1
|
Rurik I, Melichárková A, Gbúrová Štubová E, Kučera J, Kochjarová J, Paun O, Vďačný P, Slovák M. Homoplastic versus xenoplastic evolution: exploring the emergence of key intrinsic and extrinsic traits in the montane genus Soldanella (Primulaceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:753-765. [PMID: 38217489 DOI: 10.1111/tpj.16630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/02/2023] [Accepted: 12/27/2023] [Indexed: 01/15/2024]
Abstract
Specific ecological conditions in the high mountain environment exert a selective pressure that often leads to convergent trait evolution. Reticulations induced by incomplete lineage sorting and introgression can lead to discordant trait patterns among gene and species trees (hemiplasy/xenoplasy), providing a false illusion that the traits under study are homoplastic. Using phylogenetic species networks, we explored the effect of gene exchange on trait evolution in Soldanella, a genus profoundly influenced by historical introgression. At least three features evolved independently multiple times: the single-flowered dwarf phenotype, dysploid cytotype, and ecological generalism. The present analyses also indicated that the recurring occurrence of stoloniferous growth might have been prompted by an introgression event between an ancestral lineage and a still extant species, although its emergence via convergent evolution cannot be completely ruled out. Phylogenetic regression suggested that the independent evolution of larger genomes in snowbells is most likely a result of the interplay between hybridization events of dysploid and euploid taxa and hostile environments at the range margins of the genus. The emergence of key intrinsic and extrinsic traits in snowbells has been significantly impacted not only by convergent evolution but also by historical and recent introgression events.
Collapse
Affiliation(s)
- Ivan Rurik
- Department of Zoology, Comenius University Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| | - Andrea Melichárková
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23, Bratislava, Slovak Republic
| | - Eliška Gbúrová Štubová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23, Bratislava, Slovak Republic
- Slovak National Museum, Natural History Museum, Vajanského nábrežie 2, 810 06, Bratislava, Slovak Republic
| | - Jaromír Kučera
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23, Bratislava, Slovak Republic
| | - Judita Kochjarová
- Department of Phytology, Faculty of Forestry, Technical University Zvolen, Masarykova 24, 960 53, Zvolen, Slovak Republic
| | - Ovidiu Paun
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Vienna, Austria
| | - Peter Vďačný
- Department of Zoology, Comenius University Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| | - Marek Slovák
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23, Bratislava, Slovak Republic
- Department of Botany, Charles University, Benátská 2, 128 01, Prague, Czech Republic
| |
Collapse
|
2
|
James ME, Ortiz-Barrientos D. The genomic consequences of selection across development. Mol Ecol 2024; 33:e17280. [PMID: 38247305 DOI: 10.1111/mec.17280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/01/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Understanding how natural selection drives diversification in nature has been at the forefront of biological research for over a century. The main idea is simple: natural selection favours individuals best suited to pass on their genes. However, the journey from birth to reproduction is complex as organisms experience multiple developmental stages, each influenced by genetic and environmental factors (Orr, 2009). These complexities compound even further as each stage of development might be governed by a unique underlying set of alleles and genes. In this issue of Molecular Ecology, Goebl et al. (2022) examine the role of natural selection in driving ecotypic divergence across different life history stages of the prairie sunflower Helianthus petiolaris. The authors used reciprocal transplant experiments, demographic models, and genomic sequencing to explore fitness variation across developmental stages. They show how natural selection impacts population divergence across multiple life history stages and evaluate the resulting allele frequency changes. Goebl et al. link these results to the role of chromosomal inversions, thus furthering our understanding of how ecological divergence proceeds in the face of gene flow. Below, we explore these results in detail and complement their interpretation by considering the evolution of genetic correlations amongst traits governing fitness.
Collapse
Affiliation(s)
- Maddie E James
- School of the Environment, The University of Queensland, St Lucia, QLD, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, St Lucia, QLD, Australia
| | - Daniel Ortiz-Barrientos
- School of the Environment, The University of Queensland, St Lucia, QLD, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, St Lucia, QLD, Australia
| |
Collapse
|
3
|
James ME, Allsopp RN, Groh JS, Kaur A, Wilkinson MJ, Ortiz-Barrientos D. Uncovering the genetic architecture of parallel evolution. Mol Ecol 2023; 32:5575-5589. [PMID: 37740681 DOI: 10.1111/mec.17134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 09/25/2023]
Abstract
Identifying the genetic architecture underlying adaptive traits is exceptionally challenging in natural populations. This is because associations between traits not only mask the targets of selection but also create correlated patterns of genomic divergence that hinder our ability to isolate causal genetic effects. Here, we examine the repeated evolution of components of the auxin pathway that have contributed to the replicated loss of gravitropism (i.e. the ability of a plant to bend in response to gravity) in multiple populations of the Senecio lautus species complex in Australia. We use a powerful approach which combines parallel population genomics with association mapping in a Multiparent Advanced Generation Inter-Cross (MAGIC) population to break down genetic and trait correlations to reveal how adaptive traits evolve during replicated evolution. We sequenced auxin and shoot gravitropism-related gene regions in 80 individuals from six natural populations (three parallel divergence events) and 133 individuals from a MAGIC population derived from two of the recently diverged natural populations. We show that artificial tail selection on gravitropism in the MAGIC population recreates patterns of parallel divergence in the auxin pathway in the natural populations. We reveal a set of 55 auxin gene regions that have evolved repeatedly during the evolution of the species, of which 50 are directly associated with gravitropism divergence in the MAGIC population. Our work creates a strong link between patterns of genomic divergence and trait variation contributing to replicated evolution by natural selection, paving the way to understand the origin and maintenance of adaptations in natural populations.
Collapse
Affiliation(s)
- Maddie E James
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, Australia
| | - Robin N Allsopp
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Jeffrey S Groh
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Avneet Kaur
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, Australia
| | - Melanie J Wilkinson
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, Australia
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
4
|
Kirk MA, Reider KE, Lackey ACR, Thomas SA, Whiteman HH. The role of environmental variation in mediating fitness trade-offs for an amphibian polyphenism. J Anim Ecol 2023; 92:1815-1827. [PMID: 37353993 DOI: 10.1111/1365-2656.13974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/05/2023] [Indexed: 06/25/2023]
Abstract
Fitness trade-offs are a foundation of ecological and evolutionary theory because trade-offs can explain life history variation, phenotypic plasticity, and the existence of polyphenisms. Using a 32-year mark-recapture dataset on lifetime fitness for 1093 adult Arizona tiger salamanders (Ambystoma mavortium nebulosum) from a high elevation, polyphenic population, we evaluated the extent to which two life history morphs (aquatic paedomorphs vs. terrestrial metamorphs) exhibited fitness trade-offs in breeding and body condition with respect to environmental variation (e.g. climate) and internal state-based variables (e.g. age). Both morphs displayed a similar response to higher probabilities of breeding during years of high spring precipitation (i.e. not indicative of a morph-specific fitness trade-off). There were likely no climate-induced fitness trade-offs on breeding state for the two life history morphs because precipitation and water availability are vital to amphibian reproduction. Body condition displayed a contrasting response for the two morphs that was indicative of a climate-induced fitness trade-off. While metamorphs exhibited a positive relationship with summer snowpack conditions, paedomorphs were unaffected. Fitness trade-offs from summer snowpack are likely due to extended hydroperiods in temporary ponds, where metamorphs gain a fitness advantage during the summer growing season by exploiting resources that are unavailable to paeodomorphs. However, paedomorphs appear to have the overwintering fitness advantage because they consistently had higher body condition than metamorphs at the start of the summer growing season. Our results reveal that climate and habitat type (metamorphs as predominately terrestrial, paedomorphs as fully aquatic) interact to confer different advantages for each morph. These results advance our current understanding of fitness trade-offs in this well-studied polyphenic amphibian by integrating climate-based mechanisms. Our conclusions prompt future studies to explore how climatic variation can maintain polyphenisms and promote life history diversity, as well as the implications of climate change for polyphenisms.
Collapse
Affiliation(s)
- Mark A Kirk
- Watershed Studies Institute and Department of Biological Sciences, Murray State University, Murray, Kentucky, USA
- Environmental Science and Sustainability Department, Allegheny College, Meadville, Pennsylvania, USA
| | - Kelsey E Reider
- Department of Biology, James Madison University, Harrisonburg, Virginia, USA
| | - Alycia C R Lackey
- Department of Biology, University of Louisville, Louisville, Kentucky, USA
| | - Scott A Thomas
- Watershed Studies Institute and Department of Biological Sciences, Murray State University, Murray, Kentucky, USA
| | - Howard H Whiteman
- Watershed Studies Institute and Department of Biological Sciences, Murray State University, Murray, Kentucky, USA
- Rocky Mountain Biological Laboratory, Gothic, Colorado, USA
| |
Collapse
|
5
|
Buckley YM, Puy J. The macroecology of plant populations from local to global scales. THE NEW PHYTOLOGIST 2022; 233:1038-1050. [PMID: 34536970 DOI: 10.1111/nph.17749] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Population ecologists develop theoretical and pragmatic knowledge of how and why populations change or remain stable, how life histories evolve and devise management strategies for populations of concern. However, forecasting the effects of global change or recommending management strategies is often urgent, requiring ecologists to work without detailed local evidence while using data and models from outside the focal location or species. Here we explore how the comparative ecology of populations, population macroecology, can be used to develop generalisations within and between species across different scales, using available demographic, environmental, life history, occurrence and trait data. We outline the strengths and weaknesses of using broad climatic variables and suitability inferred from probability of occupancy models to represent environmental variation in comparative analyses. We evaluate the contributions of traits, environment and their interaction as drivers of life history strategy. We propose that insights from life history theory, together with the adaptive capacity of populations and individuals, can inform on 'persist in place' vs 'shift in space' responses to changing conditions. As demographic data accumulate at landscape and regional scales for single species, and throughout plant phylogenies, we will have new opportunities for testing macroecological generalities within and across species.
Collapse
Affiliation(s)
- Yvonne M Buckley
- School of Natural Sciences, Zoology, Trinity College Dublin, Dublin 2, Ireland
- School of Biological Sciences, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - Javier Puy
- School of Natural Sciences, Zoology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
6
|
James ME, Arenas-Castro H, Groh JS, Allen SL, Engelstädter J, Ortiz-Barrientos D. Highly Replicated Evolution of Parapatric Ecotypes. Mol Biol Evol 2021; 38:4805-4821. [PMID: 34254128 PMCID: PMC8557401 DOI: 10.1093/molbev/msab207] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Parallel evolution of ecotypes occurs when selection independently drives the evolution of similar traits across similar environments. The multiple origins of ecotypes are often inferred based on a phylogeny that clusters populations according to geographic location and not by the environment they occupy. However, the use of phylogenies to infer parallel evolution in closely related populations is problematic because gene flow and incomplete lineage sorting can uncouple the genetic structure at neutral markers from the colonization history of populations. Here, we demonstrate multiple origins within ecotypes of an Australian wildflower, Senecio lautus. We observed strong genetic structure as well as phylogenetic clustering by geography and show that this is unlikely due to gene flow between parapatric ecotypes, which was surprisingly low. We further confirm this analytically by demonstrating that phylogenetic distortion due to gene flow often requires higher levels of migration than those observed in S. lautus. Our results imply that selection can repeatedly create similar phenotypes despite the perceived homogenizing effects of gene flow.
Collapse
Affiliation(s)
- Maddie E James
- School of Biological Sciences, The University of Queensland,St. Lucia, QLD, Australia
| | - Henry Arenas-Castro
- School of Biological Sciences, The University of Queensland,St. Lucia, QLD, Australia
| | - Jeffrey S Groh
- School of Biological Sciences, The University of Queensland,St. Lucia, QLD, Australia
| | - Scott L Allen
- School of Biological Sciences, The University of Queensland,St. Lucia, QLD, Australia
| | - Jan Engelstädter
- School of Biological Sciences, The University of Queensland,St. Lucia, QLD, Australia
| | | |
Collapse
|
7
|
James ME, Wilkinson MJ, Bernal DM, Liu H, North HL, Engelstädter J, Ortiz-Barrientos D. Phenotypic and genotypic parallel evolution in parapatric ecotypes of Senecio. Evolution 2021; 75:3115-3131. [PMID: 34687472 PMCID: PMC9299460 DOI: 10.1111/evo.14387] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022]
Abstract
The independent and repeated adaptation of populations to similar environments often results in the evolution of similar forms. This phenomenon creates a strong correlation between phenotype and environment and is referred to as parallel evolution. However, we are still largely unaware of the dynamics of parallel evolution, as well as the interplay between phenotype and genotype within natural systems. Here, we examined phenotypic and genotypic parallel evolution in multiple parapatric Dune‐Headland coastal ecotypes of an Australian wildflower, Senecio lautus. We observed a clear trait‐environment association in the system, with all replicate populations having evolved along the same phenotypic evolutionary trajectory. Similar phenotypes have arisen via mutational changes occurring in different genes, although many share the same biological functions. Our results shed light on how replicated adaptation manifests at the phenotypic and genotypic levels within populations, and highlight S. lautus as one of the most striking cases of phenotypic parallel evolution in nature.
Collapse
Affiliation(s)
- Maddie E James
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Melanie J Wilkinson
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Diana M Bernal
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Current Address: Biousos Neotropicales S.A.S, Bogotá, Colombia
| | - Huanle Liu
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Current Address: Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
| | - Henry L North
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Current Address: Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom
| | - Jan Engelstädter
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
8
|
Walter GM, Richards TJ, Wilkinson MJ, Blows MW, Aguirre JD, Ortiz‐Barrientos D. Loss of ecologically important genetic variation in late generation hybrids reveals links between adaptation and speciation. Evol Lett 2020; 4:302-316. [PMID: 32774880 PMCID: PMC7403682 DOI: 10.1002/evl3.187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 06/02/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Adaptation to contrasting environments occurs when advantageous alleles accumulate in each population, but it remains largely unknown whether these same advantageous alleles create genetic incompatibilities that can cause intrinsic reproductive isolation leading to speciation. Identifying alleles that underlie both adaptation and reproductive isolation is further complicated by factors such as dominance and genetic interactions among loci, which can affect both processes differently and obscure potential links between adaptation and speciation. Here, we use a combination of field and glasshouse experiments to explore the connection between adaptation and speciation while accounting for dominance and genetic interactions. We created a hybrid population with equal contributions from four contrasting ecotypes of Senecio lautus (Asteraceae), which produced hybrid genomes both before (F1 hybrid generation) and after (F4 hybrid generation) recombination among the parental ecotypes. In the glasshouse, plants in the second generation (F2 hybrid generation) showed reduced fitness as a loss of fertility. However, fertility was recovered in subsequent generations, suggesting that genetic variation underlying the fitness reduction was lost in subsequent generations. To quantify the effects of losing genetic variation at the F2 generation on the fitness of later generation hybrids, we used a reciprocal transplant to test for fitness differences between parental ecotypes, and F1 and F4 hybrids in all four parental habitats. Compared to the parental ecotypes and F1 hybrids, variance in F4 hybrid fitness was lower, and lowest in habitats that showed stronger native-ecotype advantage, suggesting that stronger natural selection for the native ecotype reduced fitness variation in the F4 hybrids. Fitness trade-offs that were present in the parental ecotypes and F1 hybrids were absent in the F4 hybrid. Together, these results suggest that the genetic variation lost after the F2 generation was likely associated with both adaptation and intrinsic reproductive isolation among ecotypes from contrasting habitats.
Collapse
Affiliation(s)
- Greg M. Walter
- School of Biological SciencesUniversity of QueenslandBrisbane4072Australia
- Current address: School of Biological SciencesMonash UniversityMelbourne3800Australia
| | - Thomas J. Richards
- Department of Ecology and GeneticsUppsala UniversityUppsalaSE‐752 36Sweden
| | | | - Mark W. Blows
- School of Biological SciencesUniversity of QueenslandBrisbane4072Australia
| | - J. David Aguirre
- School of Natural and Computational SciencesMassey UniversityAuckland0745New Zealand
| | | |
Collapse
|
9
|
Radersma R, Noble DWA, Uller T. Plasticity leaves a phenotypic signature during local adaptation. Evol Lett 2020; 4:360-370. [PMID: 32774884 PMCID: PMC7403707 DOI: 10.1002/evl3.185] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/22/2020] [Indexed: 12/31/2022] Open
Abstract
Phenotypic responses to a novel or extreme environment are initially plastic, only later to be followed by genetic change. Whether or not environmentally induced phenotypes are sufficiently recurrent and fit to leave a signature in adaptive evolution is debated. Here, we analyze multivariate data from 34 plant reciprocal transplant studies to test: (1) if plasticity is an adaptive source of developmental bias that makes locally adapted populations resemble the environmentally induced phenotypes of ancestors; and (2) if plasticity, standing phenotypic variation and genetic divergence align during local adaptation. Phenotypic variation increased marginally in foreign environments but, as predicted, the direction of ancestral plasticity was generally well aligned with the phenotypic difference between locally adapted populations, making plasticity appear to "take the lead" in adaptive evolution. Plastic responses were sometimes more extreme than the phenotypes of locally adapted plants, which can give the impression that plasticity and evolutionary adaptation oppose each other; however, environmentally induced and locally adapted phenotypes were rarely misaligned. Adaptive fine‐tuning of phenotypes—genetic accommodation—did not fall along the main axis of standing phenotypic variation or the direction of plasticity, and local adaptation did not consistently modify the direction or magnitude of plasticity. These results suggest that plasticity is a persistent source of developmental bias that shapes how plant populations adapt to environmental change, even when plasticity does not constrain how populations respond to selection.
Collapse
Affiliation(s)
- Reinder Radersma
- Department of Biology Lund University Lund Sweden.,Biometris Wageningen University & Research Wageningen The Netherlands
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology The Australian National University Canberra ACT Australia
| | - Tobias Uller
- Department of Biology Lund University Lund Sweden
| |
Collapse
|
10
|
Walter GM, Abbott RJ, Brennan AC, Bridle JR, Chapman M, Clark J, Filatov D, Nevado B, Ortiz-Barrientos D, Hiscock SJ. Senecio as a model system for integrating studies of genotype, phenotype and fitness. THE NEW PHYTOLOGIST 2020; 226:326-344. [PMID: 31951018 DOI: 10.1111/nph.16434] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/17/2019] [Indexed: 05/24/2023]
Abstract
Two major developments have made it possible to use examples of ecological radiations as model systems to understand evolution and ecology. First, the integration of quantitative genetics with ecological experiments allows detailed connections to be made between genotype, phenotype, and fitness in the field. Second, dramatic advances in molecular genetics have created new possibilities for integrating field and laboratory experiments with detailed genetic sequencing. Combining these approaches allows evolutionary biologists to better study the interplay between genotype, phenotype, and fitness to explore a wide range of evolutionary processes. Here, we present the genus Senecio (Asteraceae) as an excellent system to integrate these developments, and to address fundamental questions in ecology and evolution. Senecio is one of the largest and most phenotypically diverse genera of flowering plants, containing species ranging from woody perennials to herbaceous annuals. These Senecio species exhibit many growth habits, life histories, and morphologies, and they occupy a multitude of environments. Common within the genus are species that have hybridized naturally, undergone polyploidization, and colonized diverse environments, often through rapid phenotypic divergence and adaptive radiation. These diverse experimental attributes make Senecio an attractive model system in which to address a broad range of questions in evolution and ecology.
Collapse
Affiliation(s)
- Greg M Walter
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Richard J Abbott
- School of Biology, University of St Andrews, St Andrews, Fife, KY16 9TH, UK
| | - Adrian C Brennan
- School of Biological and Biomedical Sciences, University of Durham, Durham, DH1 3LE, UK
| | - Jon R Bridle
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Mark Chapman
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - James Clark
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Dmitry Filatov
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Bruno Nevado
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | | | - Simon J Hiscock
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| |
Collapse
|
11
|
Bont Z, Pfander M, Robert CAM, Huber M, Poelman EH, Raaijmakers CE, Erb M. Adapted dandelions trade dispersal for germination upon root herbivore attack. Proc Biol Sci 2020; 287:20192930. [PMID: 32097589 DOI: 10.1098/rspb.2019.2930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A plant's offspring may escape unfavourable local conditions through seed dispersal. Whether plants use this strategy to escape insect herbivores is not well understood. Here, we explore how different dandelion (Taraxacum officinale agg.) populations, including diploid outcrossers and triploid apomicts, modify seed dispersal in response to root herbivore attack by their main root-feeding natural enemy, the larvae of the common cockchafer Melolontha melolontha. In a manipulative field experiment, root herbivore attack increased seed dispersal potential through a reduction in seed weight in populations that evolved under high root herbivore pressure, but not in populations that evolved under low pressure. This increase in dispersal potential was independent of plant cytotype, but associated with a reduction in germination rate, suggesting that adapted dandelions trade dispersal for establishment upon attack by root herbivores. Analysis of vegetative growth parameters suggested that the increased dispersal capacity was not the result of stress flowering. In summary, these results suggest that root herbivory selects for an induced increase in dispersal ability in response to herbivore attack. Induced seed dispersal may be a strategy that allows adapted plants to escape from herbivores.
Collapse
Affiliation(s)
- Zoe Bont
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Marc Pfander
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | - Meret Huber
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Erik H Poelman
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Ciska E Raaijmakers
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|