1
|
Austin MW, Smith AB, Olsen KM, Hoch PC, Krakos KN, Schmocker SP, Miller-Struttmann NE. Climate change increases flowering duration, driving phenological reassembly and elevated co-flowering richness. THE NEW PHYTOLOGIST 2024; 243:2486-2500. [PMID: 39049577 DOI: 10.1111/nph.19994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024]
Abstract
Changes to flowering phenology are a key response of plants to climate change. However, we know little about how these changes alter temporal patterns of reproductive overlap (i.e. phenological reassembly). We combined long-term field (1937-2012) and herbarium records (1850-2017) of 68 species in a flowering plant community in central North America and used a novel application of Bayesian quantile regression to estimate changes to flowering season length, altered richness and composition of co-flowering assemblages, and whether phenological shifts exhibit seasonal trends. Across the past century, phenological shifts increased species' flowering durations by 11.5 d on average, which resulted in 94% of species experiencing greater flowering overlap at the community level. Increases to co-flowering were particularly pronounced in autumn, driven by a greater tendency of late season species to shift the ending of flowering later and to increase flowering duration. Our results demonstrate that species-level phenological shifts can result in considerable phenological reassembly and highlight changes to flowering duration as a prominent, yet underappreciated, effect of climate change. The emergence of an autumn co-flowering mode emphasizes that these effects may be season-dependent.
Collapse
Affiliation(s)
- Matthew W Austin
- Herbarium, Missouri Botanical Garden, St Louis, MO, 63110, USA
- Living Earth Collaborative, Washington University in St Louis, St Louis, MO, 63130, USA
| | - Adam B Smith
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, St Louis, MO, 63110, USA
| | - Kenneth M Olsen
- Department of Biology, Washington University in St Louis, St Louis, MO, 63130, USA
| | - Peter C Hoch
- Herbarium, Missouri Botanical Garden, St Louis, MO, 63110, USA
| | - Kyra N Krakos
- Department of Biology, Maryville University in Saint Louis, St Louis, MO, 63141, USA
- Missouri Botanical Garden, St Louis, MO, 63110, USA
| | - Stefani P Schmocker
- Missouri Botanical Garden, St Louis, MO, 63110, USA
- Department of Biological Sciences, Kent State University, Kent, OH, 44240, USA
| | - Nicole E Miller-Struttmann
- Missouri Botanical Garden, St Louis, MO, 63110, USA
- Department of Natural Sciences and Mathematics, Webster University, St Louis, MO, 63119, USA
| |
Collapse
|
2
|
Amer NR, Stoks R, Antoł A, Sniegula S. Microgeographic differentiation in thermal and antipredator responses and their carry-over effects across life stages in a damselfly. PLoS One 2024; 19:e0295707. [PMID: 38394143 PMCID: PMC10889876 DOI: 10.1371/journal.pone.0295707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/27/2023] [Indexed: 02/25/2024] Open
Abstract
Global warming and invasive species, separately or combined, can impose a large impact on the condition of native species. However, we know relatively little about how these two factors, individually and in combination, shape phenotypes in ectotherms across life stages and how this can differ between populations. We investigated the non-consumptive predator effects (NCEs) imposed by native (perch) and invasive (signal crayfish) predators experienced only during the egg stage or during both the egg and larval stages in combination with warming on adult life history traits of the damselfly Ischnura elegans. To explore microgeographic differentiation, we compared two nearby populations differing in thermal conditions and predator history. In the absence of predator cues, warming positively affected damselfly survival, possibly because the warmer temperature was closer to the optimal temperature. In the presence of predator cues, warming decreased survival, indicating a synergistic effect of these two variables on survival. In one population, predator cues from perch led to increased survival, especially under the current temperature, likely because of predator stress acclimation phenomena. While warming decreased, predator cues increased larval development time with a proportionally stronger effect of signal crayfish cues experienced during the egg stage, indicating a negative carry-over effect from egg to larva. Warming and predator cues increased mass at emergence, with the predator effect driven mainly by exposure to signal crayfish cues during the egg stage, indicating a positive carry-over effect from egg to adult. Notably, warming and predator effects were not consistent across the two studied populations, suggesting a phenotypic signal of adaptation at a microgeographic scale to thermal conditions and predator history. We also observed pronounced shifts during ontogeny from synergistic (egg and early larval stage) toward additive (late larval stage up to emergence) effects between warming and predator stress. The results point out that population- and life-stage-specific responses in life-history traits to NCEs are needed to predict fitness consequences of exposure to native and invasive predators and warming in prey at a microgeographic scale.
Collapse
Affiliation(s)
- Nermeen R. Amer
- Department of Biodiversity, Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| | - Robby Stoks
- Department of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Andrzej Antoł
- Department of Biodiversity, Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
| | - Szymon Sniegula
- Department of Biodiversity, Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
3
|
Zou HX, Rudolf VHW. Bridging theory and experiments of priority effects. Trends Ecol Evol 2023; 38:1203-1216. [PMID: 37633727 DOI: 10.1016/j.tree.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/28/2023]
Abstract
Priority effects play a key role in structuring natural communities, but considerable confusion remains about how they affect different ecological systems. Synthesizing previous studies, we show that this confusion arises because the mechanisms driving priority and the temporal scale at which they operate differ among studies, leading to divergent outcomes in species interactions and biodiversity patterns. We suggest grouping priority effects into two functional categories based on their mechanisms: frequency-dependent priority effects that arise from positive frequency dependence, and trait-dependent priority effects that arise from time-dependent changes in interacting traits. Through easy quantification of these categories from experiments, we can construct community models representing diverse biological mechanisms and interactions with priority effects, therefore better predicting their consequences across ecosystems.
Collapse
Affiliation(s)
- Heng-Xing Zou
- Program in Ecology and Evolutionary Biology, Department of BioSciences, Rice University, 6100 Main St, Houston, TX 77005, USA.
| | - Volker H W Rudolf
- Program in Ecology and Evolutionary Biology, Department of BioSciences, Rice University, 6100 Main St, Houston, TX 77005, USA
| |
Collapse
|
4
|
Musgrove J, Gilbert F. Negative density-dependence buffers against mismatch-induced population decline in the Sinai baton blue butterfly. Oecologia 2023; 203:1-11. [PMID: 37733112 DOI: 10.1007/s00442-023-05449-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
Phenological mismatches caused by climate change pose a major threat to global biodiversity, yet relatively few studies have reported population declines resulting from mismatch. It has been hypothesised that density effects may underlie this lack of observed responses by buffering against mismatch-induced population decline. We developed an individual-based model of the critically endangered Sinai baton blue butterfly (Pseudophilotes sinaicus) and its hostplant Sinai thyme (Thymus decussatus), parameterised using real field data, to test this hypothesis. Our model showed that the baton blue experiences demographic consequences under only 5 days of phenological mismatch, but that this threshold was increased to 14 days with the inclusion of density-dependent juvenile mortality. The inclusion of density effects also led to the replication of population cycles observed in nature, supporting the ability of our model to accurately represent the baton blue's ecology. These results add to a growing body of literature suggesting that density effects may underlie the observed lack of demographic responses to mismatch in wild populations. However, these buffers may be short-lived in extreme mismatch scenarios, providing a false sense of security against a looming threat of population collapse.
Collapse
Affiliation(s)
- Jamie Musgrove
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montréal, QC, H3A 1B1, Canada.
| | - Francis Gilbert
- School of Life Sciences, University Park, University of Nottingham, Nottingham, NG7 2RD, England
| |
Collapse
|
5
|
Zou HX, Schreiber SJ, Rudolf VHW. Stage-mediated priority effects and season lengths shape long-term competition dynamics. Proc Biol Sci 2023; 290:20231217. [PMID: 37752843 PMCID: PMC10523084 DOI: 10.1098/rspb.2023.1217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
The relative arrival time of species can affect their interactions and thus determine which species persist in a community. Although this phenomenon, called priority effect, is widespread in natural communities, it is unclear how it depends on the length of growing season. Using a seasonal stage-structured model, we show that differences in stages of interacting species could generate priority effects by altering the strength of stabilizing and equalizing coexistence mechanisms, changing outcomes between exclusion, coexistence and positive frequency dependence. However, these priority effects are strongest in systems with just one or a few generations per season and diminish in systems where many overlapping generations per season dilute the importance of stage-specific interactions. Our model reveals a novel link between the number of generations in a season and the consequences of priority effects, suggesting that consequences of phenological shifts driven by climate change should depend on specific life histories of organisms.
Collapse
Affiliation(s)
- Heng-Xing Zou
- Program in Ecology and Evolutionary Biology, Department of BioSciences, Rice University, Houston, TX 77005, USA
| | | | - Volker H. W. Rudolf
- Program in Ecology and Evolutionary Biology, Department of BioSciences, Rice University, Houston, TX 77005, USA
| |
Collapse
|
6
|
Neptune TC, Benard MF. Photoperiod effects in a freshwater community: Amphibian larvae develop faster and zooplankton abundance increases under an early-season photoperiod. Ecol Evol 2023; 13:e10400. [PMID: 37560180 PMCID: PMC10408251 DOI: 10.1002/ece3.10400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023] Open
Abstract
Organisms that shift their phenologies in response to global warming will experience novel photic environments, as photoperiod (daylength) continues to follow the same annual cycle. How different organisms respond to novel photoperiods could result in phenological mismatches and altered interspecific interactions. We conducted an outdoor mesocosm experiment exposing green frog (Rana clamitans) larvae, gray treefrog (Hyla versicolor) larvae, phytoplankton, periphyton, and zooplankton to a three-month shift in photoperiod: an early-season photoperiod (simulating April) and a late-season photoperiod (simulating July). We manipulated photoperiod by covering and uncovering tanks with clear or light-blocking lids to mimic realistic changes in daylength. We assessed amphibian life history traits and measured phytoplankton, periphyton, and zooplankton abundances. Green frog larvae and gray treefrog metamorphs were more developed under the early-season photoperiod. Gray treefrog total length was also reduced, but photoperiod did not affect green frog total length. Although phytoplankton and periphyton abundances were not affected by photoperiod, copepod nauplii were in greater abundance under the early-season photoperiod. Overall, this simplified aquatic community did not exhibit significant changes to structure when exposed to a three-month shift in photoperiod. Temperate amphibians that breed earlier in the year may develop faster, which may have long-term costs to post-metamorphic growth and performance. Asynchronous shifts in zooplankton abundances in response to altered photoperiods could subsequently affect freshwater community structure. While photoperiod has been shown to individually affect freshwater organisms, our study using replicated outdoor wetland communities shows that the comprehensive effects of photoperiod may be less important than other cues such as temperature and precipitation.
Collapse
Affiliation(s)
- Troy C. Neptune
- Department of BiologyCase Western Reserve UniversityClevelandOhioUSA
| | - Michael F. Benard
- Department of BiologyCase Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
7
|
Eghbali H, Sharifi M. Impacts of inter-annual climate variability on reproductive phenology and postnatal development of morphological features of three sympatric bat species. Sci Rep 2023; 13:8716. [PMID: 37248331 DOI: 10.1038/s41598-023-35781-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023] Open
Abstract
Inter-annual variation in weather conditions has been shown to affect the reproductive phenological patterns of many organisms. Because of their relatively small body size and dependence on ectothermic prey, temperate-zone insectivorous bats are particularly sensitive to adverse spring environmental conditions that affect the duration of gestation and timing of parturition in these animals. This study aimed to compare phenological recruitment, birth seasonality and synchrony and morphological changes during postnatal growth in Rhinolophus euryale, Rhinolophus ferrumequinum and Myotis emarginatus in two consecutive years representing a typical dry (2015) and an extremely wet climatic event (2016) in a nursing colony in Kerend cave, western Iran. Females of these three bat species arrived from their wintering cave to the nursing colony in late April to mid-May each year. Synchrony of parturition as defined by amount clustering of births within a year assessed by circular statistics showed that for R. euryale and R. ferrumequinum the angular variance in dry year were significantly (P < 0.05) lower than in wet year, indicating a low level of synchrony in 2016. Similar comparison showed that births from M. emarginatus were highly synchrony, and there were no significant differences in timing of births among years (P > 0.05). Generalized estimating equation (GEE) for R. euryale indicated that for body mass and forearm length tests of parallelism (interaction term or growth rate) and tests for equal intercepts (y-intercepts or group term) were significant (P < 0.001). In R. ferrumequinum, the initial (y-intercepts) forearm length and body mass were not significantly (P > 0.05) different between the 2 years, but the tests for parallelism showed a significant decrease in growth rates of body mass and forearm length in the wet year (P < 0.05). Similar comparison in M. emarginatus indicated that for body mass, tests of parallelism were significantly different (P = 0.004), while tests for equal intercepts were not (P = 0.23). Our results suggest that climate changes may have unequal effects on different bat species due to differences in foraging habitat, niche partitioning, reproductive requirements and foraging strategies.
Collapse
Affiliation(s)
- Hojjat Eghbali
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.
| | - Mozafar Sharifi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|
8
|
Smith GR. Legacy effects in temporally separated tadpole species are not mediated by invasive Western Mosquitofish ( Gambusia affinis). Ecol Evol 2023; 13:e10034. [PMID: 37091573 PMCID: PMC10115897 DOI: 10.1002/ece3.10034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/25/2023] Open
Abstract
Temporally separated species are often thought to have limited competition over a shared resource. However, early arriving species may consume a limited resource such that later-arriving species have access to fewer resources and thus experience competitive effects, even if they are temporally separated (i.e., they experience legacy effects from the early species). The presence of a predator might affect potential legacy effects by influencing the behavior or survivorship of the early species. Using a mesocosm experiment, I examined whether the presence of nonnative Western Mosquitofish (Gambusia affinis) mediated legacy effects in the interaction of two temporally separated species of tadpoles, early arriving American Toads (Anaxyrus americanus) and late-arriving Bullfrogs (Rana catesbeiana). Anaxyrus americanus tadpoles reduced R. catesbeiana tadpole growth despite all A. americanus tadpoles metamorphosing 8 days before the introduction of R. catesbeiana tadpoles into the mesocosms (i.e., legacy effects). Gambusia affinis had limited effects on A. americanus (1 day delay in metamorphosis but no effect on survivorship or size at metamorphosis) and positive effects on R. catesbeiana (increased growth). There were no significant interactions between the A. americanus tadpole density and G. affinis treatments. In conclusion, I found evidence of significant legacy effects of A. americanus tadpoles on R. catesbeiana tadpoles, but no evidence that G. affinis mediated the legacy effects.
Collapse
|
9
|
Carroll CM, Saenz D, Rudolf VHW. Tracking phenological distributions and interaction potential across life stages. OIKOS 2023. [DOI: 10.1111/oik.09773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
10
|
Environmental Drivers of Amphibian Breeding Phenology across Multiple Sites. DIVERSITY 2023. [DOI: 10.3390/d15020253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
A mechanistic understanding of phenology, the seasonal timing of life history events, is important for understanding species’ interactions and the potential responses of ecological communities to a rapidly changing climate. We present analysis of a seven-year dataset on the breeding phenology of wood frogs (Rana sylvatica), tiger salamanders (Ambystoma tigrinum), blue-spotted salamanders (Ambystoma laterale), and associated unisexual Ambystoma salamanders from six wetlands in Southeast Michigan, USA. We assess whether the ordinal date of breeding migrations varies among species, sexes, and individual wetlands, and we describe the specific environmental conditions associated with breeding migrations for each species/sex. Breeding date was significantly affected by species/sex identity, year, wetland, and the interactions between species/sex and year as well as wetland and year. There was a great deal of variation among years, with breeding occurring nearly synchronously among groups in some years but widely spaced between groups in other years. Specific environmental triggers for movement varied for each species and sex and changed as the breeding season progressed. In general, salamanders responded to longer temperature lags (more warmer days in a row) than wood frogs, whereas wood frogs required longer precipitation lags (more rainy days in a row) than salamanders. Wood frogs were more likely to migrate around the time of a new moon, whereas in contrast, Ambystoma salamander migration was not associated with a moon phase. Ordinal day was an important factor in all models, suggesting that these amphibians require a latency period or similar mechanism to avoid breeding too early in the year, even when weather conditions appear favorable. Male wood frogs migrated earlier than female wood frogs, and male blue-spotted salamanders migrated earlier than female A. laterale and associated unisexual females. Larger unisexual salamanders migrated earlier than smaller individuals. Differences in species’ responses to environmental cues led to wood frogs and A. laterale breeding later than tiger salamanders in colder years but not in warmer years. This suggests that, as the climate warms, wood frog and A. laterale larvae may experience less predation from tiger salamander larvae due to reduced size differences when they breed simultaneously. Our study is one of few to describe the proximate drivers of amphibian breeding migrations across multiple species, wetlands, and years, and it can inform models predicting how climate change may shift ecological interactions among pond-breeding amphibian species.
Collapse
|
11
|
Anderson TL, Burkhart JJ, Cianci‐Gaskill JA, Davenport JM. Limited population and community effects of hatching asynchrony in a pond‐breeding salamander. Ecosphere 2023. [DOI: 10.1002/ecs2.4372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Affiliation(s)
- Thomas L. Anderson
- Department of Biology Appalachian State University Boone North Carolina USA
| | - Jacob J. Burkhart
- Department of Biology Appalachian State University Boone North Carolina USA
| | | | - Jon M. Davenport
- Department of Biology Appalachian State University Boone North Carolina USA
| |
Collapse
|
12
|
Warming and predation risk only weakly shape size-mediated priority effects in a cannibalistic damselfly. Sci Rep 2022; 12:17324. [PMID: 36243749 PMCID: PMC9569353 DOI: 10.1038/s41598-022-22110-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/10/2022] [Indexed: 01/10/2023] Open
Abstract
Differences in hatching dates can shape intraspecific interactions through size-mediated priority effects (SMPE), a phenomenon where bigger, early hatched individuals gain advantage over smaller, late hatched ones. However, it remains unclear to what extent and how SMPE are affected by key environmental factors such as warming and predation risk imposed by top predators. We studied effects of warming (low and high temperature) and predation risk (presence and absence of predator cues of perch) on SMPE in life history and physiological traits in the cannibalistic damselfly Ischnura elegans. We induced SMPE in the laboratory by manipulating hatching dates, creating following groups: early and late hatchlings reared in separate containers, and mixed phenology groups where early and late hatchlings shared the same containers. We found strong SMPE for survival and emergence success, with the highest values in early larvae of mixed phenology groups and the lowest values in late larvae of mixed phenology groups. Neither temperature nor predator cues affected SMPE for these two traits. The other life history traits (development rate and mass at emergence) did not show SMPE, but were affected by temperature and predator cues. A tendency for SMPE was found for protein content, in the high temperature treatment. The other physiological traits (phenoloxidase activity and fat content) showed fixed expressions across treatments, indicating decoupling between physiology and life history. The results underline that SMPEs are trait-dependent, and only weakly or not affected by temperature and predation risk.
Collapse
|
13
|
Duchenne F, Wüest RO, Graham CH. Seasonal structure of interactions enhances multidimensional stability of mutualistic networks. Proc Biol Sci 2022; 289:20220064. [PMID: 36100030 PMCID: PMC9470273 DOI: 10.1098/rspb.2022.0064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Community ecologists have made great advances in understanding how natural communities can be both diverse and stable by studying communities as interaction networks. However, focus has been on interaction networks aggregated over time, neglecting the consequences of the seasonal organization of interactions (hereafter 'seasonal structure') for community stability. Here, we extended previous theoretical findings on the topic in two ways: (i) by integrating empirical seasonal structure of 11 plant–hummingbird communities into dynamic models, and (ii) by tackling multiple facets of network stability together. We show that, in a competition context, seasonal structure enhances community stability by allowing diverse and resilient communities while preserving their robustness to species extinctions. The positive effects of empirical seasonal structure on network stability vanished when using randomized seasonal structures, suggesting that eco-evolutionary dynamics produce stabilizing seasonal structures. We also show that the effects of seasonal structure on community stability are mainly mediated by changes in network structure and productivity, suggesting that the seasonal structure of a community is an important and yet neglected aspect in the diversity–stability and diversity–productivity debates.
Collapse
Affiliation(s)
- François Duchenne
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), 8903 Birmensdorf, Switzerland
| | - Rafael O Wüest
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), 8903 Birmensdorf, Switzerland
| | - Catherine H Graham
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), 8903 Birmensdorf, Switzerland
| |
Collapse
|
14
|
Raczyński M, Stoks R, Johansson F, Bartoń K, Sniegula S. Phenological Shifts in a Warming World Affect Physiology and Life History in a Damselfly. INSECTS 2022; 13:622. [PMID: 35886798 PMCID: PMC9318786 DOI: 10.3390/insects13070622] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 12/02/2022]
Abstract
Under climate warming, temperate ectotherms are expected to hatch earlier and grow faster, increase the number of generations per season, i.e., voltinism. Here, we studied, under laboratory conditions, the impact of artificial warming and manipulated hatching dates on life history (voltinism, age and mass at emergence and growth rate) and physiological traits (phenoloxidase (PO) activity at emergence, as an indicator of investment in immune function) and larval survival rate in high-latitude populations of the damselfly Ischnura elegans. Larvae were divided into four groups based on crossing two treatments: early versus late hatching dates and warmer versus control rearing temperature. Damselflies were reared in groups over the course of one (univoltine) or two (semivoltine) growth seasons, depending on the voltinism. Warming temperature did not affect survival rate. However, warming increased the number of univoltine larvae compared to semivoltine larvae. There was no effect of hatching phenology on voltinism. Early hatched larvae reared under warming had elevated PO activity, regardless of their voltinism, indicating increased investment in immune function against pathogens. Increased PO activity was not associated with effects on age or mass at emergence or growth rate. Instead, life history traits were mainly affected by temperature and voltinism. Warming decreased development time and increased growth rate in univoltine females, yet decreased growth rate in univoltine males. This indicates a stronger direct impact of warming and voltinism compared to impacts of hatching phenology on life history traits. The results strengthen the evidence that phenological shifts in a warming world may affect physiology and life history in freshwater insects.
Collapse
Affiliation(s)
- Mateusz Raczyński
- Institute of Nature Conservation, Polish Academy of Sciences, 31-120 Krakow, Poland;
| | - Robby Stoks
- Department of Biology, Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, 3000 Leuven, Belgium;
| | - Frank Johansson
- Department of Ecology and Genetics, Animal Ecology, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden;
| | - Kamil Bartoń
- Institute of Nature Conservation, Polish Academy of Sciences, 31-120 Krakow, Poland;
| | - Szymon Sniegula
- Institute of Nature Conservation, Polish Academy of Sciences, 31-120 Krakow, Poland;
| |
Collapse
|
15
|
Carter SK, Rudolf VH. Exploring conditions that strengthen or weaken the ecological and evolutionary consequences of phenological synchrony. Am Nat 2022; 200:E189-E206. [DOI: 10.1086/720899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Rudolf VHW. Temperature and nutrient conditions modify the effects of phenological shifts in predator-prey communities. Ecology 2022; 103:e3704. [PMID: 35357008 DOI: 10.1002/ecy.3704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 11/10/2022]
Abstract
While there is mounting evidence indicating that the relative timing of predator and prey phenologies shapes the outcome of trophic interactions, we still lack a comprehensive understanding of how important the environmental context (e.g. abiotic conditions) is for shaping this relationship. Environmental conditions not only frequently drive shifts in phenologies, but they can also affect the very same processes that mediate the effects of phenological shifts on species interactions. Thus, identifying how environmental conditions shape the effects of phenological shifts is key to predict community dynamics across a heterogenous landscape and how they will change with ongoing climate change in the future. Here I tested how environmental conditions shape effects of phenological shifts by experimentally manipulating temperature, nutrient availability, and relative phenologies in two predator-prey freshwater systems (mole salamander- bronze frog vs dragonfly larvae-leopard frog). This allowed me to (1) isolate the effect of phenological shifts and different environmental conditions, (2) determine how they interact, and (3) how consistent these patterns are across different species and environments. I found that delaying prey arrival dramatically increased predation rates, but these effects were contingent on environmental conditions and predator system. While both nutrient addition and warming significantly enhanced the effect of arrival time, their effect was qualitatively different across systems: Nutrient addition enhanced the positive effect of early arrival in the dragonfly-leopard frog system, while warming enhanced the negative effect of arriving late in the salamander-bronze frog system. Predator responses varied qualitatively across predator-prey systems. Only in the system with strong gape-limitation were predators (salamanders) significantly affected by prey arrival time and this effect varied with environmental context. Correlations between predator and prey demographic rates suggest that this was driven by shifts in initial predator-prey size ratios and a positive feedback between size-specific predation rates and predator growth rates. These results highlight the importance of accounting for temporal and spatial correlation of local environmental conditions and gape-limitation in predator-prey systems when predicting the effects of phenological shifts and climate change on predator-prey systems.
Collapse
Affiliation(s)
- V H W Rudolf
- BioSciences, Rice University, Houston, Texas, USA
| |
Collapse
|
17
|
Multiple UAV Flights across the Growing Season Can Characterize Fine Scale Phenological Heterogeneity within and among Vegetation Functional Groups. REMOTE SENSING 2022. [DOI: 10.3390/rs14051290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Grasslands and shrublands exhibit pronounced spatial and temporal variability in structure and function with differences in phenology that can be difficult to observe. Unpiloted aerial vehicles (UAVs) can measure vegetation spectral patterns relatively cheaply and repeatably at fine spatial resolution. We tested the ability of UAVs to measure phenological variability within vegetation functional groups and to improve classification accuracy at two sites in Montana, U.S.A. We tested four flight frequencies during the growing season. Classification accuracy based on reference data increased by 5–10% between a single flight and scenarios including all conducted flights. Accuracy increased from 50.6 to 61.4% at the drier site, while at the more mesic/densely vegetated site, we found an increase of 59.0 to 64.4% between a single and multiple flights over the growing season. Peak green-up varied by 2–4 weeks within the scenes, and sparse vegetation classes had only a short detectable window of active phtosynthesis; therefore, a single flight could not capture all vegetation that was active across the growing season. The multi-temporal analyses identified differences in the seasonal timing of green-up and senescence within herbaceous and sagebrush classes. Multiple UAV measurements can identify the fine-scale phenological variability in complex mixed grass/shrub vegetation.
Collapse
|
18
|
Ode PJ, Vyas DK, Harvey JA. Extrinsic Inter- and Intraspecific Competition in Parasitoid Wasps. ANNUAL REVIEW OF ENTOMOLOGY 2022; 67:305-328. [PMID: 34614367 DOI: 10.1146/annurev-ento-071421-073524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The diverse ecology of parasitoids is shaped by extrinsic competition, i.e., exploitative or interference competition among adult females and males for hosts and mates. Adult females use an array of morphological, chemical, and behavioral mechanisms to engage in competition that may be either intra- or interspecific. Weaker competitors are often excluded or, if they persist, use alternate host habitats, host developmental stages, or host species. Competition among adult males for mates is almost exclusively intraspecific and involves visual displays, chemical signals, and even physical combat. Extrinsic competition influences community structure through its role in competitive displacement and apparent competition. Finally, anthropogenic changes such as habitat loss and fragmentation, invasive species, pollutants, and climate change result in phenological mismatches and range expansions within host-parasitoid communities with consequent changes to the strength of competitive interactions. Such changes have important ramifications not only for the success of managed agroecosystems, but also for natural ecosystem functioning.
Collapse
Affiliation(s)
- Paul J Ode
- Graduate Degree Program in Ecology, Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado 80523, USA;
| | - Dhaval K Vyas
- Department of Biological Sciences, University of Denver, Denver, Colorado 80208, USA
| | - Jeffrey A Harvey
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, The Netherlands
- Animal Ecology Section, Department of Ecological Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
19
|
Youngflesh C, Li Y, Lynch HJ, Delord K, Barbraud C, Ji R, Jenouvrier S. Lack of synchronized breeding success in a seabird community: extreme events, niche separation, and environmental variability. OIKOS 2021. [DOI: 10.1111/oik.08426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Casey Youngflesh
- Dept of Ecology and Evolutionary Biology, Univ. of California – Los Angeles Los Angeles CA USA
| | - Yun Li
- School of Marine Science and Policy, Univ. of Delaware Lewes DE USA
| | - Heather J. Lynch
- Inst. for Advanced Computational Science, Stony Brook Univ. Stony Brook NY USA
- Dept of Ecology and Evolution, Stony Brook Univ. Stony Brook NY USA
| | - Karine Delord
- Centre d'Etudes Biologiques de Chizé, UMR 7372 Centre National de la Recherche Scientifique/La Rochelle Univ. Villiers en Bois France
| | - Christophe Barbraud
- Centre d'Etudes Biologiques de Chizé, UMR 7372 Centre National de la Recherche Scientifique/La Rochelle Univ. Villiers en Bois France
| | - Rubao Ji
- Biology Dept, Woods Hole Oceanographic Inst. Woods Hole MA USA
| | | |
Collapse
|
20
|
Song C, Fukami T, Saavedra S. Untangling the complexity of priority effects in multispecies communities. Ecol Lett 2021; 24:2301-2313. [PMID: 34472694 DOI: 10.1111/ele.13870] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/23/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022]
Abstract
The history of species immigration can dictate how species interact in local communities, thereby causing historical contingency in community assembly. Since immigration history is rarely known, these historical influences, or priority effects, pose a major challenge in predicting community assembly. Here, we provide a graph-based, non-parametric, theoretical framework for understanding the predictability of community assembly as affected by priority effects. To develop this framework, we first show that the diversity of possible priority effects increases super-exponentially with the number of species. We then point out that, despite this diversity, the consequences of priority effects for multispecies communities can be classified into four basic types, each of which reduces community predictability: alternative stable states, alternative transient paths, compositional cycles and the lack of escapes from compositional cycles to stable states. Using a neural network, we show that this classification of priority effects enables accurate explanation of community predictability, particularly when each species immigrates repeatedly. We also demonstrate the empirical utility of our theoretical framework by applying it to two experimentally derived assembly graphs of algal and ciliate communities. Based on these analyses, we discuss how the framework proposed here can help guide experimental investigation of the predictability of history-dependent community assembly.
Collapse
Affiliation(s)
- Chuliang Song
- Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA.,Department of Biology, McGill University, Montreal, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Tadashi Fukami
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Serguei Saavedra
- Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA
| |
Collapse
|
21
|
Anderson TL, Earl JE, Hocking DJ, Osbourn MS, Rittenhouse TAG, Johnson JR. Demographic effects of phenological variation in natural populations of two pond-breeding salamanders. Oecologia 2021; 196:1073-1083. [PMID: 34338861 DOI: 10.1007/s00442-021-05000-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 07/21/2021] [Indexed: 11/25/2022]
Abstract
Phenology is a key driver of population and community dynamics. Phenological metrics (e.g., first date that an event occurred) often simplify information from the full phenological distribution, which may undermine efforts to determine the importance of life history events. Data regarding full phenological distributions are especially needed as many species are shifting phenology with climatic change which can alter life-history patterns and species dynamics. We tested whether skewness, kurtosis or maximum duration of breeding phenology affected juvenile emigration phenology and survival in natural populations of ringed (Ambystoma annulatum) and spotted salamanders (A. maculatum) spanning a 7-year period at two study locations. We evaluated the relative importance of different phenological metrics in breeding phenology and larval density dependence on emigration phenology and survival. We found that variability in emigration phenology differed by species, with ringed salamanders having a shorter duration and distributions that were more often right-skewed and leptokurtic compared to spotted salamanders. Emigration phenology was not linked to any measure of variability in breeding phenology, indicating phenological variability operates independently across life stages and may be subject to stage-specific influences. Emigration duration and skewness were partially explained by larval density, which demonstrates how phenological distributions may change with species interactions. Further tests that use the full phenological distribution to link variability in timing of life history events to demographic traits such as survival are needed to determine if and how phenological shifts will impact species persistence.
Collapse
Affiliation(s)
- Thomas L Anderson
- Department of Biology, Appalachian State University, Boone, NC, 28608, USA.
- Department of Biology, Southern Illinois University Edwardsville, Edwardsville, IL, 62026, USA.
| | - Julia E Earl
- School of Biological Sciences, Louisiana Tech University, Ruston, LA, 71272, USA
| | - Daniel J Hocking
- Biology Department, Frostburg State University, Frostburg, MD, 21532, USA
| | - Michael S Osbourn
- Department of Biology, Appalachian State University, Boone, NC, 28608, USA
| | - Tracy A G Rittenhouse
- Department of Natural Resources and the Environment, University of Connecticut, Storrs, CT, 06269, USA
| | - Jarrett R Johnson
- Biology Department, Western Kentucky University, Bowling Green, KY, 42101, USA
| |
Collapse
|
22
|
Scale gaps in landscape phenology: challenges and opportunities. Trends Ecol Evol 2021; 36:709-721. [PMID: 33972119 DOI: 10.1016/j.tree.2021.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 04/02/2021] [Accepted: 04/14/2021] [Indexed: 11/22/2022]
Abstract
Phenology, or the timing of life history events, can be heterogeneous across biological communities and landscapes and can vary across a wide variety of spatiotemporal scales. Here, we synthesize information from landscape phenology studies across different scales of measurement around a set of core concepts. We highlight why phenology is scale dependent and identify gaps in the spatiotemporal scales of phenological observations and inferences. We discuss the consequences of these gaps and describe opportunities to address the inherent sensitivities of phenological metrics to measurement scale. Although most studies we review and discuss are focused on plants, our work provides a broadly relevant overview of the role of observation scale in landscape phenology and a general approach for measuring and reporting scale dependence.
Collapse
|
23
|
Perkin EK, Wilson MJ. Anthropogenic alteration of flow, temperature, and light as life-history cues in stream ecosystems. Integr Comp Biol 2021; 61:1134-1146. [PMID: 33871033 DOI: 10.1093/icb/icab024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Life history events, from mating and voltinism to migration and emergence, are governed by external and historically predictable environmental factors. The ways humans have altered natural environments during the Anthropocene have created myriad and compounding changes to these historically predictable environmental cues. Over the past few decades, there has been an increased interest in the control temperature exerts on life history events as concern over climate change has increased. However, temperature is not the only life history cue that humans have altered. In stream ecosystems, flow and light serve as important life history cues in addition to temperature. The timing and magnitude of peak flows can trigger migrations, decreases in stream temperature may cause a stream insect to enter diapause, and photoperiod appears to prompt spawning in some species of fish. Two or more of these cues may interact with one another in complex and sometimes unpredictable ways. Large dams and increasing impervious cover in urban ecosystems have modified flows and altered the timing of spawning and migration in fish. Precipitation draining hot impervious surfaces increases stream temperature and adds variability to the general pattern of stream warming from climate change. The addition of artificial light in urban and suburban areas is bright enough to eliminate or dampen the photoperiod signal and has resulted in caddisfly emergence becoming acyclical. The resulting changes in the timing of life history events also have the potential to influence the evolutionary trajectory of an organism and its interactions with other species. This paper offers a review and conceptual framework for future research into how flow, temperature, and light interact to drive life history events of stream organisms and how humans have changed these cues. We then present some of the potential evolutionary and ecological consequences of altered life history events, and conclude by highlighting what we perceive to be the most pressing research needs.
Collapse
Affiliation(s)
- Elizabeth K Perkin
- Native Fish Society, 813 7th St, Oregon City, Oregon, USA.,Department of Forest and Conservation Sciences, University of British Columbia, 3041-2424 Main Mall, Vancouver, BC, V6T 1Z4
| | - Matthew J Wilson
- Freshwater Research Institute, Susquehanna University, 514 University Avenue, Selinsgrove, Pennsylvania, USA
| |
Collapse
|
24
|
Wassmer T. Phenological Patterns and Seasonal Segregation of Coprophilous Beetles (Coleoptera: Scarabaeoidea and Hydrophilidae) on a Cattle Farm in SE-Michigan, United States Throughout the Year. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.563532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
Rollins HB, Benard MF. Challenges in predicting the outcome of competition based on climate change-induced phenological and body size shifts. Oecologia 2020; 193:749-759. [PMID: 32654046 DOI: 10.1007/s00442-020-04705-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 07/04/2020] [Indexed: 11/25/2022]
Abstract
Climate change is creating warmer, earlier springs, which are causing the phenology of many organisms to shift. Additionally, as temperatures increase, the body size of many ectotherms is decreasing. However, phenological and body size shifts are not occurring at the same rates across species, even in species that live in close proximity or have similar life history. Differing rates of phenological and body-size shifts may affect ecological interactions. We investigated whether shifts in phenology and body size had a predictable effect on interspecific competition. We tested three hypotheses. First, priority effects would indicate early arriving organisms gain a competitive advantage. Second, larger organisms would be competitively superior. Third, similarly sized organisms would compete more strongly. We manipulated aquatic larval conditions to create variation in wood frog (Rana sylvatica) size at and date of metamorphosis. Wood frogs were placed in terrestrial enclosures with unmanipulated juvenile American toads (Anaxyrus americanus) where we tracked amphibian growth over 3 months. Consistent with the size superiority hypothesis, initially smaller wood frogs did not compete as strongly with toads. However, the results of the phenological shift were the opposite of our priority effects prediction: early arrival by frogs increased toad mass. Our results could indicate that toads would experience fewer negative effects of competition with wood frogs that metamorphose earlier and smaller under climate change. Our study highlights the challenges of predicting how climate change will affect interspecific interactions and emphasizes the need to investigate the role of shifts in both phenology and body size.
Collapse
Affiliation(s)
- Hilary B Rollins
- Department of Biology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
| | - Michael F Benard
- Department of Biology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| |
Collapse
|
26
|
McDevitt-Galles T, Moss WE, Calhoun DM, Johnson PTJ. Phenological synchrony shapes pathology in host-parasite systems. Proc Biol Sci 2020; 287:20192597. [PMID: 31964296 DOI: 10.1098/rspb.2019.2597] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A key challenge surrounding ongoing climate shifts is to identify how they alter species interactions, including those between hosts and parasites. Because transmission often occurs during critical time windows, shifts in the phenology of either taxa can alter the likelihood of interaction or the resulting pathology. We quantified how phenological synchrony between vulnerable stages of an amphibian host (Pseudacris regilla) and infection by a pathogenic trematode (Ribeiroia ondatrae) determined infection prevalence, parasite load and host pathology. By tracking hosts and parasite infection throughout development between low- and high-elevation regions (San Francisco Bay Area and the Southern Cascades (Mt Lassen)), we found that when phenological synchrony was high (Bay Area), each established parasite incurred a 33% higher probability of causing severe limb malformations relative to areas with less synchrony (Mt Lassen). As a result, hosts in the Bay Area had up to a 50% higher risk of pathology even while controlling for the mean infection load. Our results indicate that host-parasite interactions and the resulting pathology were the joint product of infection load and phenological synchrony, highlighting the sensitivity of disease outcomes to forecasted shifts in climate.
Collapse
Affiliation(s)
| | - Wynne E Moss
- Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Dana M Calhoun
- Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.,United States Geological Survey, National Wildlife Health Center, 6006 Schroeder Road, Madison, WI 53711, USA
| | - Pieter T J Johnson
- Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| |
Collapse
|