1
|
Chen X, Lu H, Ren Z, Zhang Y, Liu R, Zhang Y, Han X. Reproductive height determines the loss of clonal grasses with nitrogen enrichment in a temperate grassland. PLANT DIVERSITY 2024; 46:256-264. [PMID: 38807914 PMCID: PMC11128833 DOI: 10.1016/j.pld.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/30/2024]
Abstract
Tall clonal grasses commonly display competitive advantages with nitrogen (N) enrichment. However, it is currently unknown whether the height is derived from the vegetative or reproductive module. Moreover, it is unclear whether the height of the vegetative or reproductive system regulates the probability of extinction and colonization, and determines species diversity. In this study, the impacts on clonal grasses were studied in a field experiment employing two frequencies (twice a year vs. monthly) crossing with nine N addition rates in a temperate grassland, China. We found that the N addition decreased species frequency and increased extinction probability, but did not change the species colonization probability. A low frequency of N addition decreased species frequency and colonization probability, but increased extinction probability. Moreover, we found that species reproductive height was the best index to predict the extinction probability of clonal grasses in N-enriched conditions. The low frequency of N addition may overestimate the negative effect from N deposition on clonal grass diversity, suggesting that a higher frequency of N addition is more suitable in assessing the ecological effects of N deposition. Overall, this study illustrates that reproductive height was associated with the clonal species extinction probability under N-enriched environment.
Collapse
Affiliation(s)
- Xu Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Haining Lu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Zhengru Ren
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Yuqiu Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Ruoxuan Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Yunhai Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Xingguo Han
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| |
Collapse
|
2
|
dos Anjos L, Ragassi Urbano M, Simões Oliveira H, Laerte Natti P. The functional importance of rare and dominant species in a Neotropical forest bird community. J Nat Conserv 2023. [DOI: 10.1016/j.jnc.2023.126361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
3
|
Ladouceur E, Blowes SA, Chase JM, Clark AT, Garbowski M, Alberti J, Arnillas CA, Bakker JD, Barrio IC, Bharath S, Borer ET, Brudvig LA, Cadotte MW, Chen Q, Collins SL, Dickman CR, Donohue I, Du G, Ebeling A, Eisenhauer N, Fay PA, Hagenah N, Hautier Y, Jentsch A, Jónsdóttir IS, Komatsu K, MacDougall A, Martina JP, Moore JL, Morgan JW, Peri PL, Power S, Ren Z, Risch AC, Roscher C, Schuchardt M, Seabloom EW, Stevens CJ, Veen G(C, Virtanen R, Wardle GM, Wilfahrt PA, Harpole WS. Linking changes in species composition and biomass in a globally distributed grassland experiment. Ecol Lett 2022; 25:2699-2712. [DOI: 10.1111/ele.14126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Emma Ladouceur
- German Centre for Integrative Biodiversity Research (iDiv) Leipzig‐Halle‐Jena Leipzig Germany
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research – UFZ Leipzig Germany
- Department of Biology University of Leipzig Leipzig Germany
- Institute of Computer Science Martin Luther University Halle‐Wittenberg Halle (Saale) Germany
| | - Shane A. Blowes
- German Centre for Integrative Biodiversity Research (iDiv) Leipzig‐Halle‐Jena Leipzig Germany
- Institute of Computer Science Martin Luther University Halle‐Wittenberg Halle (Saale) Germany
| | - Jonathan M. Chase
- German Centre for Integrative Biodiversity Research (iDiv) Leipzig‐Halle‐Jena Leipzig Germany
- Institute of Computer Science Martin Luther University Halle‐Wittenberg Halle (Saale) Germany
| | - Adam T. Clark
- German Centre for Integrative Biodiversity Research (iDiv) Leipzig‐Halle‐Jena Leipzig Germany
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research – UFZ Leipzig Germany
- Institute of Biology Karl‐Franzens University of Graz Styria Austria
| | - Magda Garbowski
- German Centre for Integrative Biodiversity Research (iDiv) Leipzig‐Halle‐Jena Leipzig Germany
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research – UFZ Leipzig Germany
| | - Juan Alberti
- Laboratorio de Ecología, Instituto de Investigaciones Marinas y Costeras (IIMyC) Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Mar del Plata Argentina
| | - Carlos Alberto Arnillas
- Department of Physical and Environmental Sciences University of Toronto Scarborough Toronto Ontario Canada
| | - Jonathan D. Bakker
- School of Environmental and Forest Sciences University of Washington Seattle Washington USA
| | - Isabel C. Barrio
- Faculty of Environmental and Forest Sciences Agricultural University of Iceland Reykjavík Iceland
| | | | - Elizabeth T. Borer
- Department of Ecology, Evolution, and Behavior University of Minnesota St. Paul Minnesota USA
| | - Lars A. Brudvig
- Department of Plant Biology and Program in Ecology, Evolution, and Behavior Michigan State University East Lansing Michigan USA
| | - Marc W. Cadotte
- Department of Biological Sciences University of Toronto Scarborough Toronto Ontario Canada
| | - Qingqing Chen
- Institute of Ecology, College of Urban and Environmental Science Peking University Beijing China
| | - Scott L. Collins
- Department of Biology University of New Mexico Albuquerque New Mexico USA
| | - Christopher R. Dickman
- School of Life and Environmental Sciences The University of Sydney Sydney New South Wales Australia
| | - Ian Donohue
- Department of Zoology Trinity College Dublin Dublin Ireland
| | - Guozhen Du
- School of Life Sciences Lanzhou University Gansu China
| | - Anne Ebeling
- Institute of Ecology and Evolution Friedrich‐Schiller University Jena Jena Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Leipzig‐Halle‐Jena Leipzig Germany
- Institute of Biology Martin Luther University Halle—Wittenberg Halle (Saale) Germany
| | - Philip A. Fay
- USDA‐ARS Grassland Soil and Water Research Lab Temple Texas USA
| | - Nicole Hagenah
- Mammal Research Institute, Department of Zoology & Entomology University of Pretoria Pretoria South Africa
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology Utrecht University Utrecht The Netherlands
| | - Anke Jentsch
- Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research University of Bayreuth Bayreuth Germany
| | | | - Kimberly Komatsu
- Smithsonian Environmental Research Center Edgewater Maryland USA
| | - Andrew MacDougall
- Dept of Integrative Biology University of Guelph Guelph Ontario Canada
| | - Jason P. Martina
- Department of Biology Texas State University San Marcos Texas USA
| | - Joslin L. Moore
- Arthur Rylah Institute for Environmental Research Heidelberg Victoria Australia
- School of Biological Sciences Monash University Clayton Victoria Australia
| | - John W. Morgan
- Department of Ecology, Environment and Evolution La Trobe University Bundoora Victoria Australia
| | - Pablo L. Peri
- National Institute of Agricultural Research (INTA) Southern Patagonia National University (UNPA) CONICET Santa Cruz Argentina
| | - Sally A. Power
- Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
| | - Zhengwei Ren
- School of Life Sciences Lanzhou University Gansu China
| | - Anita C. Risch
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL Community Ecology Birmensdorf Switzerland
| | - Christiane Roscher
- German Centre for Integrative Biodiversity Research (iDiv) Leipzig‐Halle‐Jena Leipzig Germany
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research – UFZ Leipzig Germany
| | - Max A. Schuchardt
- Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research University of Bayreuth Bayreuth Germany
| | - Eric W. Seabloom
- Department of Ecology, Evolution, and Behavior University of Minnesota St. Paul Minnesota USA
| | | | - G.F. (Ciska) Veen
- Department of Terrestrial Ecology Netherlands Institute of Ecology Wageningen the Netherlands
| | | | - Glenda M. Wardle
- School of Life and Environmental Sciences The University of Sydney Sydney New South Wales Australia
| | - Peter A. Wilfahrt
- Department of Ecology, Evolution, and Behavior University of Minnesota St. Paul Minnesota USA
| | - W. Stanley Harpole
- German Centre for Integrative Biodiversity Research (iDiv) Leipzig‐Halle‐Jena Leipzig Germany
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research – UFZ Leipzig Germany
- Institute of Biology Martin Luther University Halle—Wittenberg Halle (Saale) Germany
| |
Collapse
|
4
|
Sritharan MS, Scheele BC, Blanchard W, Foster CN, Werner PA, Lindenmayer DB. Plant rarity in fire-prone dry sclerophyll communities. Sci Rep 2022; 12:12055. [PMID: 35835789 PMCID: PMC9283327 DOI: 10.1038/s41598-022-15927-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/01/2022] [Indexed: 11/09/2022] Open
Abstract
Understanding the responses of rare species to altered fire disturbance regimes is an ongoing challenge for ecologists. We asked: are there associations between fire regimes and plant rarity across different vegetation communities? We combined 62 years of fire history records with vegetation surveys of 86 sites across three different dry sclerophyll vegetation communities in Booderee National Park, south-east Australia to: (1) compare associations between species richness and rare species richness with fire regimes, (2) test whether fire regimes influence the proportion of rare species present in an assemblage, and (3) examine whether rare species are associated with particular fire response traits and life history. We also sought to determine if different rarity categorisations influence the associations between fire regimes and plant rarity. We categorised plant rarity using three standard definitions; species' abundance, species' distribution, and Rabinowitz's measure of rarity, which considers a species' abundance, distribution and habitat specificity. We found that total species richness was negatively associated with short fire intervals but positively associated with time since fire and fire frequency in woodland communities. Total species richness was also positively associated with short fire intervals in forest communities. However, rare species richness was not associated with fire when categorised via abundance or distribution. Using Rabinowitz's measure of rarity, the proportion of rare species present was negatively associated with fire frequency in forest communities but positively associated with fire frequency in woodland communities. We found that rare species classified by all three measures of rarity exhibited no difference in fire response traits and serotiny compared to species not classified as rare. Rare species based on abundance differed to species not classified as rare across each life history category, while species rare by distribution differed in preferences for seed storage location. Our findings suggest that species categorised as rare by Rabinowitz's definition of rarity are the most sensitive to the effects of fire regimes. Nevertheless, the paucity of responses observed between rare species with fire regimes in a fire-prone ecosystem suggests that other biotic drivers may play a greater role in influencing the rarity of a species in this system.
Collapse
Affiliation(s)
- Meena S Sritharan
- Threatened Species Recovery Hub, Fenner School of Environment and Society, The Australian National University, Canberra, ACT, 2601, Australia.
| | - Ben C Scheele
- Threatened Species Recovery Hub, Fenner School of Environment and Society, The Australian National University, Canberra, ACT, 2601, Australia
| | - Wade Blanchard
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia
| | - Claire N Foster
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia
| | - Patricia A Werner
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia
| | - David B Lindenmayer
- Threatened Species Recovery Hub, Fenner School of Environment and Society, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
5
|
Sritharan MS, Scheele BC, Blanchard W, Lindenmayer DB. Spatial associations between plants and vegetation community characteristics provide insights into the processes influencing plant rarity. PLoS One 2021; 16:e0260215. [PMID: 34928957 PMCID: PMC8687526 DOI: 10.1371/journal.pone.0260215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022] Open
Abstract
Determining the drivers of plant rarity is a major challenge in ecology. Analysing spatial associations between different plant species can provide an exploratory avenue for understanding the ecological drivers of plant rarity. Here, we examined the different types of spatial associations between rare and common plants to determine if they influence the occurrence patterns of rare species. We completed vegetation surveys at 86 sites in woodland, forest, and heath communities in south-east Australia. We also examined two different rarity measures to quantify how categorisation criteria affected our results. Rare species were more likely to have positive associations with both rare and common species across all three vegetation communities. However, common species had positive or negative associations with rare and other common species, depending on the vegetation community in which they occurred. Rare species were positively associated with species diversity in forest communities. In woodland communities, rare species were associated negatively with species diversity but positively associated with species evenness. Rare species with high habitat specificity were more clustered spatially than expected by chance. Efforts to understand the drivers of plant rarity should use rarity definitions that consider habitat specificity. Our findings suggest that examining spatial associations between plants can help understand the drivers of plant rarity.
Collapse
Affiliation(s)
- Meena S. Sritharan
- Threatened Species Recovery Hub, Fenner School of Environment and Society, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ben C. Scheele
- Threatened Species Recovery Hub, Fenner School of Environment and Society, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Wade Blanchard
- Fenner School of Environment and Society, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - David B. Lindenmayer
- Threatened Species Recovery Hub, Fenner School of Environment and Society, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|