c.50-80% seawater). Anopheles multicolor and An. arabiensis fourth-instar larvae survival rates at 17.5 g/l NaCl were 86.5% and 75%, respectively. Anopheles arabiensis larvae showed variable levels of salt tolerance according to the larval habitat. Adult An. multicolor specimens were collected resting indoor at low frequency (0.7%) compared to the other culicid mosquitoes. CONCLUSIONS To the best of our knowledge, this paper is the first report of An. multicolor in Mauritania, extending the known distributional range of the species to the south, as well as to the west. Highly salt-tolerant populations of An. arabiensis and An. multicolor were observed. Because salt-water collections are widespread in Nouakchott, the relevance of these findings for the dynamics and epidemiology of malaria transmission needs to be assessed.
Collapse
Affiliation(s)
- Mohamed Aly Ould Lemrabott
- Laboratoire environnement, santé et société LE2S, Unité de recherche génomes et milieux (jeune équipe associée à l'IRD), Université de Nouakchott Al-Aasriya, BP 880, Nouakchott, Mauritania. .,MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France.
| | - Gilbert Le Goff
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Pierre Kengne
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France.,CIRMF, Franceville, Gabon
| | - Ousmane Ndiaye
- Laboratoire environnement, santé et société LE2S, Unité de recherche génomes et milieux (jeune équipe associée à l'IRD), Université de Nouakchott Al-Aasriya, BP 880, Nouakchott, Mauritania
| | - Carlo Costantini
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Khadijetou Mint Lekweiry
- Laboratoire environnement, santé et société LE2S, Unité de recherche génomes et milieux (jeune équipe associée à l'IRD), Université de Nouakchott Al-Aasriya, BP 880, Nouakchott, Mauritania
| | - Mohamed Salem Ould Ahmedou Salem
- Laboratoire environnement, santé et société LE2S, Unité de recherche génomes et milieux (jeune équipe associée à l'IRD), Université de Nouakchott Al-Aasriya, BP 880, Nouakchott, Mauritania
| | - Vincent Robert
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Leonardo Basco
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Frédéric Simard
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Ali Ould Mohamed Salem Boukhary
- Laboratoire environnement, santé et société LE2S, Unité de recherche génomes et milieux (jeune équipe associée à l'IRD), Université de Nouakchott Al-Aasriya, BP 880, Nouakchott, Mauritania. .,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France. .,IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
17
|
Ononamadu CJ, Datit JT, Imam AA. Insecticide Resistance Profile of Anopheles gambiae Mosquitoes: A Study of a Residential and Industrial Breeding Sites in Kano Metropolis, Nigeria. ENVIRONMENTAL HEALTH INSIGHTS 2020; 14:1178630219897272. [PMID: 31975780 PMCID: PMC6958648 DOI: 10.1177/1178630219897272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 12/05/2019] [Indexed: 05/29/2023]
Abstract
Monitoring and understanding the trend and dynamics of insecticide resistance is very key to devising efficient control strategies. This study was carried out to characterize the mosquito population, its insecticide resistance profile, and the physicochemical properties of their breeding sites in Sharada and Wailari of Kano State, Nigeria. Six breeding sites from the 2 study areas were sampled and their physicochemical parameters determined. Mosquito larvae were sampled from the sites and reared to adult. The emergent adults were morphologically and molecularly identified to species level. The World Health Organization (WHO) susceptibility assay was carried out on the adult mosquitoes using different classes of insecticides in WHO discriminating concentrations. kdr-mutation was detected by polymerase chain reaction (PCR)-based method using the permethrin (pyrethroid) resistant and susceptible adult mosquitoes. Most of the determined physicochemical parameters were significantly higher in the industrial area, Sharada. Morphologically, the mosquitoes from the 2 sites were identified as Anopheles gambiae and 100% of the randomly sampled population were found to be Anopheles coluzzii by PCR-based molecular technique. The WHO susceptible assay revealed a graded level of resistance to bendiocarb, dichlorodiphenyltrichloroethane (DDT), and permethrin with mortalities of 78.36%, 75.74%; 43.44%, 56.96%; and 37.50%, 37.50% in both Sharada and Wailari, respectively. Pre-exposure to piperonyl butoxide (PBO) resulted in a significant but minor recovery of susceptibility to permethrin. The kdr mutation frequency was higher in Sharada (45.71%) relative to Wailari (31.43%). Higher kdr mutation frequency was also observed in the resistant population (48.56%) relative to the susceptible (28.54%). The kdr mutation frequency was weakly associated with the resistance status (odds ratio [OR]: 5.9, χ2:3.58, P = .058) and the breeding sites (OR: 3.46, χ2:2.90, P = .088). In conclusion, the study revealed a highly pyrethroid-resistant A coluzzii population with low PBO recovery rate. Furthermore, the data suggested the involvement of kdr mutation, detoxification enzyme, and possibly abiotic factors of the breeding sites.
Collapse
Affiliation(s)
- Chimaobi J Ononamadu
- Department of Biochemistry, Bayero University, Kano, Nigeria
- Department of Biochemistry and Forensic Science, Nigeria Police Academy, Wudil, Nigeria
| | - John T Datit
- Department of Biochemistry, Bayero University, Kano, Nigeria
| | | |
Collapse
|