1
|
Corline NJ, Hotchkiss ER, Badgely B, Strahm BD, Scott DT, McLaughlin DL. Tadpole aggregations create biogeochemical hotspots in wetland ecosystems. J Anim Ecol 2024. [PMID: 39551970 DOI: 10.1111/1365-2656.14222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024]
Abstract
Animal waste can contribute substantially to nutrient cycling and ecosystem productivity in many environments. However, little is known of the biogeochemical impact of animal excretion in wetland habitats. Here we investigate the effects of wood frog (Lithobates sylvaticus) tadpole aggregations on nutrient recycling, microbial metabolism and carbon cycling in geographically isolated wetlands. We used a paired mesocosm and field study approach that utilized measurements of tadpole excretion rates, microbial extracellular enzyme activities, and litter degradation. We found a strong relationship between tadpole development and nutrient excretion, demonstrating that ontological changes impact tadpole-mediated nutrient cycling in wetland habitats. Further, the interplay between population-level tadpole excretion and wetland hydrologic conditions increased ambientNH 4 + $$ {\mathrm{NH}}_4^{+} $$ andPO 4 3 - $$ {\mathrm{PO}}_4^{3-} $$ concentrations by 56 and 14 times, respectively, compared to adjacent wetlands without tadpoles. Within our mesocosm study, microbes decreased extracellular enzyme production associated with nitrogen acquisition in response to the presence of tadpole-derived nitrogen. In addition to microbial metabolic responses, tadpole presence enhanced litter breakdown in both mesocosms and wetlands by 7% and 12%, respectively, in comparison to reference conditions. These results provide evidence for the functional and biogeochemical role of tadpole aggregations in wetland habitats, with important implications for ecosystem processes, biodiversity conservation, and ecosystem management.
Collapse
Affiliation(s)
- Nicholas J Corline
- Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Erin R Hotchkiss
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Brian Badgely
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Brian D Strahm
- Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Durelle T Scott
- Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Daniel L McLaughlin
- Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
2
|
Downs KN, Kelly PT, Ascanio A, Vanni MJ. Ontogenetic variation in the ecological stoichiometry of 10 fish species during early development. Ecology 2023; 104:e4176. [PMID: 37782823 DOI: 10.1002/ecy.4176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/14/2023] [Accepted: 07/28/2023] [Indexed: 10/04/2023]
Abstract
The chemical composition and stoichiometry of vertebrate bodies changes greatly during ontogeny as phosphorus-rich bones form, but we know little about the variation among species during early development. Such variation is important because element ratios in animal bodies influence which element limits growth and how animals contribute to nutrient cycling. We quantified ontogenetic variation from embryos through 2-3 months of age in 10 species of fish in six different families, ranging in adult size from 73 to 720 mm in length. We measured whole-body concentrations (percentage of dry mass) and ratios of carbon (C), nitrogen (N), and phosphorus (P) as fish developed. We also quantified whole-body concentrations of calcium (Ca), because Ca should reflect bone development, and RNA, which can be a major pool of body P. To account for interspecific differences in adult size, we also examined how trends changed with relative size, defined as body length divided by adult length. Ontogenetic changes in body composition and ratios were relatively similar among species and were more similar when expressed as a function of relative size compared to age. Body P increased rapidly in all species (likely because of bone development) from embryos until individuals were ~5%-8% of adult size. Body N also increased, while body C, C:N, C:P, and N:P all decreased over this period. Body Ca increased with development but was more variable among species. Body RNA was low in embryos, increased rapidly in young larvae, then decreased as fish reached 5%-8% of adult size. After fish were about 5%-8% of adult size, changes in body composition were relatively slight for all elements and ratios. These results reveal a consistency in the dynamics of body stoichiometry during early ontogeny, presumably because of similar constraints on the allocation of elements to bones and other body pools. Because most changes occur when individuals are <1 month old (<10% of adult size for that species), early ontogenetic variation in body stoichiometry may be especially important for growth limitation of individuals and ecosystem-level nutrient cycling.
Collapse
Affiliation(s)
- Kelsea N Downs
- Department of Biology, Miami University, Oxford, Ohio, USA
| | | | | | | |
Collapse
|
3
|
Vogels JJ, Van de Waal DB, WallisDeVries MF, Van den Burg AB, Nijssen M, Bobbink R, Berg MP, Olde Venterink H, Siepel H. Towards a mechanistic understanding of the impacts of nitrogen deposition on producer-consumer interactions. Biol Rev Camb Philos Soc 2023; 98:1712-1731. [PMID: 37265074 DOI: 10.1111/brv.12972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023]
Abstract
Nitrogen (N) deposition has increased substantially since the second half of the 20th century due to human activities. This increase of reactive N into the biosphere has major implications for ecosystem functioning, including primary production, soil and water chemistry and producer community structure and diversity. Increased N deposition is also linked to the decline of insects observed over recent decades. However, we currently lack a mechanistic understanding of the effects of high N deposition on individual fitness, species richness and community structure of both invertebrate and vertebrate consumers. Here, we review the effects of N deposition on producer-consumer interactions, focusing on five existing ecological frameworks: C:N:P ecological stoichiometry, trace element ecological stoichiometry, nutritional geometry, essential micronutrients and allelochemicals. We link reported N deposition-mediated changes in producer quality to life-history strategies and traits of consumers, to gain a mechanistic understanding of the direction of response in consumers. We conclude that high N deposition influences producer quality via eutrophication and acidification pathways. This makes oligotrophic poorly buffered ecosystems most vulnerable to significant changes in producer quality. Changes in producer quality between the reviewed frameworks are often interlinked, complicating predictions of the effects of high N deposition on producer quality. The degree and direction of fitness responses of consumers to changes in producer quality varies among species but can be explained by differences in life-history traits and strategies, particularly those affecting species nutrient intake regulation, mobility, relative growth rate, host-plant specialisation, ontogeny and physiology. To increase our understanding of the effects of N deposition on these complex mechanisms, the inclusion of life-history traits of consumer species in future study designs is pivotal. Based on the reviewed literature, we formulate five hypotheses on the mechanisms underlying the effects of high N deposition on consumers, by linking effects of nutritional ecological frameworks to life-history strategies. Importantly, we expect that N-deposition-mediated changes in producer quality will result in a net decrease in consumer community as well as functional diversity. Moreover, we anticipate an increased risk of outbreak events of a small subset of generalist species, with concomitant declines in a multitude of specialist species. Overall, linking ecological frameworks with consumer life-history strategies provides a mechanistic understanding of the impacts of high N deposition on producer-consumer interactions, which can inform management towards more effective mitigation strategies.
Collapse
Affiliation(s)
- Joost J Vogels
- Bargerveen Foundation, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
- Department of Animal Ecology and Physiology, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Dedmer B Van de Waal
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, 1098 XH, Amsterdam, The Netherlands
| | - Michiel F WallisDeVries
- De Vlinderstichting / Dutch Butterfly Conservation, P.O. Box 6700 AM, Wageningen, The Netherlands
| | | | - Marijn Nijssen
- Bargerveen Foundation, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
- Department of Animal Ecology and Physiology, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Roland Bobbink
- B-WARE Research Centre, Radboud University Nijmegen, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
| | - Matty P Berg
- A-LIFE, Section Ecology & Evolution, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
- GELIFES, Community and Conservation Ecology Group, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Harry Olde Venterink
- Department of Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Henk Siepel
- Department of Animal Ecology and Physiology, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
4
|
El-Sabaawi RW, Lemmen KD, Jeyasingh PD, Declerck SAJ. SEED: A framework for integrating ecological stoichiometry and eco-evolutionary dynamics. Ecol Lett 2023; 26 Suppl 1:S109-S126. [PMID: 37840025 DOI: 10.1111/ele.14285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 10/17/2023]
Abstract
Characterising the extent and sources of intraspecific variation and their ecological consequences is a central challenge in the study of eco-evolutionary dynamics. Ecological stoichiometry, which uses elemental variation of organisms and their environment to understand ecosystem patterns and processes, can be a powerful framework for characterising eco-evolutionary dynamics. However, the current emphasis on the relative content of elements in the body (i.e. organismal stoichiometry) has constrained its application. Intraspecific variation in the rates at which elements are acquired, assimilated, allocated or lost is often greater than the variation in organismal stoichiometry. There is much to gain from studying these traits together as components of an 'elemental phenotype'. Furthermore, each of these traits can have distinct ecological effects that are underappreciated in the current literature. We propose a conceptual framework that explores how microevolutionary change in the elemental phenotype occurs, how its components interact with each other and with other traits, and how its changes can affect a wide range of ecological processes. We demonstrate how the framework can be used to generate novel hypotheses and outline pathways for future research that enhance our ability to explain, analyse and predict eco-evolutionary dynamics.
Collapse
Affiliation(s)
- Rana W El-Sabaawi
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Kimberley D Lemmen
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Punidan D Jeyasingh
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Steven A J Declerck
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Department of Biology, Laboratory of Aquatic Ecology, Evolution and Conservation, KULeuven, Leuven, Belgium
| |
Collapse
|