1
|
Worthy SJ, Umaña MN, Zhang C, Lin L, Cao M, Swenson NG. Intraspecific alternative phenotypes contribute to variation in species' strategies for growth. Oecologia 2024; 205:39-48. [PMID: 38652293 DOI: 10.1007/s00442-024-05553-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Ecologists have historically sought to identify the mechanisms underlying the maintenance of local species diversity. High-dimensional trait-based relationships, such as alternative phenotypes, have been hypothesized as important for maintaining species diversity such that phenotypically dissimilar individuals compete less for resources but have similar performance in a given environment. The presence of alternative phenotypes has primarily been investigated at the community level, despite the importance of intraspecific variation to diversity maintenance. The aims of this research are to (1) determine the presence or absence of intraspecific alternative phenotypes in three species of tropical tree seedlings, (2) investigate if these different species use the same alternative phenotypes for growth success, and (3) evaluate how findings align with species co-occurrence patterns. We model species-specific relative growth rate with individual-level measurements of leaf mass per area (LMA) and root mass fraction (RMF), environmental data, and their interactions. We find that two of the three species have intraspecific alternative phenotypes, with individuals within species having different functional forms leading to similar growth. Interestingly, individuals within these species use the same trait combinations, high LMA × low RMF and low LMA × high RMF, in high soil nutrient environments to acquire resources for higher growth. This similarity among species in intraspecific alternative phenotypes and variables that contribute most to growth may lead to their negative spatial co-occurrence. Overall, we find that multiple traits or interactions between traits and the environment drive species-specific strategies for growth, but that individuals within species leverage this multi-dimensionality in different ways for growth success.
Collapse
Affiliation(s)
- Samantha J Worthy
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, 95616, USA.
| | - María N Umaña
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Caicai Zhang
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, China
| | - Luxiang Lin
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- National Forest Ecosystem Research Station at Xishuangbanna, Mengla, 666303, Yunnan, China
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Nathan G Swenson
- Department of Biological Sciences, University of Notre Dame, South Bend, IN, 46556, USA
| |
Collapse
|
2
|
Umaña MN, Salgado-Negret B, Norden N, Salinas V, Garzón F, Medina SP, Rodríguez-M GM, López-Camacho R, Castaño-Naranjo A, Cuadros H, Franke-Ante R, Avella A, Idárraga-Piedrahita Á, Jurado R, Nieto J, Pizano C, Torres AM, García H, González-M R. Upscaling the effect of traits in response to drought: The relative importance of safety-efficiency and acquisitive-conservation functional axes. Ecol Lett 2023; 26:2098-2109. [PMID: 37847674 DOI: 10.1111/ele.14328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 10/19/2023]
Abstract
We tested the idea that functional trade-offs that underlie species tolerance to drought-driven shifts in community composition via their effects on demographic processes and subsequently on shifts in species' abundance. Using data from 298 tree species from tropical dry forests during the extreme ENSO-2015, we scaled-up the effects of trait trade-offs from individuals to communities. Conservative wood and leaf traits favoured slow tree growth, increased tree survival and positively impacted species abundance and dominance at the community-level. Safe hydraulic traits, on the other hand, were related to demography but did not affect species abundance and communities. The persistent effects of the conservative-acquisitive trade-off across organizational levels is promising for generalization and predictability of tree communities. However, the safety-efficient trade-off showed more intricate effects on performance. Our results demonstrated the complex pathways in which traits scale up to communities, highlighting the importance of considering a wide range of traits and performance processes.
Collapse
Affiliation(s)
- María Natalia Umaña
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Natalia Norden
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
| | - Viviana Salinas
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
| | - Fabián Garzón
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
| | - Sandra P Medina
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
| | - Gina M Rodríguez-M
- Fundación Ecosistemas Secos de Colombia, Puerto Colombia, Atlántico, Colombia
| | - René López-Camacho
- Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia
| | | | - Hermes Cuadros
- Programa de Biología, Universidad del Atlántico, Barranquilla, Colombia
| | - Rebeca Franke-Ante
- Dirección Territorial Caribe, Parques Nacionales Naturales de Colombia, Santa Marta, Colombia
| | - Andrés Avella
- Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia
| | | | | | - Jhon Nieto
- Instituto de Hidrología, Meteorología y Estudios Ambientales, Bogotá, Colombia
| | - Camila Pizano
- Department of Biology, Lake Forest College, Lake Forest, Illinois, USA
| | - Alba M Torres
- Dirección Territorial Caribe, Parques Nacionales Naturales de Colombia, Santa Marta, Colombia
| | - Hernando García
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
| | - Roy González-M
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
| |
Collapse
|
3
|
Han SH, An JY, Hernandez JO, Yang HM, Kim ES, Noh NJ, Seo JM, Park BB. Effects of Thinning Intensity on Litterfall Production, Soil Chemical Properties, and Fine Root Distribution in Pinus koraiensis Plantation in Republic of Korea. PLANTS (BASEL, SWITZERLAND) 2023; 12:3614. [PMID: 37896077 PMCID: PMC10609674 DOI: 10.3390/plants12203614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
It is crucial to evaluate the effects of thinning on litterfall production, soil chemical properties, and fine root dynamics when implementing thinning as a silvilcultural technique to enhance tree growth and timber yield in Pinus koraiensis plantations. Thus, we determined the 10-year effects (2007-2017) of different thinning intensities on litterfall production, soil chemical properties, and fine root biomass and necromass within a P. koraiensis plantation in South Korea. The soil chemical parameters and fine root biomass and necromass were also compared across three soil depths (0-10, 10-20, and 20-30 cm). Three thinning treatments were employed: no thinning (CON), light thinning (32% removed, LT), and heavy thinning (64% removed, HT). Results revealed that litterfall was consistent across all thinning treatments, but broadleaf species had considerably higher litterfall production at HT stands than at CON/LT stands. Soil chemical properties, except exchangeable K+, were generally lower at LT stands, particularly at a depth of 20-30 cm soil. After ten years, there was a decrease in fine root biomass and necromass with increasing soil depth. Over 80% of fine roots were found in the upper layer (0-20 cm), while very fine roots (0-1 mm) consisted mainly of 47% pine and 53% other species and were concentrated in the 0-10 cm soil depth in HT. In conclusion, different thinning intensities had diverse effects on the parameters measured within the plantation. Future studies can explore how the effects of thinning intensities on litterfall production, soil chemistry, and fine root dynamics affect species diversity, carbon storage, and understory vegetation in P. koraiensis plantations.
Collapse
Affiliation(s)
- Si Ho Han
- Kasuya Research Forest, Kyushu University, Sasaguri, Fukuoka 811-2415, Japan;
- Department of Environment and Forest Resources, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Republic of Korea; (J.O.H.); (J.M.S.)
| | - Ji Young An
- Division of Environmental and Forest Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Jonathan O. Hernandez
- Department of Environment and Forest Resources, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Republic of Korea; (J.O.H.); (J.M.S.)
- Department of Forest Biological Sciences, College of Forestry and Natural Resources, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines
| | - Hee Moon Yang
- Division of Forest Ecology, National Institute of Forest Science, Seoul 02445, Republic of Korea; (H.M.Y.); (E.-S.K.)
| | - Eun-Sook Kim
- Division of Forest Ecology, National Institute of Forest Science, Seoul 02445, Republic of Korea; (H.M.Y.); (E.-S.K.)
| | - Nam Jin Noh
- Division of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Jeong Min Seo
- Department of Environment and Forest Resources, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Republic of Korea; (J.O.H.); (J.M.S.)
- Division of Garden Material, Sejong National Arboretum, Korea Arboreta and Gardens Institute, Sejong 30106, Republic of Korea
| | - Byung Bae Park
- Department of Environment and Forest Resources, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Republic of Korea; (J.O.H.); (J.M.S.)
| |
Collapse
|
4
|
Zhu J, Jiang L, Chen L, Jin X, Xing C, Liu J, Yang Y, He Z. Tree seedling growth allocation of Castanopsis kawakamii is determined by seed-relative positions. FRONTIERS IN PLANT SCIENCE 2023; 14:1099139. [PMID: 37332687 PMCID: PMC10272420 DOI: 10.3389/fpls.2023.1099139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/10/2023] [Indexed: 06/20/2023]
Abstract
Plants allocate growth to different organs as a strategy to obtain limiting resources in different environments. Tree seeds that fall from a mother tree settle on, within, or below the forest floor and litter layer, and their relative positions can determine seedling biomass and nutrient allocation and ultimately affect survival to the sapling stage. However, how emerged seedling biomass and nutrients of each organ are affected by seeds in different positions is not yet completely understood in subtropical forests. Therefore, an experiment was conducted with seeds positioned above the litter layers of different thicknesses, on the forest floor, and beneath the litter layer, and the influences of seed position on biomass allocation and nutrient use efficiency of emerged seedlings of Castanopsis kawakamii was examined. The aim of the study was to determine the optimal seed position to promote regeneration. Allocation strategies were well coordinated in the emerged seedlings from different seed positions. Seedlings from seeds positioned above litter layers of different thicknesses (~40 and 80 g of litter) allocated growth to leaf tissue at the expense of root tissue (lower root mass fraction) and increased nitrogen (N) and phosphorus (P) accumulation and nutrient use efficiency. Seedlings from seeds positioned beneath a deep litter layer allocated most growth to roots (high root: shoot ratio, root mass fraction) to capture available resources at the expense of leaf growth. Seedlings from seeds positioned on the forest floor allocated most growth to roots to obtain limiting resources. Further, we also found that these traits were clustered into three groups based on trait similarity, and the cumulative interpretation rate was 74.2%. Thus, seed relative positions significantly affected seedling growth by altering the allocation of resources to different organs. The different strategies indicated that root N:P ratios (entropy weight vector was 0.078) and P nutrient use efficiency were essential factors affecting seedling growth in the subtropical forest. Of the seed positions analyzed, beneath a moderate litter layer (~40 g of litter) was the most suitable position for the growth and survival of Castanopsis seedlings. In future studies, field and lab experiments will be combined to reveal the mechanisms underlying forest regeneration.
Collapse
Affiliation(s)
- Jing Zhu
- Key Laboratory of Fujian Universities for Ecology and Resource Statistics, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lan Jiang
- Key Laboratory of Fujian Universities for Ecology and Resource Statistics, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lyuyi Chen
- Entomology and Nematology Department, University of Florida, Gainesville, FL, United States
| | - Xing Jin
- Key Laboratory of Fujian Universities for Ecology and Resource Statistics, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Cong Xing
- Key Laboratory of Fujian Universities for Ecology and Resource Statistics, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinfu Liu
- Key Laboratory of Fujian Universities for Ecology and Resource Statistics, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yongchuan Yang
- College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Zhongsheng He
- Key Laboratory of Fujian Universities for Ecology and Resource Statistics, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
5
|
Deng J, Fang S, Fang X, Jin Y, Kuang Y, Lin F, Liu J, Ma J, Nie Y, Ouyang S, Ren J, Tie L, Tang S, Tan X, Wang X, Fan Z, Wang QW, Wang H, Liu C. Forest understory vegetation study: current status and future trends. FORESTRY RESEARCH 2023; 3:6. [PMID: 39526278 PMCID: PMC11524240 DOI: 10.48130/fr-2023-0006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/22/2023] [Indexed: 11/16/2024]
Abstract
Understory vegetation accounts for a large proportion of floral diversity. It provides various ecosystem functions and services, such as productivity, nutrient cycling, organic matter decomposition and ecosystem self-regeneration. This review summarizes the available literature on the current status and progress of the ten most studied branches of understory vegetation on both its structural and functional aspects based on global climate change and forest management practices. Future research directions and priorities for each branch is suggested, where understory vegetation in response to the interplay of multiple environmental factors and its long-term monitoring using ground-based surveys combined with more efficient modern techniques is highlighted, although the critical role of understory vegetation in ecosystem processes individually verified in the context of management practices or climate changes have been extensively investigated. In summary, this review provides insights into the effective management of the regeneration and restoration of forest ecosystems, as well as the maintenance of ecosystem multilevel structures, spatial patterns, and ecological functions.
Collapse
Affiliation(s)
- Jiaojiao Deng
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Shuai Fang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xiangmin Fang
- College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yanqiang Jin
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun 666303, China
- Yuanjiang Savanna Ecosystem Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yuanjiang 653300, China
| | - Yuanwen Kuang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystem, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Fangmei Lin
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqing Liu
- College of Ecology and Environment, Xinjiang University, Urumqi 830000, China
| | - Jingran Ma
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanxia Nie
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystem, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Shengnan Ouyang
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Jing Ren
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Liehua Tie
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Songbo Tang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystem, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xiangping Tan
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystem, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xugao Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zhaofei Fan
- School of Forestry and Wildlife Science, Auburn University, AL 36830, United States
| | - Qing-Wei Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Hang Wang
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, National Plateau Wetlands Research Center, Southwest Forestry University, Kunming 650224, China
| | - Chenggang Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun 666303, China
| |
Collapse
|
6
|
Liu C, Sack L, Li Y, He N. Contrasting adaptation and optimization of stomatal traits across communities at continental scale. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6405-6416. [PMID: 35716087 DOI: 10.1093/jxb/erac266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Shifts in stomatal trait distributions across contrasting environments and their linkage with ecosystem productivity at large spatial scales have been unclear. Here, we measured the maximum stomatal conductance (g), stomatal area fraction (f), and stomatal space-use efficiency (e, the ratio of g to f) of 800 plant species ranging from tropical to cold-temperate forests, and determined their values for community-weighted mean, variance, skewness, and kurtosis. We found that the community-weighted means of g and f were higher in drier sites, and thus, that drought 'avoidance' by water availability-driven growth pulses was the dominant mode of adaptation for communities at sites with low water availability. Additionally, the variance of g and f was also higher at arid sites, indicating greater functional niche differentiation, whereas that for e was lower, indicating the convergence in efficiency. When all other stomatal trait distributions were held constant, increasing kurtosis or decreasing skewness of g would improve ecosystem productivity, whereas f showed the opposite patterns, suggesting that the distributions of inter-related traits can play contrasting roles in regulating ecosystem productivity. These findings demonstrate the climatic trends of stomatal trait distributions and their significance in the prediction of ecosystem productivity.
Collapse
Affiliation(s)
- Congcong Liu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90025, USA
| | - Ying Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Nianpeng He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Weemstra M, Kuyper TW, Sterck FJ, Umaña MN. Incorporating belowground traits: avenues towards a whole‐tree perspective on performance. OIKOS 2022. [DOI: 10.1111/oik.08827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Monique Weemstra
- Dept of Ecology and Evolutionary Biology, Univ. of Michigan Ann Arbor MI USA
| | - Thomas W. Kuyper
- Soil Biology Group, Wageningen Univ. and Research Centre Wageningen the Netherlands
| | - Frank J. Sterck
- Forest Ecology and Forest Management Group, Wageningen Univ. and Research Centre Wageningen the Netherlands
| | - María Natalia Umaña
- Dept of Ecology and Evolutionary Biology, Univ. of Michigan Ann Arbor MI USA
| |
Collapse
|
8
|
Umaña MN, Arellano G, Swenson NG, Zambrano J. Tree seedling trait optimization and growth in response to local-scale soil and light variability. Ecology 2021; 102:e03252. [PMID: 33219522 DOI: 10.1002/ecy.3252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/31/2020] [Accepted: 09/14/2020] [Indexed: 11/09/2022]
Abstract
At local scales, it has been suggested that high levels of resources lead to increased tree growth via trait optimization (highly peaked trait distribution). However, this contrasts with (1) theories that suggest that trait optimization and high growth occur in the most common resource level and (2) empirical evidence showing that high trait optimization can be also found at low resource levels. This raises the question of how are traits and growth optimized in highly diverse plant communities. Here, we propose a series of hypotheses about how traits and growth are expected to be maximized under different resource levels (low, the most common, and high) in tree seedling communities from a subtropical forest in Puerto Rico, USA. We studied the variation in the distribution of biomass allocation and leaf traits and seedlings growth rate along four resource gradients: light availability (canopy openness) and soil K, Mg, and N content. Our analyses consisted of comparing trait kurtosis (a measurement of trait optimization), community trait means, and relative growth rates at three resource levels (low, common, and high). Trait optimization varied across the three resource levels depending on the type of resource and trait, with leaf traits being optimized under high N and in the most common K and Mg conditions, but not at any of the light levels. Also, seedling growth increased at high-light conditions and high N and K but was not related to trait kurtosis. Our results indicate that local-scale variability of soil fertility and understory light conditions result in shifts in species ecological strategies that increase growth despite a weak trait optimization, suggesting the existence of alternative phenotypes that achieve similar high performance. Uncovering the links between abiotic factors, functional trait diversity and performance is necessary to better predict tree responses to future changes in abiotic conditions.
Collapse
Affiliation(s)
- María Natalia Umaña
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Gabriel Arellano
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Nathan G Swenson
- Department of Biology, University of Maryland, College Park, Maryland, 20742, USA
| | - Jenny Zambrano
- The School of Biological Sciences, Washington State University, Pullman, Washington, 99164, USA
| |
Collapse
|