1
|
Zhou Z, Wang L, Chen Y. Letter to the Editor-"Muscle matters: Prognostic implications of malnutrition and muscle health parameters in patients with cancer. A secondary analysis of a randomised trial". Clin Nutr 2024; 43:182-183. [PMID: 39490001 DOI: 10.1016/j.clnu.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Affiliation(s)
- Zhangbing Zhou
- Chengdu Integrated TCM and Western Medicine Hospital, China
| | - Liu Wang
- Chengdu Third People's Hospital, China
| | - Yunfeng Chen
- Chengdu Integrated TCM and Western Medicine Hospital, China.
| |
Collapse
|
2
|
Lee DY. Prevalence and Risk Factors for Hand-Grip-Determined Dynapenia in the Korean Population: A Cross-Sectional Study. Sports (Basel) 2024; 12:187. [PMID: 39058078 PMCID: PMC11281309 DOI: 10.3390/sports12070187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Dynapenia refers to muscle weakness related to aging and is defined as a loss of muscle strength associated with muscle quality. The purpose of this study is to identify the prevalence of dynapenia and associated risk factors by gender and age in domestic adults and to provide customized basic data for the prevention of dynapenia through its management. Based on the data from 2014 to 2019 of the Korea National Health and Nutrition Survey, 20,950 adults over the age of 20 who participated in grip strength tests and health surveys were selected as participants. Factors related to dynapenia were analyzed using complex sample multilogistic regression analysis. The prevalence of dynapenia in domestic adults was 6.3%, 4.1% in men, and 8.7% in women. Prevalence in the second decade was 5.3%, in the third decade was 3.2%, in the fourth decade was 3.3%, in the fifth decade was 4.8%, in the sixth decade was 8.9%, and was 24.6% for participants in their seventh decade or beyond. Among the factors related to dynapenia, age, BMI, and alcohol status were common in both men and women; education level, HDL-C, and resistance exercise were common in men; and high blood pressure, high blood sugar, and aerobic exercise were common in women. Our findings indicate that several factors are associated with dynapenia, which should be considered as potential targets for interventions focused on both individual and public health measures.
Collapse
Affiliation(s)
- Do-Youn Lee
- Department of Physical Therapy, College of Rehabilitation Science, Daegu University, Gyeongsan 38453, Republic of Korea
| |
Collapse
|
3
|
Zeki NM, Mustafa YF. Natural linear coumarin-heterocyclic conjugates: A review of their roles in phytotherapy. Fitoterapia 2024; 175:105929. [PMID: 38548026 DOI: 10.1016/j.fitote.2024.105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 05/26/2024]
Abstract
Heterocycle conjugates provide a fresh investigative scope to find novel molecules with enhanced phytotherapeutic characteristics. Coumarin-based products are widely used in the synthesis of several compounds with biological and medicinal properties since they are naturally occurring heterocycles with a broad dispersion. The investigation of coumarin-based phytochemicals with annulated heterocyclic rings is a promising approach to discovering novel conjugates with significant phytotherapeutic attributes. Due to the applicable coumarin extraction processes, a range of linear coumarin-heterocyclic conjugates were isolated from different natural resources and exhibited remarkable therapeutic efficacy. This review highlights the phytotherapeutic potential and origins of various natural linear coumarin-heterocyclic conjugates. We searched several databases, including Science Direct, Web of Science, Springer, Google Scholar, and PubMed. After sieving, we ultimately identified and included 118 pertinent studies published between 2000 and the middle of 2023. This will inspire medicinal chemists with extremely insightful ideas for designing and synthesizing therapeutically active lead compounds in the future that are built on the pharmacophores of coumarin-heterocyclic conjugates and have significant therapeutic attributes.
Collapse
Affiliation(s)
- Nameer Mazin Zeki
- Department of Pharmacology, College of Medicine, Ninevah University, Mosul, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq.
| |
Collapse
|
4
|
Valisoltani N, Mohammadi H, Aliannejad R, Naeini F, Harsini AR, Sadeghi E, Mirzaee P, Imani H. Association of phase angle with sarcopenia and muscle function in patients with COPD: a case-control study. BMC Pulm Med 2024; 24:18. [PMID: 38184558 PMCID: PMC10771663 DOI: 10.1186/s12890-023-02814-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/13/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND AND AIMS The predictive value of phase angle for sarcopenia diagnosis has been discussed for years. The present investigation was conducted to determine the association between phase angle and sarcopenia in patients with COPD. METHODS In this case-control study, 222 smoker men were divided into healthy and COPD groups. COPD was diagnosed by a pulmonologist through spirometry. Anthropometric indices, phase angle, muscle function, sarcopenia, and dietary intake were assessed. RESULTS A significant inverse association was observed between phase angle and sarcopenia after adjustment for age and energy intake (OR: 0.31, 95% CI 0.18-0.52) and after adjustment for BMI (OR: 0.31, 95% CI 0.18-0.52). A significant decrease was detected in anthropometric indices and indicators of sarcopenia and muscle function in COPD cases compared to the healthy controls. CONCLUSIONS Although further studies are suggested, phase angle might be considered an indicator of sarcopenia and muscle function in COPD patients.
Collapse
Affiliation(s)
- Neda Valisoltani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran
| | - Hamed Mohammadi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran
| | - Rasoul Aliannejad
- Department of Pulmonary and Critical Care, School of Medicine, Shariati Hospital, Tehran, Iran
| | - Fatemeh Naeini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran
| | - Asma Rajabi Harsini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran
| | - Erfan Sadeghi
- Research Consultation Center (RCC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pouya Mirzaee
- Department of Medicine, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hossein Imani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
5
|
Wang T, Huang S, He C. Senescent cells: A therapeutic target for osteoporosis. Cell Prolif 2022; 55:e13323. [DOI: 10.1111/cpr.13323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Tiantian Wang
- Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital Sichuan University Chengdu Sichuan China
- Institute of Rehabilitation Medicine, West China Hospital Sichuan University Chengdu Sichuan China
| | - Shishu Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital and West China School of Medicine Sichuan University Chengdu Sichuan China
| | - Chengqi He
- Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital Sichuan University Chengdu Sichuan China
- Institute of Rehabilitation Medicine, West China Hospital Sichuan University Chengdu Sichuan China
| |
Collapse
|
6
|
The Evaluation of Functional Abilities Using the Modified Fullerton Functional Fitness Test Is a Valuable Accessory in Diagnosing Men with Heart Failure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159210. [PMID: 35954574 PMCID: PMC9367744 DOI: 10.3390/ijerph19159210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
Abstract
The assessment of functional abilities reflects the ability to perform everyday life activities that require specific endurance and physical fitness. The Fullerton functional fitness test (FFFT) seems to be the most appropriate for assessing physical fitness in heart failure (HF) patients. The study group consisted of 30 consecutive patients hospitalized for the routine assessment of HF with a reduced ejection fraction (HFrEF). They formed the study group, and 24 healthy subjects formed the control group. Each patient underwent a cardiopulmonary exercise test (CPET), transthoracic echocardiography and FFFT modified by adding the measurement of the handgrip force of the dominant limb with the digital dynamometer. The HF patients had significantly lower peak oxygen uptake (peakVO2), maximal minute ventilation, and higher ventilatory equivalent (VE/VCO2). The concentrations of B-type natriuretic peptide (BNP) and N-terminal proBNP (NT-proBNP) were significantly higher in the study group. The results of all the FFFT items were significantly worse in the study group. FFFT parameters, together with the assessment of the strength of the handgrip, strongly correlated with the results of standard tests in HF. FFFT is an effective and safe tool for the functional evaluation of patients with HFrEF. Simple muscle strength measurement with a hand-held dynamometer can become a convenient and practical indicator of muscle strength in HF patients.
Collapse
|
7
|
Wang T. Searching for the link between inflammaging and sarcopenia. Ageing Res Rev 2022; 77:101611. [PMID: 35307560 DOI: 10.1016/j.arr.2022.101611] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/14/2022] [Accepted: 03/15/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Tiantian Wang
- Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
8
|
Powrózek T, Pigoń-Zając D, Mazurek M, Ochieng Otieno M, Rahnama-Hezavah M, Małecka-Massalska T. TNF-α Induced Myotube Atrophy in C2C12 Cell Line Uncovers Putative Inflammatory-Related lncRNAs Mediating Muscle Wasting. Int J Mol Sci 2022; 23:ijms23073878. [PMID: 35409236 PMCID: PMC8998797 DOI: 10.3390/ijms23073878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/13/2022] [Accepted: 03/30/2022] [Indexed: 12/10/2022] Open
Abstract
Background: Muscle atrophy is a complex catabolic condition developing under different inflammatory-related systemic diseases resulting in wasting of muscle tissue. While the knowledge of the molecular background of muscle atrophy has developed in recent years, how the atrophic conditions affect the long non-coding RNA (lncRNAs) machinery and the exact participation of the latter in the mediation of muscle loss are still unknown. The purpose of the study was to assess how inflammatory condition developing under the tumor necrosis factor alpha (TNF-α) treatment affects the lncRNAs’ expression in a mouse skeletal muscle cell line. Materials and method: A C2C12 mouse myoblast cell line was treated with TNF-α to develop atrophy, and inflammatory-related lncRNAs mediating muscle loss were identified. Bioinformatics was used to validate and analyze the discovered lncRNAs. The differences in their expression under different TNF-α concentrations and treatment times were investigated. Results: Five lncRNAs were identified in a discovery set as atrophy related and then validated. Three lncRNAs, Gm4117, Ccdc41os1, and 5830418P13Rik, were selected as being significant for inflammatory-related myotube atrophy. Dynamics changes in the expression of lncRNAs depended on both TNF-α concentration and treatment time. Bioinformatics analysis revealed the mRNA and miRNA target for selected lncRNAs and their putative involvement in the molecular processes related to muscle atrophy. Conclusions: The inflammatory condition developing in the myotube under the TNF-α treatment affects the alteration of lncRNAs’ expression pattern. Experimental and bioinformatics testing suggested the prospective role of lncRNAs in the mediation of muscle loss under an inflammatory state.
Collapse
Affiliation(s)
- Tomasz Powrózek
- Department of Human Physiology, Medical University of Lublin, 20-080 Lublin, Poland; (D.P.-Z.); (M.M.); (T.M.-M.)
- Correspondence:
| | - Dominika Pigoń-Zając
- Department of Human Physiology, Medical University of Lublin, 20-080 Lublin, Poland; (D.P.-Z.); (M.M.); (T.M.-M.)
| | - Marcin Mazurek
- Department of Human Physiology, Medical University of Lublin, 20-080 Lublin, Poland; (D.P.-Z.); (M.M.); (T.M.-M.)
| | - Michael Ochieng Otieno
- Haematological Malignancies H12O Clinical Research Unit, Spanish National Cancer Research Centre, 28029 Madrid, Spain;
| | - Mansur Rahnama-Hezavah
- Chair and Department of Dental Surgery, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Teresa Małecka-Massalska
- Department of Human Physiology, Medical University of Lublin, 20-080 Lublin, Poland; (D.P.-Z.); (M.M.); (T.M.-M.)
| |
Collapse
|
9
|
Ni HJ, Hsu TF, Chen LK, Chou HL, Tung HH, Chow LH, Chen YC. Effects of Exercise Programs in older adults with Muscle Wasting: A Systematic Review and Meta-analysis. Arch Gerontol Geriatr 2022; 99:104605. [DOI: 10.1016/j.archger.2021.104605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/21/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022]
|
10
|
Taylor DF, Bishop DJ. Transcription Factor Movement and Exercise-Induced Mitochondrial Biogenesis in Human Skeletal Muscle: Current Knowledge and Future Perspectives. Int J Mol Sci 2022; 23:1517. [PMID: 35163441 PMCID: PMC8836245 DOI: 10.3390/ijms23031517] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
In response to exercise, the oxidative capacity of mitochondria within skeletal muscle increases through the coordinated expression of mitochondrial proteins in a process termed mitochondrial biogenesis. Controlling the expression of mitochondrial proteins are transcription factors-a group of proteins that regulate messenger RNA transcription from DNA in the nucleus and mitochondria. To fulfil other functions or to limit gene expression, transcription factors are often localised away from DNA to different subcellular compartments and undergo rapid movement or accumulation only when required. Although many transcription factors involved in exercise-induced mitochondrial biogenesis have been identified, numerous conflicting findings and gaps exist within our knowledge of their subcellular movement. This review aims to summarise and provide a critical analysis of the published literature regarding the exercise-induced movement of transcription factors involved in mitochondria biogenesis in skeletal muscle.
Collapse
Affiliation(s)
| | - David J. Bishop
- Institute for Health and Sport (iHeS), Footscray Park, Victoria University, Melbourne 8001, Australia;
| |
Collapse
|
11
|
Cheng TL, Lin ZY, Liao KY, Huang WC, Jhuo CF, Pan PH, Chen CJ, Kuan YH, Chen WY. Magnesium Lithospermate B Attenuates High-Fat Diet-Induced Muscle Atrophy in C57BL/6J Mice. Nutrients 2021; 14:nu14010104. [PMID: 35010979 PMCID: PMC8746630 DOI: 10.3390/nu14010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 12/02/2022] Open
Abstract
Magnesium lithospermate B (MLB) is a primary hydrophilic component of Danshen, the dried root of Salvia miltiorrhiza used in traditional medicine, and its beneficial effects on obesity-associated metabolic abnormalities were reported in our previous study. The present study investigated the anti-muscle atrophy potential of MLB in mice with high-fat diet (HFD)-induced obesity. In addition to metabolic abnormalities, the HFD mice had a net loss of skeletal muscle weight and muscle fibers and high levels of muscle-specific ubiquitin E3 ligases, namely the muscle atrophy F-box (MAFbx) and muscle RING finger protein 1 (MuRF-1). MLB supplementation alleviated those health concerns. Parallel changes were revealed in high circulating tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), skeletal TNF receptor I (TNFRI), nuclear factor-kappa light chain enhancer of activated B cells (NF-κB), p65 phosphorylation, and Forkhead box protein O1 (FoxO1) as well as low skeletal phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt) phosphorylation. The study revealed that MLB prevented obesity-associated skeletal muscle atrophy, likely through the inhibition of MAFbx/MuRF-1-mediated muscular degradation. The activation of the PI3K-Akt-FoxO1 pathway and inhibition of the TNF-α/TNFRI/NF-κB pathway were assumed to be beneficial effects of MLB.
Collapse
Affiliation(s)
- Tsun-Li Cheng
- Veterinary Medical Teaching Hospital, National Chung Hsing University, Taichung 402, Taiwan;
| | - Zi-Yun Lin
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan; (Z.-Y.L.); (K.-Y.L.); (W.-C.H.); (P.-H.P.)
| | - Keng-Ying Liao
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan; (Z.-Y.L.); (K.-Y.L.); (W.-C.H.); (P.-H.P.)
| | - Wei-Chi Huang
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan; (Z.-Y.L.); (K.-Y.L.); (W.-C.H.); (P.-H.P.)
| | - Cian-Fen Jhuo
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan;
| | - Pin-Ho Pan
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan; (Z.-Y.L.); (K.-Y.L.); (W.-C.H.); (P.-H.P.)
- Department of Pediatrics, Tungs’ Taichung Metro Harbor Hospital, Taichung 435, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan;
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
| | - Wen-Ying Chen
- Veterinary Medical Teaching Hospital, National Chung Hsing University, Taichung 402, Taiwan;
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan; (Z.-Y.L.); (K.-Y.L.); (W.-C.H.); (P.-H.P.)
- Correspondence: ; Tel.: +886-4-2284-0368
| |
Collapse
|
12
|
The Critical Role of Oxidative Stress in Sarcopenic Obesity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4493817. [PMID: 34676021 PMCID: PMC8526202 DOI: 10.1155/2021/4493817] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/22/2021] [Indexed: 12/11/2022]
Abstract
Sarcopenic obesity (SO) is a combination of obesity and sarcopenia that primarily develops in older people. Patients with SO have high fat mass, low muscle mass, low muscle strength, and low physical function. SO relates to metabolic syndrome and an increased risk of morbimortality. The prevalence of SO varies because of lacking consensus criteria regarding its definition and the methodological difficulty in diagnosing sarcopenia and obesity. SO includes systemic alterations such as insulin resistance, increased proinflammatory cytokines, age-associated hormonal changes, and decreased physical activity at pathophysiological levels. Interestingly, these alterations are influenced by oxidative stress, which is a critical factor in altering muscle function and the generation of metabolic dysfunctions. Thus, oxidative stress in SO alters muscle mass, the signaling pathways that control it, satellite cell functions, and mitochondrial and endoplasmic reticulum activities. Considering this background, our objectives in this review are to describe SO as a highly prevalent condition and look at the role of oxidative stress in SO pathophysiology.
Collapse
|
13
|
Poupore N, Chosed R, Arce S, Rainer R, Goodwin RL, Nathaniel TI. Metabolomic Profiles of Men and Women Ischemic Stroke Patients. Diagnostics (Basel) 2021; 11:diagnostics11101786. [PMID: 34679483 PMCID: PMC8534835 DOI: 10.3390/diagnostics11101786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Stroke is known to affect both men and women; however, incidence and outcomes differ between them. Therefore, the discovery of novel, sex-specific, blood-based biomarkers for acute ischemic stroke (AIS) patients has the potential to enhance the understanding of the etiology of this deadly disease in the content of sex. The objective of this study was to identify serum metabolites associated with male and female AIS patients. Methods: Metabolites were measured with the use of untargeted, reverse-phase ultra-performance liquid chromatography-tandem mass spectrometry quantification from blood specimens collected from AIS patients. Samples were collected from 36 patients comprising each of 18 men and women with matched controls. Metabolic pathway analysis and principal component analysis (PCA) was used to differentiate metabolite profiles for male and female AIS patients from the control, while logistic regression was used to determine differences in metabolites between male and female AIS patients. Results: In female AIS patients, 14 distinct altered metabolic pathways and 49 corresponding metabolites were identified, while 39 metabolites and 5 metabolic pathways were identified in male patients. Metabolites that are predictive of ischemic stroke in female patients were 1-(1-enyl-palmitoyl)-2-arachidonoyl-GPC (P-16:0/20:4) (AUC = 0.914, 0.765–1.000), 1-(1-enyl-palmitoyl)-2-palmitoyl-GPC (P-16:0/16:0) (AUC = 0.840, 0.656–1.000), and 5,6-dihydrouracil (P-16:0/20:2) (AUC = 0.815, 0.601–1.000). Significant metabolites that were predictive of stroke in male patients were 5alpha-androstan-3alpha,17beta-diol disulfate (AUC = 0.951, 0.857–1.000), alpha-hydroxyisocaproate (AUC = 0.938, 0.832–1.000), threonate (AUC = 0.877, 0.716–1.000), and bilirubin (AUC = 0.817, 0.746–1.000). Conclusions: In the current study, the untargeted serum metabolomics platform identified multiple pathways and metabolites associated with male and female AIS patients. Further research is necessary to characterize how these metabolites are associated with the pathophysiology in male and female AIS patients.
Collapse
Affiliation(s)
- Nicolas Poupore
- School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA; (N.P.); (R.C.); (S.A.); (R.L.G.)
| | - Renee Chosed
- School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA; (N.P.); (R.C.); (S.A.); (R.L.G.)
| | - Sergio Arce
- School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA; (N.P.); (R.C.); (S.A.); (R.L.G.)
| | | | - Richard L. Goodwin
- School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA; (N.P.); (R.C.); (S.A.); (R.L.G.)
| | - Thomas I. Nathaniel
- School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA; (N.P.); (R.C.); (S.A.); (R.L.G.)
- Correspondence: ; Tel.: +1-8644559846; Fax: +1-8644558404
| |
Collapse
|
14
|
Sumi K, Sakuda M, Munakata K, Nakamura K, Ashida K. α-Hydroxyisocaproic Acid Decreases Protein Synthesis but Attenuates TNFα/IFNγ Co-Exposure-Induced Protein Degradation and Myotube Atrophy via Suppression of iNOS and IL-6 in Murine C2C12 Myotube. Nutrients 2021; 13:nu13072391. [PMID: 34371902 PMCID: PMC8308709 DOI: 10.3390/nu13072391] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/25/2022] Open
Abstract
There is ongoing debate as to whether or not α-hydroxyisocaproic acid (HICA) positively regulates skeletal muscle protein synthesis resulting in the gain or maintenance of skeletal muscle. We investigated the effects of HICA on mouse C2C12 myotubes under normal conditions and during cachexia induced by co-exposure to TNFα and IFNγ. The phosphorylation of AMPK or ERK1/2 was significantly altered 30 min after HICA treatment under normal conditions. The basal protein synthesis rates measured by a deuterium-labeling method were significantly lowered by the HICA treatment under normal and cachexic conditions. Conversely, myotube atrophy induced by TNFα/IFNγ co-exposure was significantly improved by the HICA pretreatment, and this improvement was accompanied by the inhibition of iNOS expression and IL-6 production. Moreover, HICA also suppressed the TNFα/IFNγ co-exposure-induced secretion of 3-methylhistidine. These results demonstrated that HICA decreases basal protein synthesis under normal or cachexic conditions; however, HICA might attenuate skeletal muscle atrophy via maintaining a low level of protein degradation under cachexic conditions.
Collapse
|
15
|
Hackett DA, Mitchell L, Wilson GC, Valenzuela T, Hollings M, Fiatarone Singh M. A Case Study of an 87-Year-Old Male Bodybuilder with Complex Health Conditions. ACTA ACUST UNITED AC 2021; 57:medicina57070664. [PMID: 34203123 PMCID: PMC8306742 DOI: 10.3390/medicina57070664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/17/2021] [Accepted: 06/25/2021] [Indexed: 11/24/2022]
Abstract
This exploratory clinical case report presents an 87-year-old man who began bodybuilding at the age of 76 years and was officially recognised as the world’s oldest competitive bodybuilder, competing until age 83. He has a background of complex health conditions including polio, strokes, cardiac arrest, atrial fibrillation, prostate disease, osteoarthritis, depression, bowel obstruction, reflux, and bladder cancer. Assessments of body composition, bone density, muscle performance, and diet-related practices were performed. The bodybuilder had superior fat-free mass, lower fat mass, and generally greater muscle performance compared to untrained healthy males of a similar age. Commencement of bodybuilding in older age appears to be possible, even with ongoing complex health conditions, and the potential benefits of this practice require systematic investigation in the future.
Collapse
Affiliation(s)
- Daniel A. Hackett
- Physical Activity, Lifestyle, Ageing and Wellbeing Faculty Research Group, Faculty of Medicine and Health, School of Health Sciences, The University of Sydney, Camperdown, NSW 2006, Australia; (G.C.W.); (T.V.); (M.H.); (M.F.S.)
- Correspondence: ; Tel.: +61-2-9351-9294; Fax: +61-2-9351-9204
| | - Lachlan Mitchell
- National Nutrition Surveillance Centre, School of Public Health, Physiotherapy and Sport Science, University College Dublin, Belfield, Dublin 4, Ireland;
| | - Guy C. Wilson
- Physical Activity, Lifestyle, Ageing and Wellbeing Faculty Research Group, Faculty of Medicine and Health, School of Health Sciences, The University of Sydney, Camperdown, NSW 2006, Australia; (G.C.W.); (T.V.); (M.H.); (M.F.S.)
| | - Trinidad Valenzuela
- Physical Activity, Lifestyle, Ageing and Wellbeing Faculty Research Group, Faculty of Medicine and Health, School of Health Sciences, The University of Sydney, Camperdown, NSW 2006, Australia; (G.C.W.); (T.V.); (M.H.); (M.F.S.)
| | - Matthew Hollings
- Physical Activity, Lifestyle, Ageing and Wellbeing Faculty Research Group, Faculty of Medicine and Health, School of Health Sciences, The University of Sydney, Camperdown, NSW 2006, Australia; (G.C.W.); (T.V.); (M.H.); (M.F.S.)
| | - Maria Fiatarone Singh
- Physical Activity, Lifestyle, Ageing and Wellbeing Faculty Research Group, Faculty of Medicine and Health, School of Health Sciences, The University of Sydney, Camperdown, NSW 2006, Australia; (G.C.W.); (T.V.); (M.H.); (M.F.S.)
- The Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA 02131, USA
| |
Collapse
|
16
|
Martins WK, Silva MDND, Pandey K, Maejima I, Ramalho E, Olivon VC, Diniz SN, Grasso D. Autophagy-targeted therapy to modulate age-related diseases: Success, pitfalls, and new directions. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100033. [PMID: 34909664 PMCID: PMC8663935 DOI: 10.1016/j.crphar.2021.100033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 04/15/2021] [Accepted: 05/02/2021] [Indexed: 02/08/2023] Open
Abstract
Autophagy is a critical metabolic process that supports homeostasis at a basal level and is dynamically regulated in response to various physiological and pathological processes. Autophagy has some etiologic implications that support certain pathological processes due to alterations in the lysosomal-degradative pathway. Some of the conditions related to autophagy play key roles in highly relevant human diseases, e.g., cardiovascular diseases (15.5%), malignant and other neoplasms (9.4%), and neurodegenerative conditions (3.7%). Despite advances in the discovery of new strategies to treat these age-related diseases, autophagy has emerged as a therapeutic option after preclinical and clinical studies. Here, we discuss the pitfalls and success in regulating autophagy initiation and its lysosome-dependent pathway to restore its homeostatic role and mediate therapeutic effects for cancer, neurodegenerative, and cardiac diseases. The main challenge for the development of autophagy regulators for clinical application is the lack of specificity of the repurposed drugs, due to the low pharmacological uniqueness of their target, including those that target the PI3K/AKT/mTOR and AMPK pathway. Then, future efforts must be conducted to deal with this scenery, including the disclosure of key components in the autophagy machinery that may intervene in its therapeutic regulation. Among all efforts, those focusing on the development of novel allosteric inhibitors against autophagy inducers, as well as those targeting autolysosomal function, and their integration into therapeutic regimens should remain a priority for the field.
Collapse
Affiliation(s)
- Waleska Kerllen Martins
- Laboratory of Cell and Membrane (LCM), Anhanguera University of São Paulo (UNIAN), Rua Raimundo Pereira de Magalhães, 3,305. Pirituba, São Paulo, 05145-200, Brazil
| | - Maryana do Nascimento da Silva
- Laboratory of Cell and Membrane (LCM), Anhanguera University of São Paulo (UNIAN), Rua Raimundo Pereira de Magalhães, 3,305. Pirituba, São Paulo, 05145-200, Brazil
| | - Kiran Pandey
- Center for Neural Science, New York University, Meyer Building, Room 823, 4 Washington Place, New York, NY, 10003, USA
| | - Ikuko Maejima
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa Machi, Maebashi, Gunma, 3718512, Japan
| | - Ercília Ramalho
- Laboratory of Cell and Membrane (LCM), Anhanguera University of São Paulo (UNIAN), Rua Raimundo Pereira de Magalhães, 3,305. Pirituba, São Paulo, 05145-200, Brazil
| | - Vania Claudia Olivon
- Laboratory of Pharmacology and Physiology, UNIDERP, Av. Ceará, 333. Vila Miguel Couto, Campo Grande, MS, 79003-010, Brazil
| | - Susana Nogueira Diniz
- Laboratory of Molecular Biology and Functional Genomics, Anhanguera University of São Paulo (UNIAN), Rua Raimundo Pereira de Magalhães, 3,305. Pirituba, São Paulo, 05145-200, Brazil
| | - Daniel Grasso
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), Universidad de Buenos Aires, CONICET, Junín 954 p4, Buenos Aires, C1113AAD, Argentina
| |
Collapse
|
17
|
Lee CJ, Ryu HY, Chun KH, Oh J, Park S, Lee SH, Kang SM. Association of muscular fitness with rehospitalization for heart failure with reduced ejection fraction. Clin Cardiol 2020; 44:244-251. [PMID: 33368418 PMCID: PMC7852176 DOI: 10.1002/clc.23535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Limited information is available regarding the prognostic potential of muscular fitness parameters in heart failure (HF) with reduced ejection fraction (HFrEF). HYPOTHESIS We aimed to investigate the predictive potential of knee extensor muscle strength and power on rehospitalization and evaluate the correlation between exercise capacity and muscular fitness in patients newly diagnosed with HFrEF. METHODS Ninety nine patients hospitalized with a new diagnosis of HF were recruited (64 men; aged 58.7 years [standard deviation (SD), 13.2 years]; 32.3% ischemic; ejection fraction, 28% [SD, 8%]). The inclusion criteria were left ventricular ejection fraction <40% and sufficient clinical stability to undergo exercise testing. Aerobic exercise capacity was measured with cardiopulmonary exercise testing. Knee extensor maximal voluntary isometric contraction (MVIC) and muscle power (MP) were measured using the Baltimore therapeutic equipment system. The clinical outcome was HF rehospitalization. RESULTS Over a mean follow-up period of 1709 ± 502 days, 39 patients were rehospitalized due to HF exacerbation. HF rehospitalization was more probable for patients with diabetes and lower oxygen uptake at peak exercise (peak VO2 ), knee extensor MVIC, and MP. The Kaplan-Meier survival analysis revealed significantly different cumulative HF rehospitalization rates according to the tertiles of peak VO2 (P = 0.005) and MP (P = 0.002). Multivariable Cox proportional hazard model showed that the lowest tertiles of peak VO2 (hazard ratio (HR), 6.26; 95% confidence interval (CI), 1.93-20.27); and MP (HR, 5.29; 95% CI, 1.05-26.53) were associated with HF rehospitalization. Knee extensor muscle power was an independent predictor for rehospitalization in patients with HFrEF. CONCLUSION Knee extensor muscle power was an independent predictor for rehospitalization in patients with HFrEF.
Collapse
Affiliation(s)
- Chan Joo Lee
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ho Youl Ryu
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyeong-Hyeon Chun
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jaewon Oh
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sungha Park
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang-Hak Lee
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seok-Min Kang
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
18
|
Dulac M, Leduc-Gaudet JP, Reynaud O, Ayoub MB, Guérin A, Finkelchtein M, Hussain SN, Gouspillou G. Drp1 knockdown induces severe muscle atrophy and remodelling, mitochondrial dysfunction, autophagy impairment and denervation. J Physiol 2020; 598:3691-3710. [PMID: 32539155 DOI: 10.1113/jp279802] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS The maintenance of optimal mitochondrial content and function is critical for muscle health. Mitochondrial dynamics play key roles in mitochondrial quality control; however, the exact role that mitochondrial fission plays in skeletal muscle health remains unclear. Here we report knocking down Drp1 (a protein regulating mitochondrial fission) for 4 months in adult mouse skeletal muscle resulted in severe muscle atrophy (40-50%). Drp1 knockdown also led to a reduction in ADP-stimulated respiration, an increase in markers of impaired autophagy and increased muscle regeneration, denervation, fibrosis and oxidative stress. Our data indicate that Drp1 is crucial for the maintenance of normal mitochondrial function and that Drp1 depletion severely impairs muscle health. ABSTRACT Mitochondria play central roles in skeletal muscle physiology, including energy supply, regulation of energy-sensitive signalling pathways, reactive oxygen species production/signalling, calcium homeostasis and the regulation of apoptosis. The maintenance of optimal mitochondrial content and function is therefore critical for muscle cells. Mitochondria are now well known as highly dynamic organelles, able to change their morphology through fusion and fission processes. Solid experimental evidence indicates that mitochondrial dynamics play key roles in mitochondrial quality control, and alteration in the expression of proteins regulating mitochondrial dynamics have been reported in many conditions associated with muscle atrophy and wasting. However, the exact role that mitochondrial fission plays in skeletal muscle health remains unclear. To address this issue, we investigated the impact of Drp1 (a protein regulating mitochondrial fission) knockdown, introduced via intramuscular injection of adeno-associated virus (AAV) on adult mouse skeletal muscle. Knocking down Drp1 for 4 months resulted in very severe muscle atrophy (40-50%). Drp1 knockdown also led to a reduction in ADP-stimulated respiration and increases in markers of muscle regeneration, denervation, fibrosis, oxidative stress and impaired autophagy. Our findings indicate that Drp1 is essential for the maintenance of normal mitochondrial function and that Drp1 suppression severely impairs muscle health.
Collapse
Affiliation(s)
- Maude Dulac
- Département des Sciences de l'Activité Physique, Faculté des Sciences, UQAM, Québec, Canada.,Département des Sciences Biologiques, Faculté des Sciences, UQAM, Québec, Canada.,Groupe de recherche en Activité Physique Adaptée, Québec, Canada
| | - Jean-Philippe Leduc-Gaudet
- Département des Sciences de l'Activité Physique, Faculté des Sciences, UQAM, Québec, Canada.,Groupe de recherche en Activité Physique Adaptée, Québec, Canada.,Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Department of Critical Care, McGill University Health Centre, Montréal, Québec, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Olivier Reynaud
- Département des Sciences de l'Activité Physique, Faculté des Sciences, UQAM, Québec, Canada.,Département des Sciences Biologiques, Faculté des Sciences, UQAM, Québec, Canada.,Groupe de recherche en Activité Physique Adaptée, Québec, Canada
| | - Marie-Belle Ayoub
- Département des Sciences de l'Activité Physique, Faculté des Sciences, UQAM, Québec, Canada
| | - Amanda Guérin
- Département des Sciences de l'Activité Physique, Faculté des Sciences, UQAM, Québec, Canada
| | - Michel Finkelchtein
- Département des Sciences de l'Activité Physique, Faculté des Sciences, UQAM, Québec, Canada
| | - Sabah Na Hussain
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Department of Critical Care, McGill University Health Centre, Montréal, Québec, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Gilles Gouspillou
- Département des Sciences de l'Activité Physique, Faculté des Sciences, UQAM, Québec, Canada.,Groupe de recherche en Activité Physique Adaptée, Québec, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Québec, Canada
| |
Collapse
|
19
|
Koshikawa M, Harada M, Noyama S, Kiyono K, Motoike Y, Nomura Y, Nishimura A, Izawa H, Watanabe E, Ozaki Y. Association between inflammation and skeletal muscle proteolysis, skeletal mass and strength in elderly heart failure patients and their prognostic implications. BMC Cardiovasc Disord 2020; 20:228. [PMID: 32414332 PMCID: PMC7229573 DOI: 10.1186/s12872-020-01514-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 05/10/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Inflammation and skeletal muscle wasting often coexist in elderly populations, but few studies have examined their relationship in elderly heart failure (HF) patients. This study examined the relationship between inflammation and increased skeletal muscle proteolysis, reduced skeletal mass and strength, and their prognostic implications in elderly HF patients (> 65 years) using a random forest approach. METHODS We prospectively enrolled consecutive elderly HF patients (n = 78) and age- and sex-matched control subjects (n = 83). We measured the interleukin (IL)-6, C-reactive protein (CRP), and B-type natriuretic peptide (BNP) levels, lower limb muscle mass and strength, and 6-min walk distance. The amount of muscle proteolysis was determined by urinary 3-methylhystidine, normalized by creatinine (3-MH/Cr). The composite endpoint was defined as all-cause death or hospitalizations due to worsening HF. RESULTS Compared to controls, elderly HF patients had a significantly higher IL-6, CRP, BNP, and 3-MH/Cr, and exhibited a reduced lower limb muscle mass and strength. A correlation analysis demonstrated significant positive correlations between the inflammatory cytokine levels and 3-MH/Cr and BNP, and negative correlations with the lower limb muscle mass and strength, and 6-min walk distance. During a median follow-up of 2.4-years, 24 patients reached the endpoint. A random forest model revealed that inflammatory cytokines, skeletal muscle wasting, and the BNP had greater effects on the risk prediction. The algorithm achieved an area under the receiver operating characteristic curve of 0.887 (95% CI, 0.772-1.000). CONCLUSION This study provided evidence of the association between inflammation and increased skeletal muscle proteolysis, reduced skeletal mass and strength, and their prognostic roles in elderly HF patients.
Collapse
Affiliation(s)
- Masayuki Koshikawa
- Department of Cardiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Masahide Harada
- Department of Cardiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Shunsuke Noyama
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Ken Kiyono
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Yuji Motoike
- Department of Cardiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Yoshihiro Nomura
- Department of Cardiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Asuka Nishimura
- Department of Cardiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Hideo Izawa
- Department of Cardiology, Fujita Health University School of Medicine, Bantane Hospital, Nagoya, Japan
| | - Eiichi Watanabe
- Department of Cardiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| | - Yukio Ozaki
- Department of Cardiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| |
Collapse
|
20
|
Jozwiak R, Recka K. The Anorexia-Cachexia Syndrome: Definitions, Evaluation, and Nonpharmacological Management #386. J Palliat Med 2020; 23:287-289. [DOI: 10.1089/jpm.2019.0498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Abrigo J, Simon F, Cabrera D, Vilos C, Cabello-Verrugio C. Mitochondrial Dysfunction in Skeletal Muscle Pathologies. Curr Protein Pept Sci 2019; 20:536-546. [PMID: 30947668 DOI: 10.2174/1389203720666190402100902] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/26/2022]
Abstract
Several molecular mechanisms are involved in the regulation of skeletal muscle function. Among them, mitochondrial activity can be identified. The mitochondria is an important and essential organelle in the skeletal muscle that is involved in metabolic regulation and ATP production, which are two key elements of muscle contractibility and plasticity. Thus, in this review, we present the critical and recent antecedents regarding the mechanisms through which mitochondrial dysfunction can be involved in the generation and development of skeletal muscle pathologies, its contribution to detrimental functioning in skeletal muscle and its crosstalk with other typical signaling pathways related to muscle diseases. In addition, an update on the development of new strategies with therapeutic potential to inhibit the deleterious impact of mitochondrial dysfunction in skeletal muscle is discussed.
Collapse
Affiliation(s)
- Johanna Abrigo
- Laboratory of Muscle Pathology, Fragility and Aging, Departamento de Ciencias Biologicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Laboratory of Integrative Physiopathology, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Daniel Cabrera
- Departamento de Gastroenterologia, Facultad de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile.,Departamento de Ciencias Químicas y Biológicas, Facultad de Salud, Universidad Bernardo O Higgins, Santiago, Chile
| | - Cristian Vilos
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile.,Laboratory of Nanomedicine and Targeted Delivery, Center for Medical Research, School of Medicine. Universidad d e Talca, Talca, Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Departamento de Ciencias Biologicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
22
|
Damiano S, Muscariello E, La Rosa G, Di Maro M, Mondola P, Santillo M. Dual Role of Reactive Oxygen Species in Muscle Function: Can Antioxidant Dietary Supplements Counteract Age-Related Sarcopenia? Int J Mol Sci 2019; 20:ijms20153815. [PMID: 31387214 PMCID: PMC6696113 DOI: 10.3390/ijms20153815] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
Sarcopenia is characterized by the progressive loss of skeletal muscle mass and strength. In older people, malnutrition and physical inactivity are often associated with sarcopenia, and, therefore, dietary interventions and exercise must be considered to prevent, delay, or treat it. Among the pathophysiological mechanisms leading to sarcopenia, a key role is played by an increase in reactive oxygen and nitrogen species (ROS/RNS) levels and a decrease in enzymatic antioxidant protection leading to oxidative stress. Many studies have evaluated, in addition to the effects of exercise, the effects of antioxidant dietary supplements in limiting age-related muscle mass and performance, but the data which have been reported are conflicting. In skeletal muscle, ROS/RNS have a dual function: at low levels they increase muscle force and adaptation to exercise, while at high levels they lead to a decline of muscle performance. Controversial results obtained with antioxidant supplementation in older persons could in part reflect the lack of univocal effects of ROS on muscle mass and function. The purpose of this review is to examine the molecular mechanisms underlying the dual effects of ROS in skeletal muscle function and the analysis of literature data on dietary antioxidant supplementation associated with exercise in normal and sarcopenic subjects.
Collapse
Affiliation(s)
- Simona Damiano
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", Via S. Pansini, 5, 80131 Naples, Italy
| | - Espedita Muscariello
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", Via S. Pansini, 5, 80131 Naples, Italy
| | - Giuliana La Rosa
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", Via S. Pansini, 5, 80131 Naples, Italy
| | - Martina Di Maro
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", Via S. Pansini, 5, 80131 Naples, Italy
| | - Paolo Mondola
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", Via S. Pansini, 5, 80131 Naples, Italy
| | - Mariarosaria Santillo
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", Via S. Pansini, 5, 80131 Naples, Italy.
| |
Collapse
|
23
|
Abstract
Chronic kidney disease (CKD) has become a global health burden and is associated with increased morbidity and mortality. In particular, wasting is highly prevalent in later stages of the illness with muscle loss being a common problem. The aetiology and progression of this wasting is complex and multiple states have been identified linked to wasting in CKD. These include: ‘malnutrition’, ‘disease-related malnutrition’, ‘protein-energy wasting’, ‘cachexia’, ‘sarcopenia’, ‘frailty’ and ‘muscle wasting’. The purpose of this paper is to review these terms in the context of CKD. Common features include weight loss, loss of muscle mass and muscle function principally driven by CKD disease specific factors and inflammatory mediators. Disease-related malnutrition would appear to be a more appropriate term for CKD than malnutrition as it take in to consideration disease specific factors such as inflammation for example. Frailty is commonly associated with age-related decline in physiological function. Development of novel screening tools measuring across multiple domains of nutritional status, muscle and physical function may be useful in CKD. Research into potential treatments are currently underway with focus on multi-modal therapies including nutrition, resistance training and anabolic drugs such as myostatin blockade and selective androgen receptor modulators. A better understanding of different states and terms may help guide assessment and treatment opportunities for patients.
Collapse
|
24
|
von Haehling S. Co-morbidities in heart failure beginning to sprout-and no end in sight? Eur J Heart Fail 2018; 19:1566-1568. [PMID: 29271591 DOI: 10.1002/ejhf.1098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Stephan von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical School, Göttingen, Germany
| |
Collapse
|
25
|
Scherbakov N, Doehner W. Do we need a reference standard for the muscle mass measurements? ESC Heart Fail 2018; 5:741-744. [PMID: 30270537 PMCID: PMC6165936 DOI: 10.1002/ehf2.12356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/30/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Nadja Scherbakov
- Center for Stroke Research Berlin CSBCharité ‐ Universitätsmedizin BerlinBerlinGermany
- Department of Cardiology (CVK), Deutsches Zentrum für Herz‐Kreislauf‐Forschung (DZHK)Charité ‐ Universitätsmedizin BerlinBerlinGermany
| | - Wolfram Doehner
- Center for Stroke Research Berlin CSBCharité ‐ Universitätsmedizin BerlinBerlinGermany
- Department of Cardiology (CVK), Deutsches Zentrum für Herz‐Kreislauf‐Forschung (DZHK)Charité ‐ Universitätsmedizin BerlinBerlinGermany
- Berlin‐Brandenburg Center for Regenerative Therapies (BCRT)Charité ‐ Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
26
|
Springer J, Springer JI, Anker SD. Muscle wasting and sarcopenia in heart failure and beyond: update 2017. ESC Heart Fail 2018; 4:492-498. [PMID: 29154428 PMCID: PMC5695190 DOI: 10.1002/ehf2.12237] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 12/12/2022] Open
Abstract
Sarcopenia (loss of muscle mass and muscle function) is a strong predictor of frailty, disability and mortality in older persons and may also occur in obese subjects. The prevalence of sarcopenia is increased in patients suffering from chronic heart failure. However, there are currently few therapy options. The main intervention is resistance exercise, either alone or in combination with nutritional support, which seems to enhance the beneficial effects of training. Also, testosterone has been shown to increased muscle power and function; however, a possible limitation is the side effects of testosterone. Other investigational drugs include selective androgen receptor modulators, growth hormone, IGF‐1, compounds targeting myostatin signaling, which have their own set of side effects. There are abundant prospective targets for improving muscle function in the elderly with or without chronic heart failure, and the continuing development of new treatment strategies and compounds for sarcopenia and cardiac cachexia makes this field an exciting one.
Collapse
Affiliation(s)
- Jochen Springer
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Joshua-I Springer
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Stefan D Anker
- Division of Cardiology and Metabolism-Heart Failure, Cachexia and Sarcopenia, Department of Cardiology (CVK); and Berlin-Brandenburg Center for Regenerative Therapies (BCRT); Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
27
|
Gouspillou G, Godin R, Piquereau J, Picard M, Mofarrahi M, Mathew J, Purves-Smith FM, Sgarioto N, Hepple RT, Burelle Y, Hussain SNA. Protective role of Parkin in skeletal muscle contractile and mitochondrial function. J Physiol 2018; 596:2565-2579. [PMID: 29682760 DOI: 10.1113/jp275604] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Parkin, an E3 ubiquitin ligase encoded by the Park2 gene, has been implicated in the regulation of mitophagy, a quality control process in which defective mitochondria are degraded. The exact physiological significance of Parkin in regulating mitochondrial function and contractility in skeletal muscle remains largely unexplored. Using Park2-/- mice, we show that Parkin ablation causes a decrease in muscle specific force, a severe decrease in mitochondrial respiration, mitochondrial uncoupling and an increased susceptibility to opening of the permeability transition pore. These results demonstrate that Parkin plays a protective role in the maintenance of normal mitochondrial and contractile functions in skeletal muscles. ABSTRACT Parkin is an E3 ubiquitin ligase encoded by the Park2 gene. Parkin has been implicated in the regulation of mitophagy, a quality control process in which defective mitochondria are sequestered in autophagosomes and delivered to lysosomes for degradation. Although Parkin has been mainly studied for its implication in neuronal degeneration in Parkinson disease, its role in other tissues remains largely unknown. In the present study, we investigated the skeletal muscles of Park2 knockout (Park2-/- ) mice to test the hypothesis that Parkin plays a physiological role in mitochondrial quality control in normal skeletal muscle, a tissue highly reliant on mitochondrial content and function. We first show that the tibialis anterior (TA) of Park2-/- mice display a slight but significant decrease in its specific force. Park2-/- muscles also show a trend for type IIB fibre hypertrophy without alteration in muscle fibre type proportion. Compared to Park2+/+ muscles, the mitochondrial function of Park2-/- skeletal muscles was significantly impaired, as indicated by the significant decrease in ADP-stimulated mitochondrial respiratory rates, uncoupling, reduced activities of respiratory chain complexes containing mitochondrial DNA (mtDNA)-encoded subunits and increased susceptibility to opening of the permeability transition pore. Muscles of Park2-/- mice also displayed a decrease in the content of the mitochondrial pro-fusion protein Mfn2 and an increase in the pro-fission protein Drp1 suggesting an increase in mitochondrial fragmentation. Finally, Park2 ablation resulted in an increase in basal autophagic flux in skeletal muscles. Overall, the results of the present study demonstrate that Parkin plays a protective role in the maintenance of normal mitochondrial and contractile functions in normal skeletal muscles.
Collapse
Affiliation(s)
- Gilles Gouspillou
- Département des sciences de l'activité physique, Faculté des Sciences, UQAM, Montréal, Quebec, Canada.,Groupe de recherche en Activité Physique Adaptée, Montréal, Quebec, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
| | - Richard Godin
- Faculty of Pharmacy, Université de Montréal, Chemin de la polytechnique, Quebec, Canada
| | - Jérome Piquereau
- Faculty of Pharmacy, Université de Montréal, Chemin de la polytechnique, Quebec, Canada.,Inserm, Université Paris-Sud, UMR-S 1180, Châtenay-Malabry, France
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Medical Center, New York, NY, USA.,Department of Neurology, The Merritt Center and Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY, USA.,Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Mahroo Mofarrahi
- Departments of Critical Care and Medicine, McGill University Health Centre and Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Jasmin Mathew
- Faculty of Pharmacy, Université de Montréal, Chemin de la polytechnique, Quebec, Canada
| | - Fennigje M Purves-Smith
- Departments of Critical Care and Medicine, McGill University Health Centre and Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Nicolas Sgarioto
- Faculty of Pharmacy, Université de Montréal, Chemin de la polytechnique, Quebec, Canada.,Departments of Critical Care and Medicine, McGill University Health Centre and Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Russell T Hepple
- Department of Physical Therapy, College of Health & Health Professions, University of Florida, Gainesville, FL, USA
| | - Yan Burelle
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Sabah N A Hussain
- Departments of Critical Care and Medicine, McGill University Health Centre and Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
28
|
Subcutaneous Ehrlich Ascites Carcinoma mice model for studying cancer-induced cardiomyopathy. Sci Rep 2018; 8:5599. [PMID: 29618792 PMCID: PMC5884778 DOI: 10.1038/s41598-018-23669-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/08/2018] [Indexed: 02/06/2023] Open
Abstract
Cardiomyopathy is one of the characteristic features of cancer. In this study, we establish a suitable model to study breast cancer-induced cardiomyopathy in mice. We used Ehrlich Ascites Carcinoma cells to induce subcutaneous tumor in 129/SvJ mice and studied its effect on heart function. In Ehrlich Ascites Carcinoma bearing mice, we found significant reduction in left ventricle wall thickness, ejection fraction, and fractional shortening increase in left ventricle internal diameter. We found higher muscle atrophy, degeneration, fibrosis, expression of cell-adhesion molecules and cell death in tumor-bearing mice hearts. As observed in cancer patients, we found that mTOR, a key signalling molecule responsible for maintaining cell growth and autophagy was suppressed in this model. Tumor bearing mice hearts show increased expression and nuclear localization of TFEB and FoxO3a transcription factors, which are involved in the upregulation of muscle atrophy genes, lysosomal biogenesis genes and autophagy genes. We propose that Ehrlich Ascites Carcinoma induced tumor can be used as a model to identify potential therapeutic targets for the treatment of heart failure in patients suffering from cancer-induced cardiomyopathy. This model can also be used to test the adverse consequences of cancer chemotherapy in heart.
Collapse
|
29
|
Tabinor M, Elphick E, Dudson M, Kwok CS, Lambie M, Davies SJ. Bioimpedance-defined overhydration predicts survival in end stage kidney failure (ESKF): systematic review and subgroup meta-analysis. Sci Rep 2018; 8:4441. [PMID: 29535377 PMCID: PMC5849723 DOI: 10.1038/s41598-018-21226-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/25/2018] [Indexed: 12/13/2022] Open
Abstract
Both overhydration and comorbidity predict mortality in end-stage kidney failure (ESKF) but it is not clear whether these are independent of one another. We undertook a systematic review of studies reporting outcomes in adult dialysis patients in which comorbidity and overhydration, quantified by whole body bioimpedance (BI), were reported. PubMed, EMBASE, PsychInfo and the Cochrane trial database were searched (1990-2017). Independent reviewers appraised studies including methodological quality (assessed using QUIPS). Primary outcome was mortality, with secondary outcomes including hospitalisation and cardiovascular events. Of 4028 citations identified, 46 matched inclusion criteria (42 cohorts; 60790 patients; 8187 deaths; 95% haemodialysis/5% peritoneal dialysis). BI measures included phase angle/BI vector (41%), overhydration index (39%) and extra:intracellular water ratio (20%). 38 of 42 cohorts had multivariable survival analyses (MVSA) adjusting for age (92%), gender (66%), diabetes (63%), albumin (58%), inflammation (CRP/IL6-37%), non-BI nutritional markers (24%) and echocardiographic data (8%). BI-defined overhydration (BI-OH) independently predicted mortality in 32 observational cohorts. Meta-analysis revealed overhydration >15% (HR 2.28, 95% CI 1.56-3.34, P < 0.001) and a 1-degree decrease in phase angle (HR 1.74, 95% CI 1.37-2.21, P < 0.001) predicted mortality. BI-OH predicts mortality in dialysis patients independent of the influence of comorbidity.
Collapse
Affiliation(s)
- Matthew Tabinor
- Institute for Applied Clinical Sciences, Keele University, Newcastle-under-Lyme, UK
| | - Emma Elphick
- Institute for Applied Clinical Sciences, Keele University, Newcastle-under-Lyme, UK
| | - Michael Dudson
- Institute for Applied Clinical Sciences, Keele University, Newcastle-under-Lyme, UK
| | - Chun Shing Kwok
- Institute for Applied Clinical Sciences, Keele University, Newcastle-under-Lyme, UK
| | - Mark Lambie
- Institute for Applied Clinical Sciences, Keele University, Newcastle-under-Lyme, UK
| | - Simon J Davies
- Institute for Applied Clinical Sciences, Keele University, Newcastle-under-Lyme, UK.
| |
Collapse
|
30
|
Doehner W. Comorbidities of chronic heart failure – a systemic syndrome requiring cross-specialty efforts. J Cardiovasc Med (Hagerstown) 2018; 19:79-82. [DOI: 10.2459/jcm.0000000000000606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
Barazzoni R, Gortan Cappellari G, Palus S, Vinci P, Ruozi G, Zanetti M, Semolic A, Ebner N, von Haehling S, Sinagra G, Giacca M, Springer J. Acylated ghrelin treatment normalizes skeletal muscle mitochondrial oxidative capacity and AKT phosphorylation in rat chronic heart failure. J Cachexia Sarcopenia Muscle 2017; 8:991-998. [PMID: 29098797 PMCID: PMC5700435 DOI: 10.1002/jcsm.12254] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/02/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Chronic heart failure (CHF) is associated with skeletal muscle abnormalities contributing to exercise intolerance, muscle loss, and negative impact on patient prognosis. A primary role has been proposed for mitochondrial dysfunction, which may be induced by systemic and tissue inflammation and further contribute to low insulin signalling. The acylated form of the gastric hormone ghrelin (AG) may improve mitochondrial oxidative capacity and insulin signalling in both healthy and diseased rodent models. METHODS We investigated the impact of AG continuous subcutaneous administration (AG) by osmotic minipump (50 nmol/kg/day for 28 days) compared with placebo (P) on skeletal muscle mitochondrial enzyme activities, mitochondrial biogenesis regulators transcriptional expression and insulin signalling in a rodent post-myocardial infarction CHF model. RESULTS No statistically significant differences (NS) were observed among the three group in cumulative food intake. Compared with sham-operated, P had low mitochondrial enzyme activities, mitochondrial biogenesis regulators transcripts, and insulin signalling activation at AKT level (P < 0.05), associated with activating nuclear translocation of pro-inflammatory transcription factor nuclear factor-κB. AG completely normalized all alterations (P < 0.05 vs P, P = NS vs sham-operated). Direct AG activities were strongly supported by in vitro C2C12 myotubes experiments showing AG-dependent stimulation of mitochondrial enzyme activities. No changes in mitochondrial parameters and insulin signalling were observed in the liver in any group. CONCLUSIONS Sustained peripheral AG treatment with preserved food intake normalizes a CHF-induced tissue-specific cluster of skeletal muscle mitochondrial dysfunction, pro-inflammatory changes, and reduced insulin signalling. AG is therefore a potential treatment for CHF-associated muscle catabolic alterations, with potential positive impact on patient outcome.
Collapse
Affiliation(s)
- Rocco Barazzoni
- Internal Medicine, Department of Medical, Surgical and Health Sciences-University of Trieste, Trieste, Italy.,Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Trieste, Italy
| | - Gianluca Gortan Cappellari
- Internal Medicine, Department of Medical, Surgical and Health Sciences-University of Trieste, Trieste, Italy.,Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Trieste, Italy
| | - Sandra Palus
- Department of Cardiology & Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Pierandrea Vinci
- Internal Medicine, Department of Medical, Surgical and Health Sciences-University of Trieste, Trieste, Italy.,Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Trieste, Italy
| | - Giulia Ruozi
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Michela Zanetti
- Internal Medicine, Department of Medical, Surgical and Health Sciences-University of Trieste, Trieste, Italy.,Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Trieste, Italy
| | - Annamaria Semolic
- Internal Medicine, Department of Medical, Surgical and Health Sciences-University of Trieste, Trieste, Italy.,Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Trieste, Italy
| | - Nicole Ebner
- Department of Cardiology & Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Stephan von Haehling
- Department of Cardiology & Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Gianfranco Sinagra
- Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Trieste, Italy.,Cardiology Division, Department of Medical, Surgical and Health Sciences-University of Trieste, Trieste, Italy
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Jochen Springer
- Department of Cardiology & Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
| |
Collapse
|
32
|
Gomes MJ, Martinez PF, Pagan LU, Damatto RL, Cezar MDM, Lima ARR, Okoshi K, Okoshi MP. Skeletal muscle aging: influence of oxidative stress and physical exercise. Oncotarget 2017; 8:20428-20440. [PMID: 28099900 PMCID: PMC5386774 DOI: 10.18632/oncotarget.14670] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/09/2017] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle abnormalities are responsible for significant disability in the elderly. Sarcopenia is the main alteration occurring during senescence and a key public health issue as it predicts frailty, poor quality of life, and mortality. Several factors such as reduced physical activity, hormonal changes, insulin resistance, genetic susceptibility, appetite loss, and nutritional deficiencies are involved in the physiopathology of muscle changes. Sarcopenia is characterized by structural, biochemical, molecular and functional muscle changes. An imbalance between anabolic and catabolic intracellular signaling pathways and an increase in oxidative stress both play important roles in muscle abnormalities. Currently, despite the discovery of new targets and development of new drugs, nonpharmacological therapies such as physical exercise and nutritional support are considered the basis for prevention and treatment of age-associated muscle abnormalities. There has been an increase in information on signaling pathways beneficially modulated by exercise; nonetheless, studies are needed to establish the best type, intensity, and frequency of exercise to prevent or treat age-induced skeletal muscle alterations.
Collapse
Affiliation(s)
- Mariana Janini Gomes
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Paula Felippe Martinez
- School of Physical Therapy, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Luana Urbano Pagan
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Ricardo Luiz Damatto
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | | | - Aline Regina Ruiz Lima
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Katashi Okoshi
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Marina Politi Okoshi
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| |
Collapse
|
33
|
Saitoh M, Ishida J, Doehner W, von Haehling S, Anker MS, Coats AJS, Anker SD, Springer J. Sarcopenia, cachexia, and muscle performance in heart failure: Review update 2016. Int J Cardiol 2017; 238:5-11. [PMID: 28427849 DOI: 10.1016/j.ijcard.2017.03.155] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 02/06/2023]
Abstract
Cachexia in the context of heart failure (HF) has been termed cardiac cachexia, and represents a progressive involuntary weight loss. Cachexia is mainly the result of an imbalance in the homeostasis of muscle protein synthesis and degradation due to a lower activity of protein synthesis pathways and an over-activation of protein degradation. In addition, muscle wasting leads to of impaired functional capacity, even after adjusting for clinical relevant variables in patients with HF. However, there is no sufficient therapeutic strategy in muscle wasting in HF patients and very few studies in animal models. Exercise training represents a promising intervention that can prevent or even reverse the process of muscle wasting, and worsening the muscle function and performance in HF with muscle wasting and cachexia. The pathological mechanisms and effective therapeutic approach of cardiac cachexia remain uncertain, because of the difficulty to establish animal cardiac cachexia models, thus novel animal models are warranted. Furthermore, the use of improved animal models will lead to a better understanding of the pathways that modulate muscle wasting and therapeutics of muscle wasting of cardiac cachexia.
Collapse
Affiliation(s)
- Masakazu Saitoh
- Institute of Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Junichi Ishida
- Institute of Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Wolfram Doehner
- Charité - Campus Virchow (CVK), Center for Stroke Research, Berlin, Germany
| | - Stephan von Haehling
- Institute of Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Markus S Anker
- Charité - Campus Benjamin Franklin (CBF), Department of Cardiology, Berlin, Germany Charité - Campus Virchow (CVK), Center for Stroke Research, Berlin, Germany
| | | | - Stefan D Anker
- Institute of Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Jochen Springer
- Institute of Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
34
|
Konishi M, Ebner N, Springer J, Schefold JC, Doehner W, Dschietzig TB, Anker SD, von Haehling S. Impact of Plasma Kynurenine Level on Functional Capacity and Outcome in Heart Failure ― Results From Studies Investigating Co-morbidities Aggravating Heart Failure (SICA-HF) ―. Circ J 2017; 81:52-61. [DOI: 10.1253/circj.cj-16-0791] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Masaaki Konishi
- Innovative Clinical Trials, Department of Cardiology and Pneumology, University of Göttingen Medical School
| | - Nicole Ebner
- Innovative Clinical Trials, Department of Cardiology and Pneumology, University of Göttingen Medical School
| | - Jochen Springer
- Innovative Clinical Trials, Department of Cardiology and Pneumology, University of Göttingen Medical School
| | - Joerg C. Schefold
- Department of Intensive Care Medicine, Inselspital, University Hospital of Bern
| | - Wolfram Doehner
- Campus Virchow, Center for Stroke Research Berlin and Department of Cardiology, Charité Medical School
| | | | - Stefan D. Anker
- Innovative Clinical Trials, Department of Cardiology and Pneumology, University of Göttingen Medical School
| | - Stephan von Haehling
- Innovative Clinical Trials, Department of Cardiology and Pneumology, University of Göttingen Medical School
| |
Collapse
|
35
|
von Haehling S, Papp Z, Anker SD. ESC Heart Failure: a new journal aims to broaden heart failure views. Eur J Heart Fail 2016; 18:1415-1419. [PMID: 27910285 DOI: 10.1002/ejhf.692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 11/06/2022] Open
Affiliation(s)
- Stephan von Haehling
- Department of Cardiology and Pneumology, Innovative Clinical Trials, University Medical Center Göttingen, Göttingen, Germany
| | - Zoltan Papp
- Division of Clinical Physiology, Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Stefan D Anker
- Department of Cardiology and Pneumology, Innovative Clinical Trials, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
36
|
von Haehling S, Anker MS, Anker SD. Prevalence and clinical impact of cachexia in chronic illness in Europe, USA, and Japan: facts and numbers update 2016. J Cachexia Sarcopenia Muscle 2016; 7:507-509. [PMID: 27891294 PMCID: PMC5114624 DOI: 10.1002/jcsm.12167] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 01/03/2023] Open
Abstract
Cachexia is a serious clinical consequence of almost all chronic diseases when reaching advanced stages. Its prevalence ranges from 5-15% in end-stage chronic heart failure to 50-80% in advanced malignant cancer. Cachexia is also frequently occurring in patients with chronic kidney disease, chronic obstructive pulmonary disease (COPD) or neurological diseases, and rheumatoid arthritis. Mortality rates of patients with cachexia range from 15-25% per year in severe COPD through 20-40% per year in patients with chronic heart failure or chronic kidney disease to 20-80% in cancer cachexia. In the industrialized world (North America, Europe, and Japan) where epidemiological data are to some degree available, the overall prevalence of cachexia (due to any disease and not necessarily associated with hospital admission) is growing with the growth of the chronic illness prevalence, and it currently affects around 0.5-1.0% of the population, i.e. around 6-12 million people. From this, one can estimate that 1.5-2 million deaths are occurring in patients with cachexia per year. It is also a very significant health problem in other parts of the globe, but epidemiological data are scarce. The multifactorial nature of cachexia is now much better understood, and particularly, the role of inflammatory mediators and the imbalance of anabolism and catabolism are considered important therapeutic targets. Several approaches to develop cachexia and muscle wasting treatments have failed to be successful in phase III clinical trials, but new approaches are in development. Given the high prevalence and very high mortality associated with cachexia, advances are urgently needed for patients worldwide.
Collapse
Affiliation(s)
- Stephan von Haehling
- Innovative Clinical Trial, Department of Cardiology and PneumologyUniversity of Göttingen Medical SchoolGöttingenGermany
| | - Markus S. Anker
- Department of Cardiology, Charité Campus Benjamin Franklin (CBF)BerlinGermany
| | - Stefan D. Anker
- Innovative Clinical Trial, Department of Cardiology and PneumologyUniversity of Göttingen Medical SchoolGöttingenGermany
| |
Collapse
|
37
|
Springer J, Anker SD. Publication trends in cachexia and sarcopenia in elderly heart failure patients. Wien Klin Wochenschr 2016; 128:446-454. [PMID: 27885423 DOI: 10.1007/s00508-016-1126-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 10/26/2016] [Indexed: 12/11/2022]
Abstract
The loss of skeletal mass - sarcopenia and cachexia - is considered to be a major contributor to morbidity and mortality in chronic heart failure (CHF). Unfortunately, sarcopenia is generally considered to be a geriatric syndrome, but not necessarily seen as a comorbidity in CHF, even though it has a wide range of adverse health outcomes. While there were 15,574 publication with the title word "heart failure" in PubMed in the 5‑year period from 1 June 2011 to 31 May 2016, only 22 or 71 publications were found with the search combination "sarcopenia" or "cachexia" (title word) and "heart failure" (all fields), respectively. This shows very clearly that loss of muscle quality and function due to heart failure is still an underappreciated problem in the medical field.
Collapse
Affiliation(s)
- Jochen Springer
- Institute of Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Centre Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
| | - Stefan D Anker
- Institute of Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Centre Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| |
Collapse
|
38
|
Significance of animal models of cardiac cachexia and impact of gender on cardiac cachexia. Int J Cardiol 2016; 223:852-853. [DOI: 10.1016/j.ijcard.2016.08.289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 11/23/2022]
|
39
|
Ebner N, Sliziuk V, Scherbakov N, Sandek A. Muscle wasting in ageing and chronic illness. ESC Heart Fail 2015; 2:58-68. [PMID: 28834653 PMCID: PMC6410534 DOI: 10.1002/ehf2.12033] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 03/23/2015] [Indexed: 12/17/2022] Open
Abstract
PURPOSE As life expectancy increases, muscle wasting is becoming a more and more important public health problem. This review summarizes the current knowledge of pathophysiological mechanisms underlying muscle loss in ageing and chronic diseases such as heart failure and discusses evolving interventional strategies. RECENT FINDINGS Loss of skeletal muscle mass and strength is a common phenomenon in a wide variety of disorders associated with ageing and morbidity-associated catabolic conditions such as chronic heart failure. Muscle wasting in ageing but otherwise healthy human beings is referred to as sarcopenia. Unlike cachexia in advanced stages of chronic heart failure, muscle wasting per se is not necessarily associated with weight loss. In this review, we discuss pathophysiological mechanisms underlying muscle loss in sarcopenia and cachexia, highlight similarities and differences of both conditions, and discuss therapeutic targets and possible treatments, such as exercise training, nutritional support, and drugs. Candidate drugs to treat muscle wasting disease include myostatin antagonists, ghrelin agonists, selective androgen receptor molecules, megestrol acetate, activin receptor antagonists, espindolol, and fast skeletal muscle troponin inhibitors. SUMMARY Present approaches to muscle wasting disease include exercise training, nutritional support, and drugs, although particularly the latter remain currently restricted to clinical studies. Optimizing skeletal muscle mass and function in ageing and chronic illness including heart failure is one of the chapters that are far from finished and gains future potential for new therapeutic interventions to come.
Collapse
Affiliation(s)
- Nicole Ebner
- Division of Innovative Clinical Trials, Department of Cardiology and PneumologyUniversity Medical Center Göttingen (UMG)GöttingenGermany
| | - Veronika Sliziuk
- University Medical Center Göttingen, Heart Center GöttingenDepartment of Cardiology and PneumologyGöttingenGermany
| | - Nadja Scherbakov
- Center for Stroke Research, Department of CardiologyCharité Medical School, Campus Virchow‐KlinikumBerlinGermany
| | - Anja Sandek
- University Medical Center Göttingen, Heart Center GöttingenDepartment of Cardiology and PneumologyGöttingenGermany
| |
Collapse
|