1
|
Mackintosh E, Waite C, Putz F, Pfeifer M, Chen C, Lan Z, Brennan S, Marshall A. Effects of Climate, Soil, Topography and Disturbance on Liana Prevalence. Ecol Evol 2024; 14:e70374. [PMID: 39391818 PMCID: PMC11464752 DOI: 10.1002/ece3.70374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Lianas (woody vines and climbing monocots) are increasing in abundance in many tropical forests with uncertain consequences for forest functioning and recovery following disturbances. At a global scale, these increases are likely driven by disturbances and climate change. Yet, our understanding of the environmental variables that drive liana prevalence at regional scales is incomplete and geographically biased towards Latin America. To address this gap, we present a comprehensive study evaluating the combined effects of climate, soil, disturbance and topography on liana prevalence in the Australian Wet Tropics. We established 31 20 × 20 m vegetation plots along an elevation gradient in low disturbance (canopy closure ≥ 75%) and high disturbance (canopy closure ≤ 25%) forest stands. In these plots, all tree and liana (defined as all woody dicot vines and climbing monocots, i.e., rattans) stems ≥ 1 cm DBH were measured and environmental data were collected on climate, soil and topography. Generalised linear models were used with multi-model averaging to quantify the relative effects of the environmental variables on measures of liana prevalence (liana-tree basal area ratio, woody vine basal area and stem density and rattan stem density). Liana prevalence decreased with elevation but increased with disturbance and mean annual precipitation. The increase in the liana-tree ratio with precipitation was more pronounced for highly disturbed sites. Like other tropical regions, disturbance is an important driver of liana prevalence in Australian rainforests and appears to interact with climate to increase liana-tree ratios. The observed increase in liana-tree ratio with precipitation contrasts findings from elsewhere but is confounded by correlated changes in elevation and temperature, which highlights the importance of regional studies. Our findings show that forests with high disturbance and climatic conditions favourable to lianas are where lianas most likely to outcompete trees and impede forest recovery.
Collapse
Affiliation(s)
- Emma J. Mackintosh
- Forest Research InstituteUniversity of the Sunshine CoastSippy DownsQueenslandAustralia
| | - Catherine E. Waite
- Forest Research InstituteUniversity of the Sunshine CoastSippy DownsQueenslandAustralia
- Department of ZoologyUniversity of CambridgeCambridgeUK
| | - Francis E. Putz
- Forest Research InstituteUniversity of the Sunshine CoastSippy DownsQueenslandAustralia
| | - Marion Pfeifer
- Modelling, Evidence and Policy Research Group, School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Chengrong Chen
- School of Environment and ScienceGriffith UniversityBrisbaneQueenslandAustralia
| | - Zhongming Lan
- School of Environment and ScienceGriffith UniversityBrisbaneQueenslandAustralia
| | - Sophie Brennan
- School of Environmental and Conservation SciencesMurdoch UniversityPerthWestern AustraliaAustralia
| | - Andrew R. Marshall
- Forest Research InstituteUniversity of the Sunshine CoastSippy DownsQueenslandAustralia
| |
Collapse
|
2
|
Ngute ASK, Schoeman DS, Pfeifer M, van der Heijden GMF, Phillips OL, van Breugel M, Campbell MJ, Chandler CJ, Enquist BJ, Gallagher RV, Gehring C, Hall JS, Laurance S, Laurance WF, Letcher SG, Liu W, Sullivan MJP, Wright SJ, Yuan C, Marshall AR. Global dominance of lianas over trees is driven by forest disturbance, climate and topography. GLOBAL CHANGE BIOLOGY 2024; 30:e17140. [PMID: 38273497 DOI: 10.1111/gcb.17140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024]
Abstract
Growing evidence suggests that liana competition with trees is threatening the global carbon sink by slowing the recovery of forests following disturbance. A recent theory based on local and regional evidence further proposes that the competitive success of lianas over trees is driven by interactions between forest disturbance and climate. We present the first global assessment of liana-tree relative performance in response to forest disturbance and climate drivers. Using an unprecedented dataset, we analysed 651 vegetation samples representing 26,538 lianas and 82,802 trees from 556 unique locations worldwide, derived from 83 publications. Results show that lianas perform better relative to trees (increasing liana-to-tree ratio) when forests are disturbed, under warmer temperatures and lower precipitation and towards the tropical lowlands. We also found that lianas can be a critical factor hindering forest recovery in disturbed forests experiencing liana-favourable climates, as chronosequence data show that high competitive success of lianas over trees can persist for decades following disturbances, especially when the annual mean temperature exceeds 27.8°C, precipitation is less than 1614 mm and climatic water deficit is more than 829 mm. These findings reveal that degraded tropical forests with environmental conditions favouring lianas are disproportionately more vulnerable to liana dominance and thus can potentially stall succession, with important implications for the global carbon sink, and hence should be the highest priority to consider for restoration management.
Collapse
Affiliation(s)
- Alain Senghor K Ngute
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - David S Schoeman
- Ocean Futures Research Cluster, School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Centre for African Conservation Ecology, Department of Zoology, Nelson Mandela University, Gqeberha, South Africa
| | - Marion Pfeifer
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | | | - Michiel van Breugel
- Smithsonian Tropical Research Institute, Balboa, Panama
- Department of Geography, National University of Singapore, Singapore, Singapore
| | - Mason J Campbell
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
| | | | - Brian J Enquist
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Rachael V Gallagher
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Christoph Gehring
- Post-Graduate Program in Agroecology, Maranhão State University, Cd. Universitária Paulo VI, São Luis, Brazil
| | | | - Susan Laurance
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
| | - William F Laurance
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
| | - Susan G Letcher
- Department of Plant Biology, College of the Atlantic, Bar Harbor, Maine, USA
| | - Wenyao Liu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Martin J P Sullivan
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | | | - Chunming Yuan
- Yunnan Academy of Forestry and Grassland, Kunming, Yunnan, China
| | - Andrew R Marshall
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
3
|
Survivorship and yield of a harvested population of Forsteronia glabrescens. PLoS One 2022; 17:e0268632. [PMID: 35675327 PMCID: PMC9176754 DOI: 10.1371/journal.pone.0268632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 05/04/2022] [Indexed: 12/05/2022] Open
Abstract
The exploitation of non-timber forest products may be an opportunity to reconcile the utilization of biological resources with biodiversity conservation. In Southern Brazil, the exploitation of liana stems for handicraft makes up an important part of the income of indigenous Kaingang people. In this study we evaluated the effects of stem harvesting on the survivorship of Forsteronia glabrescens Müll.Arg, the most exploited liana species in the region. We marked and monitored the survivorship, sprouting, changes in stem diameter and resource yield in control and harvested plots with two different resting times–six and twelve months. We associated variables of interest with individual attributes, harvesting regime and vegetation descriptors through linear mixed modelling. Survivorship and resource yield were lower in the harvested groups than in the control group, although the mean stem diameter was higher. Plants with larger stem diameter presented higher survival odds. Either six or twelve months of resting between harvests were not sufficient to recompose the yield and compensate mortality. Harvesting twice a year increases yield but reduces survivorship. Our results point that the sustainable exploitation of F. glabrescens require either large areas, low pressure or resting periods longer than the ones we tested.
Collapse
|
4
|
Medina-Vega JA, van der Heijden GMF, Schnitzer SA. Lianas decelerate tropical forest thinning during succession. Ecol Lett 2022; 25:1432-1441. [PMID: 35415947 DOI: 10.1111/ele.14008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/06/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022]
Abstract
The well-established pattern of forest thinning during succession predicts an increase in mean tree biomass with decreasing tree density. The forest thinning pattern is commonly assumed to be driven solely by tree-tree competition. The presence of non-tree competitors could alter thinning trajectories, thus altering the rate of forest succession and carbon uptake. We used a large-scale liana removal experiment over 7 years in a 60- to 70-year-old Panamanian forest to test the hypothesis that lianas reduce the rate of forest thinning during succession. We found that lianas slowed forest thinning by reducing tree growth, not by altering tree recruitment or mortality. Without lianas, trees grew and presumably competed more, ultimately reducing tree density while increasing mean tree biomass. Our findings challenge the assumption that forest thinning is driven solely by tree-tree interactions; instead, they demonstrate that competition from other growth forms, such as lianas, slow forest thinning and ultimately delay forest succession.
Collapse
Affiliation(s)
- José A Medina-Vega
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA.,Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, District of Columbia, USA
| | | | - Stefan A Schnitzer
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA.,Smithsonian Tropical Research Institute, Balboa, Panamá
| |
Collapse
|
5
|
Finlayson C, Roopsind A, Griscom BW, Edwards DP, Freckleton RP. Removing climbers more than doubles tree growth and biomass in degraded tropical forests. Ecol Evol 2022; 12:e8758. [PMID: 35356565 PMCID: PMC8948070 DOI: 10.1002/ece3.8758] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/03/2022] [Accepted: 03/09/2022] [Indexed: 11/24/2022] Open
Abstract
Huge areas of tropical forests are degraded, reducing their biodiversity, carbon, and timber value. The recovery of these degraded forests can be significantly inhibited by climbing plants such as lianas. Removal of super-abundant climbers thus represents a restoration action with huge potential for application across the tropics. While experimental studies largely report positive impacts of climber removal on tree growth and biomass accumulation, the efficacy of climber removal varies widely, with high uncertainty as to where and how to apply the technique. Using meta-analytic techniques, we synthesize results from 26 studies to quantify the efficacy of climber removal for promoting tree growth and biomass accumulation. We find that climber removal increases tree growth by 156% and biomass accumulation by 209% compared to untreated forest, and that efficacy remains for at least 19 years. Extrapolating from these results, climber removal could sequester an additional 32 Gigatons of CO2 over 10 years, at low cost, across regrowth, and production forests. Our analysis also revealed that climber removal studies are concentrated in the Neotropics (N = 22), relative to Africa (N = 2) and Asia (N = 2), preventing our study from assessing the influence of region on removal efficacy. While we found some evidence that enhancement of tree growth and AGB accumulation varies across disturbance context and removal method, but not across climate, the number and geographical distribution of studies limits the strength of these conclusions. Climber removal could contribute significantly to reducing global carbon emissions and enhancing the timber and biomass stocks of degraded forests, ultimately protecting them from conversion. However, we urgently need to assess the efficacy of removal outside the Neotropics, and consider the potential negative consequences of climber removal under drought conditions and for biodiversity.
Collapse
Affiliation(s)
- Catherine Finlayson
- Ecology and Evolutionary BiologySchool of BiosciencesUniversity of SheffieldSheffieldUK
| | - Anand Roopsind
- Center for Natural Climate SolutionsConservation InternationalArlingtonVirginiaUSA
| | - Bronson W. Griscom
- Center for Natural Climate SolutionsConservation InternationalArlingtonVirginiaUSA
| | - David P. Edwards
- Ecology and Evolutionary BiologySchool of BiosciencesUniversity of SheffieldSheffieldUK
| | - Robert P. Freckleton
- Ecology and Evolutionary BiologySchool of BiosciencesUniversity of SheffieldSheffieldUK
| |
Collapse
|
6
|
Zhang YB, Yang D, Zhang KY, Bai XL, Wang YSD, Wu HD, Ding LZ, Zhang YJ, Zhang JL. Higher water and nutrient use efficiencies in savanna than in rainforest lianas result in no difference in photosynthesis. TREE PHYSIOLOGY 2022; 42:145-159. [PMID: 34312678 PMCID: PMC8755031 DOI: 10.1093/treephys/tpab099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 07/07/2021] [Indexed: 05/25/2023]
Abstract
Differences in traits between lianas and trees in tropical forests have been studied extensively; however, few have compared the ecological strategies of lianas from different habitats. Here, we measured 25 leaf and stem traits concerning leaf anatomy, morphology, physiology and stem hydraulics for 17 liana species from a tropical seasonal rainforest and for 19 liana species from a valley savanna in south-west China. We found that savanna lianas had higher vessel density, wood density and lower hydraulically weighted vessel diameter and theoretical hydraulic conductivity than tropical seasonal rainforest lianas. Compared with tropical seasonal rainforest lianas, savanna lianas also showed higher leaf dry matter content, carbon isotope composition (δ13C), photosynthetic water use efficiency, ratio of nitrogen to phosphorus, photosynthetic phosphorus use efficiency and lower leaf size, stomatal conductance and nitrogen, phosphorus and potassium concentrations. Interestingly, no differences in light-saturated photosynthetic rate were found between savanna and tropical seasonal rainforest lianas either on mass or area basis. This is probably due to the higher water and nutrient use efficiencies of savanna lianas. A principal component analysis revealed that savanna and tropical seasonal rainforest lianas were significantly separated along the first axis, which was strongly associated with acquisitive or conservative resource use strategy. Leaf and stem functional traits were coordinated across lianas, but the coordination or trade-off was stronger in the savanna than in the tropical seasonal rainforest. In conclusion, a relatively conservative (slow) strategy concerning water and nutrient use may benefit the savanna lianas, while higher nutrient and water use efficiencies allow them to maintain similar photosynthesis as tropical seasonal rainforest species. Our results clearly showed divergences in functional traits between lianas from savanna and tropical seasonal rainforest, suggesting that enhanced water and nutrient use efficiencies might contribute to the distribution of lianas in savanna ecosystems.
Collapse
Affiliation(s)
- Yun-Bing Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Da Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Ke-Yan Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Xiao-Long Bai
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yang-Si-Ding Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Huai-Dong Wu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Ling-Zi Ding
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Yong-Jiang Zhang
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- Yuanjiang Savanna Ecosystem Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yuanjiang, Yunnan 653300, China
| |
Collapse
|
7
|
Baumbach L, Warren DL, Yousefpour R, Hanewinkel M. Climate change may induce connectivity loss and mountaintop extinction in Central American forests. Commun Biol 2021; 4:869. [PMID: 34267317 PMCID: PMC8282624 DOI: 10.1038/s42003-021-02359-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/14/2021] [Indexed: 11/14/2022] Open
Abstract
The tropical forests of Central America serve a pivotal role as biodiversity hotspots and provide ecosystem services securing human livelihood. However, climate change is expected to affect the species composition of forest ecosystems, lead to forest type transitions and trigger irrecoverable losses of habitat and biodiversity. Here, we investigate potential impacts of climate change on the environmental suitability of main plant functional types (PFTs) across Central America. Using a large database of occurrence records and physiological data, we classify tree species into trait-based groups and project their suitability under three representative concentration pathways (RCPs 2.6, 4.5 and 8.5) with an ensemble of state-of-the-art correlative modelling methods. Our results forecast transitions from wet towards generalist or dry forest PFTs for large parts of the study region. Moreover, suitable area for wet-adapted PFTs is projected to latitudinally diverge and lose connectivity, while expected upslope shifts of montane species point to high risks of mountaintop extinction. These findings underline the urgent need to safeguard the connectivity of habitats through biological corridors and extend protected areas in the identified transition hotspots.
Collapse
Affiliation(s)
- Lukas Baumbach
- Chair of Forestry Economics and Forest Planning, University of Freiburg, Freiburg, Germany.
| | - Dan L Warren
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan
| | - Rasoul Yousefpour
- Chair of Forestry Economics and Forest Planning, University of Freiburg, Freiburg, Germany
| | - Marc Hanewinkel
- Chair of Forestry Economics and Forest Planning, University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Lianas do not reduce tree biomass accumulation in young successional tropical dry forests. Oecologia 2021; 195:1019-1029. [PMID: 33675408 DOI: 10.1007/s00442-021-04877-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Young successional tropical forests are crucial in the global carbon cycle because they can quickly sequester large quantities of atmospheric carbon. However, lianas (woody vines) can significantly decrease biomass accumulation in young regenerating forests. Lianas are abundant in tropical dry forests, and thus we hypothesized that lianas reduce biomass accretion in dry forests. Lianas may be particularly detrimental to the growth of young trees, which are vulnerable to competition from lianas. Alternatively, lianas may have a stronger negative effect on the largest trees because lianas seek the high-light environment at the top of the forest canopy. We tested these hypotheses using a liana-removal experiment in 13 dry forest stands that ranged from 1 to 70 years in southwestern Panama. We measured biomass accumulation annually for more than 10,000 stems from 2013 to 2017. Contrary to our expectations, liana removal had no effect on tree biomass accumulation across our successional forests and throughout our study period. Liana removal did not benefit smaller trees or larger trees. Lianas did not increase biomass accumulation on recruits, and did not increase biomass loss due to mortality. Surprisingly, removing lianas had a negative effect on three out of 41 tree species. Lianas had no effect on biomass accumulation and loss, possibly because: (1) trees allocated resources to roots instead of stems, (2) trees and lianas partitioned water, (3) higher irradiance after liana removal reduced soil moisture, or (4) low water availability might have been such a strong stressor that it reduced plant-plant competition.
Collapse
|
9
|
Schnitzer SA, Michel NL, Powers JS, Robinson WD. Lianas maintain insectivorous bird abundance and diversity in a neotropical forest. Ecology 2020; 101:e03176. [PMID: 32870500 DOI: 10.1002/ecy.3176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/29/2020] [Indexed: 11/07/2022]
Abstract
The spatial habitat heterogeneity hypothesis posits that habitat complexity increases the abundance and diversity of species. In tropical forests, lianas add substantial habitat heterogeneity and complexity throughout the vertical forest profile, which may maintain animal abundance and diversity. The effects of lianas on tropical animal communities, however, remain poorly understood. We propose that lianas have a positive effect on animals by enhancing habitat complexity. Lianas may have a particularly strong influence on the forest bird community, providing nesting substrate, protection from predators, and nutrition (food). Understory insectivorous birds, which forage for insects that specialize on lianas, may particularly benefit. Alternatively, it is possible that lianas have a negative effect on forest birds by increasing predator abundances and providing arboreal predators with travel routes with easy access to bird nests. We tested the spatial habitat heterogeneity hypothesis on bird abundance and diversity by removing lianas, thus reducing forest complexity, using a large-scale experimental approach in a lowland tropical forest in the Republic of Panama. We found that removing lianas decreased total bird abundance by 78.4% and diversity by 77.4% after 8 months, and by 40.0% and 51.7%, respectively, after 20 months. Insectivorous bird abundance and diversity 8 months after liana removal were 91.8% and 89.5% lower, respectively, indicating that lianas positively influence insectivorous birds. The effects of liana removal persisted longer for insectivorous birds than other birds, with 77.3% lower abundance and 76.2% lower diversity after 20 months. Liana removal also altered bird community composition, creating two distinct communities in the control and removal plots, with disproportionate effects on insectivores. Our findings demonstrate that lianas have a strong positive influence on the bird community, particularly for insectivorous birds in the forest understory. Lianas may maintain bird abundance and diversity by increasing habitat complexity, habitat heterogeneity, and resource availability.
Collapse
Affiliation(s)
- Stefan A Schnitzer
- Department of Biological Sciences, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin, 53201, USA.,Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, República de Panamá
| | - Nicole L Michel
- National Audubon Society, 225 Varick Street, New York, New York, 10014, USA
| | - Jennifer S Powers
- Departments of Ecology, Evolution & Behavior and Plant Biology, University of Minnesota, 1479 Gortner Avenue, St. Paul, Minnesota, 55108, USA
| | - W Douglas Robinson
- Oak Creek Lab of Biology, Department of Fisheries and Wildlife, Oregon State University, 104 Nash Hall, Corvallis, Oregon, 97331, USA
| |
Collapse
|