1
|
Speare KE, Enright LN, Aplin A, Adam TC, Edmunds PJ, Burkepile DE. Early life stage bottleneck determines rates of coral recovery following severe disturbance. Ecology 2025; 106:e4510. [PMID: 39869054 PMCID: PMC11771621 DOI: 10.1002/ecy.4510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/30/2024] [Accepted: 09/24/2024] [Indexed: 01/28/2025]
Abstract
Understanding how foundation species recover from disturbances is key for predicting the future of ecosystems in the Anthropocene. Coral reefs are dynamic ecosystems that can undergo rapid declines in coral abundance following disturbances. Understanding why some reefs recover quickly from these disturbances whereas others recover slowly (or not at all) gives insight into the drivers of community resilience. From 2006 to 2010 coral reefs on the fore reef of Moorea, French Polynesia, experienced severe disturbances that reduced coral cover from ~46% in 2005 to <1% in 2010. Following these disturbances, coral cover increased from 2010 to 2018. Although there was a rapid and widespread recovery of corals, reefs at 17 m depth recovered more slowly than reefs at 10 m depth. We investigated the drivers of different rates of coral recovery between depths from 2010 to 2018 using a combination of time-series data on coral recruitment, density, growth, and mortality in addition to field experiments testing for the effects of predation. Propagule abundance did not influence recovery, as the density of coral recruits (spat <6 months old) did not differ between depths. However, mortality of juvenile corals (≤5 cm diameter) was higher at 17 m, leading to densities of juvenile corals 3.5 times higher at 10 m than at 17 m depth. Yet, there were no differences in the growth of corals between depths. These results point to an early life stage bottleneck after settlement, resulting in greater mortality at 17 m than at 10 m as the likely driver of differential coral recovery between depths. We used experiments and time-series data to test mechanisms that could drive different rates of juvenile coral mortality across depths, including differences in predation, competition, and the availability of suitable substratum. The results of these experiments suggested that increased coral mortality at 17 m may have been influenced by higher intensity of fish predation, and higher mortality of corals attached to unfavorable substratum. In contrast, the abundance of macroalgae, a coral competitor, did not explain differences in coral survival. Our work suggests that top-down processes and substratum quality can create bottlenecks in corals that can drive rates of coral recovery after disturbance.
Collapse
Affiliation(s)
- Kelly E. Speare
- Department of Ecology, Evolution, and Marine BiologyUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
- School of Geographical Sciences and Urban PlanningArizona State UniversityTempeArizonaUSA
| | - Lauren N. Enright
- Department of Ecology, Evolution, and Marine BiologyUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Allison Aplin
- Marine Science InstituteUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Thomas C. Adam
- Marine Science InstituteUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Peter J. Edmunds
- Department of BiologyCalifornia State UniversityNorthridgeCaliforniaUSA
| | - Deron E. Burkepile
- Department of Ecology, Evolution, and Marine BiologyUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
- Marine Science InstituteUniversity of California, Santa BarbaraSanta BarbaraCaliforniaUSA
| |
Collapse
|
2
|
Randall CJ, Giuliano C, Stephenson B, Whitman TN, Page CA, Treml EA, Logan M, Negri AP. Larval precompetency and settlement behaviour in 25 Indo-Pacific coral species. Commun Biol 2024; 7:142. [PMID: 38297134 PMCID: PMC10830509 DOI: 10.1038/s42003-024-05824-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024] Open
Abstract
Knowledge of coral larval precompetency periods and maximum competency windows is fundamental to understanding coral population dynamics, informing biogeography and connectivity patterns, and predicting reef recovery following disturbances. Yet for many species, estimates of these early-life history metrics are scarce and vary widely. Furthermore, settlement cues for many taxa are not known despite consequences to habitat selection. Here we performed a comprehensive experimental time-series investigation of larval settlement behaviour, for 25 Indo-Pacific broadcast-spawning species. To investigate the duration of precompetency, improve predictions of the competency windows, and compare settlement responses within and amongst species, we completed replicated and repeated 24-hour assays that exposed larvae to five common settlement cues. Our study revealed that larval competency in some broadcast-spawning species begins as early as two days post fertilization, but that the precompetency period varies within and between species from about two to six days, with consequences for local retention and population connectivity. We also found that larvae of some species are competent to settle beyond 70 days old and display complex temporal settlement behaviour, challenging the assumption that competency gradually wanes over time and adding to the evidence that larval longevity can support genetic connectivity and long-distance dispersal. Using these data, we grouped coral taxa by short, mid and long precompetency periods, and identified their preferred settlement cues. Taken together, these results inform our understanding of larval dynamics across a broad range of coral species and can be applied to investigations of population dynamics, connectivity, and reef recovery.
Collapse
Affiliation(s)
- Carly J Randall
- Australian Institute of Marine Science, Townsville, QLD, Australia.
- AIMS@JCU, Townsville, QLD, Australia.
| | | | | | - Taylor N Whitman
- Australian Institute of Marine Science, Townsville, QLD, Australia
- AIMS@JCU, Townsville, QLD, Australia
| | - Cathie A Page
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Eric A Treml
- Australian Institute of Marine Science, Perth, WA, Australia
| | - Murray Logan
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Andrew P Negri
- Australian Institute of Marine Science, Townsville, QLD, Australia
| |
Collapse
|
3
|
Edmunds PJ. Coral recruitment: patterns and processes determining the dynamics of coral populations. Biol Rev Camb Philos Soc 2023; 98:1862-1886. [PMID: 37340617 DOI: 10.1111/brv.12987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023]
Abstract
Coral recruitment describes the addition of new individuals to populations, and it is one of the most fundamental demographic processes contributing to population size. As many coral reefs around the world have experienced large declines in coral cover and abundance, there has been great interest in understanding the factors causing coral recruitment to vary and the conditions under which it can support community resilience. While progress in these areas is being facilitated by technological and scientific advances, one of the best tools to quantify recruitment remains the humble settlement tile, variants of which have been in use for over a century. Here I review the biology and ecology of coral recruits and the recruitment process, largely as resolved through the use of settlement tiles, by: (i) defining how the terms 'recruit' and 'recruitment' have been used, and explaining why loose terminology has impeded scientific advancement; (ii) describing how coral recruitment is measured and why settlement tiles have value for this purpose; (iii) summarizing previous efforts to review quantitative analyses of coral recruitment; (iv) describing advances from hypothesis-driven studies in determining how refuges, seawater flow, and grazers can modulate coral recruitment; (v) reviewing the biology of small corals (i.e. recruits) to understand better how they respond to environmental conditions; and (vi) updating a quantitative compilation of coral recruitment studies extending from 1974 to present, thus revealing long-term global declines in density of recruits, juxtaposed with apparent resilience to coral bleaching. Finally, I review future directions in the study of coral recruitment, and highlight the need to expand studies to deliver taxonomic resolution, and explain why time series of settlement tile deployments are likely to remain pivotal in quantifying coral recruitment.
Collapse
Affiliation(s)
- Peter J Edmunds
- Department of Biology, California State University, 18111 Nordhoff Street, Northridge, CA, 91330-8303, USA
| |
Collapse
|
4
|
McDevitt-Irwin JM, McCauley DJ, Brumbaugh DR, Elmer F, Ferretti F, White TD, Wible JG, Micheli F. Dynamic interplay: disentangling the temporal variability of fish effects on coral recruitment. Sci Rep 2023; 13:20971. [PMID: 38017077 PMCID: PMC10684556 DOI: 10.1038/s41598-023-47758-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023] Open
Abstract
Ecosystems around the world are continuously undergoing recovery from anthropogenic disturbances like climate change, overexploitation, and habitat destruction. Coral reefs are a prime example of a threatened ecosystem and coral recruitment is a critical component of reef recovery from disturbances. Reef fishes structure this recruitment by directly consuming macroalgae and coral recruits or by indirectly altering the substrate to facilitate coral settlement (e.g., grazing scars). However, how these direct and indirect mechanisms vary through time remains largely unknown. Here, we quantified coral recruitment on settlement tiles with divots that mimic grazing scars and caging treatments to exclude or allow fish feeding over 3 years at Palmyra Atoll in the Pacific Ocean. We found that the positive and negative effects of fishes on coral recruitment varies through time. After 3 years, both grazing scars and fish grazing no longer predicted coral recruitment, suggesting that the role of fishes decreases over time. Our results emphasize that reef fish populations are important in promoting initial coral recovery after disturbances. However, over time, factors like the environment may become more important. Future work should continue to explore how the strength and direction of top-down control by consumers varies through time across multiple ecosystems.
Collapse
Affiliation(s)
- Jamie M McDevitt-Irwin
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA.
- Marine Science Institute, University of California, Santa Barbara, CA, USA.
| | - Douglas J McCauley
- Marine Science Institute, University of California, Santa Barbara, CA, USA
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Daniel R Brumbaugh
- Elkhorn Slough National Estuarine Research Reserve, Watsonville, CA, USA
- Environmental Studies, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Franziska Elmer
- School for Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Center for Marine Resource Studies, School for Field Studies, Cockburn Harbour, South Caicos, Turks and Caicos Islands
| | - Francesco Ferretti
- Fish and Wildlife Conservation Department, Virginia Tech, Blacksburg, VA, USA
| | - Timothy D White
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Joseph G Wible
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Fiorenza Micheli
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
- Center for Ocean Solutions, Stanford University, Pacific Grove, CA, USA
| |
Collapse
|
5
|
McDevitt-Irwin JM, McCauley DJ, Brumbaugh DR, Elmer F, Ferretti F, Joyce FH, White TD, Wible JG, Micheli F. Consumers decrease variability across space and turnover through time during coral reef succession. Oecologia 2023:10.1007/s00442-023-05404-y. [PMID: 37344733 DOI: 10.1007/s00442-023-05404-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
Consumers play an integral role in mediating ecological succession-the change in community composition over time. As consumer populations are facing rapid decline in ecosystems around the world, understanding of their ecological role is becoming increasingly urgent. Increased understanding of how changes in consumer populations may influence community variability across space and turnover through time during succession is particularly important for coral reefs, which are among the most threatened ecosystems globally, and where fishes play vital roles in structuring benthic succession. Here, we examine how consumers influence coral reef succession by deploying 180 paired settlement tiles, caged (to exclude fishes larger than approximately 15 cm) and uncaged, within Palmyra Atoll, a remote marine wildlife refuge with previously documented high fish abundance, and monitored benthic community development one and three years after deployment. We found that excluding large fishes lead to lower alpha diversity and divergent community states across space (i.e.,, high beta diversity among caged tiles), suggesting that benthic fish feeding maintains local diversity but tends to homogenize community composition with dominance by crustose coralline algae. In addition, when fish were experimentally excluded, the developing benthic community exhibited a greater change in species composition over time (i.e., high temporal beta diversity), indicating that fish feeding tends to canalize community successional trajectories. Finally, the caged and uncaged tiles became more similar over time, suggesting that fish feeding plays a more important role during early succession. Our results demonstrate that the loss of large fishes, for example from overfishing, may result in benthic communities that are more variable across space and time. Increased variability could have important implications for ecosystem function and coral reef resilience in the face of escalating global stressors.
Collapse
Affiliation(s)
| | - Douglas J McCauley
- Department of Ecology, Evolution, and Marine Biology and Marine Science Institute, University of California, Santa Barbara, CA, USA
| | - Daniel R Brumbaugh
- Elkhorn Slough National Estuarine Research Reserve, Watsonville, CA, USA
- Environmental Studies, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Franziska Elmer
- School for Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Center for Marine Resource Studies, School for Field Studies, Cockburn Harbour, South Caicos, Turks and Caicos Islands
| | - Francesco Ferretti
- Fish and Wildlife Conservation Department, Virginia Tech, Blacksburg, VA, USA
| | - Francis H Joyce
- Environmental Studies, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Timothy D White
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Joseph G Wible
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Fiorenza Micheli
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
- Center for Ocean Solutions, Stanford University, Pacific Grove, CA, USA
- Oceans Department, Stanford University, Pacific Grove, CA, USA
| |
Collapse
|
6
|
Adam TC, Holbrook SJ, Burkepile DE, Speare KE, Brooks AJ, Ladd MC, Shantz AA, Vega Thurber R, Schmitt RJ. Priority effects in coral-macroalgae interactions can drive alternate community paths in the absence of top-down control. Ecology 2022; 103:e3831. [PMID: 35862066 PMCID: PMC10078572 DOI: 10.1002/ecy.3831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/22/2022] [Accepted: 06/13/2022] [Indexed: 11/09/2022]
Abstract
The outcomes of species interactions can vary greatly in time and space with the outcomes of some interactions determined by priority effects. On coral reefs, benthic algae rapidly colonize disturbed substrate. In the absence of top-down control from herbivorous fishes, these algae can inhibit the recruitment of reef-building corals, leading to a persistent phase shift to a macroalgae-dominated state. Yet, corals may also inhibit colonization by macroalgae, and thus the effects of herbivores on algal communities may be strongest following disturbances that reduce coral cover. Here, we report results from experiments conducted on the fore reef of Moorea, French Polynesia, where we: 1) tested the ability of macroalgae to invade coral-dominated and coral-depauperate communities under different levels of herbivory, 2) explored the ability of juvenile corals (Pocillopora spp.) to suppress macroalgae, and 3) quantified the direct and indirect effects of fish herbivores and corallivores on juvenile corals. We found that macroalgae proliferated when herbivory was low but only in recently disturbed communities where coral cover was also low. When coral cover was < 10%, macroalgae increased 20-fold within one year under reduced herbivory conditions relative to high herbivory controls. Yet, when coral cover was high (50%), macroalgae were suppressed irrespective of the level of herbivory despite ample space for algal colonization. Once established in communities with low herbivory and low coral cover, macroalgae suppressed recruitment of coral larvae, reducing the capacity for coral replenishment. However, when we experimentally established small juvenile corals (2 cm diameter) following a disturbance, juvenile corals inhibited macroalgae from invading local neighborhoods, even in the absence of herbivores, indicating a strong priority effect in macroalgae-coral interactions. Surprisingly, fishes that initially facilitated coral recruitment by controlling algae had a net negative effect on juvenile corals via predation. Corallivores reduced growth rates of corals exposed to fishes by ~ 30% relative to fish exclosures despite increased competition with macroalgae within the exclosures. These results highlight that different processes are important for structuring coral reef ecosystems at different successional stages and underscore the need to consider multiple ecological processes and historical contingencies to predict coral community dynamics.
Collapse
Affiliation(s)
- Thomas C Adam
- Marine Science Institute, University of California, Santa Barbara, California, USA
| | - Sally J Holbrook
- Marine Science Institute, University of California, Santa Barbara, California, USA.,Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California, USA
| | - Deron E Burkepile
- Marine Science Institute, University of California, Santa Barbara, California, USA.,Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California, USA
| | - Kelly E Speare
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California, USA
| | - Andrew J Brooks
- Marine Science Institute, University of California, Santa Barbara, California, USA
| | - Mark C Ladd
- Marine Science Institute, University of California, Santa Barbara, California, USA.,NOAA - National Marine Fisheries Service, Southeast Fisheries Science Center, Key Biscayne, FL, USA
| | - Andrew A Shantz
- Florida State University Coastal and Marine Laboratory, St. Teresa, FL, USA
| | | | - Russell J Schmitt
- Marine Science Institute, University of California, Santa Barbara, California, USA.,Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California, USA
| |
Collapse
|
7
|
Smith HA, Brown DA, Arjunwadkar CV, Fulton SE, Whitman T, Hermanto B, Mastroianni E, Mattocks N, Smith AK, Harrison PL, Boström‐Einarsson L, McLeod IM, Bourne DG. Removal of macroalgae from degraded reefs enhances coral recruitment. Restor Ecol 2022. [DOI: 10.1111/rec.13624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Hillary A. Smith
- College of Science and Engineering James Cook University Townsville QLD 4811 Australia
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences University of New South Wales Kensington NSW 2052 Australia
| | - Dylan A. Brown
- College of Science and Engineering James Cook University Townsville QLD 4811 Australia
| | | | - Stella E. Fulton
- College of Science and Engineering James Cook University Townsville QLD 4811 Australia
- AIMS@JCU, James Cook University Townsville QLD 4811 Australia
| | - Taylor Whitman
- College of Science and Engineering James Cook University Townsville QLD 4811 Australia
- AIMS@JCU, James Cook University Townsville QLD 4811 Australia
| | - Bambang Hermanto
- College of Science and Engineering James Cook University Townsville QLD 4811 Australia
- Research Center for Oceanography Indonesian Institute of Sciences Jakarta Indonesia
| | - Elissa Mastroianni
- College of Science and Engineering James Cook University Townsville QLD 4811 Australia
| | - Neil Mattocks
- Great Barrier Reef Marine Park Authority Townsville QLD 4810 Australia
| | - Adam K. Smith
- Reef Ecologic 14 Cleveland Terrace Townsville QLD 4810 Australia
- TropWATER, The Centre for Tropical Water and Aquatic Ecosystem Research James Cook University Townsville QLD 4811 Australia
| | - Peter L. Harrison
- Marine Ecology Research Centre Southern Cross University Lismore NSW 2480 Australia
| | - Lisa Boström‐Einarsson
- TropWATER, The Centre for Tropical Water and Aquatic Ecosystem Research James Cook University Townsville QLD 4811 Australia
- Lancaster Environment Centre Lancaster University Lancaster LA1 4YW U.K
| | - Ian M. McLeod
- TropWATER, The Centre for Tropical Water and Aquatic Ecosystem Research James Cook University Townsville QLD 4811 Australia
- Australian Institute of Marine Science Townsville QLD Australia
| | - David G. Bourne
- College of Science and Engineering James Cook University Townsville QLD 4811 Australia
- Australian Institute of Marine Science Townsville QLD Australia
| |
Collapse
|