1
|
Lauerer AM, Caravia XM, Maier LS, Chemello F, Lebek S. Gene editing in common cardiovascular diseases. Pharmacol Ther 2024; 263:108720. [PMID: 39284367 DOI: 10.1016/j.pharmthera.2024.108720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/29/2024] [Accepted: 09/01/2024] [Indexed: 09/22/2024]
Abstract
Cardiovascular diseases are the leading cause of morbidity and mortality worldwide, highlighting the high socioeconomic impact. Current treatment strategies like compound-based drugs or surgeries are often limited. On the one hand, systemic administration of substances is frequently associated with adverse side effects; on the other hand, they typically provide only short-time effects requiring daily intake. Thus, new therapeutic approaches and concepts are urgently needed. The advent of CRISPR-Cas9 genome editing offers great promise for the correction of disease-causing hereditary mutations. As such mutations are often very rare, gene editing strategies to correct them are not broadly applicable to many patients. Notably, there is recent evidence that gene editing technology can also be deployed to disrupt common pathogenic signaling cascades in a targeted, specific, and efficient manner, which offers a more generalizable approach. However, several challenges remain to be addressed ranging from the optimization of the editing strategy itself to a suitable delivery strategy up to potential immune responses to the editing components. This review article discusses important CRISPR-Cas9-based gene editing approaches with their advantages and drawbacks and outlines opportunities in their application for treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Anna-Maria Lauerer
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Xurde M Caravia
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lars S Maier
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Francesco Chemello
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Simon Lebek
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
2
|
Domínguez F, Adler E, García-Pavía P. Alcoholic cardiomyopathy: an update. Eur Heart J 2024; 45:2294-2305. [PMID: 38848133 PMCID: PMC11231944 DOI: 10.1093/eurheartj/ehae362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/15/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Alcohol-induced cardiomyopathy (AC) is an acquired form of dilated cardiomyopathy (DCM) caused by prolonged and heavy alcohol intake in the absence of other causes. The amount of alcohol required to produce AC is generally considered as >80 g/day over 5 years, but there is still some controversy regarding this definition. This review on AC focuses on pathogenesis, which involves different mechanisms. Firstly, the direct toxic effect of ethanol promotes oxidative stress in the myocardium and activation of the renin-angiotensin system. Moreover, acetaldehyde, the best-studied metabolite of alcohol, can contribute to myocardial damage impairing actin-myosin interaction and producing mitochondrial dysfunction. Genetic factors are also involved in the pathogenesis of AC, with DCM-causing genetic variants in patients with AC, especially titin-truncating variants. These findings support a double-hit hypothesis in AC, combining genetics and environmental factors. The synergistic effect of alcohol with concomitant conditions such as hypertension or liver cirrhosis can be another contributing factor leading to AC. There are no specific cardiac signs and symptoms in AC as compared with other forms of DCM. However, natural history of AC differs from DCM and relies directly on alcohol withdrawal, as left ventricular ejection fraction recovery in abstainers is associated with an excellent prognosis. Thus, abstinence from alcohol is the most crucial step in treating AC, and specific therapies are available for this purpose. Otherwise, AC should be treated according to current guidelines of heart failure with reduced ejection fraction. Targeted therapies based on AC pathogenesis are currently being developed and could potentially improve AC treatment in the future.
Collapse
Affiliation(s)
- Fernando Domínguez
- Department of Cardiology, Heart Failure and Inherited Cardiac Diseases Unit, Hospital Universitario Puerta de Hierro Majadahonda, IDIPHISA, CIBERCV, Manuel de Falla, 2, Majadahonda, Madrid 28222, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Calle de Melchor Fernández Almagro, 3, Madrid, Spain
| | - Eric Adler
- Section Head of Heart Failure, University of California, San Diego, CA, USA
| | - Pablo García-Pavía
- Department of Cardiology, Heart Failure and Inherited Cardiac Diseases Unit, Hospital Universitario Puerta de Hierro Majadahonda, IDIPHISA, CIBERCV, Manuel de Falla, 2, Majadahonda, Madrid 28222, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Calle de Melchor Fernández Almagro, 3, Madrid, Spain
| |
Collapse
|
3
|
Brown CN, Bayer KU. Studying CaMKII: Tools and standards. Cell Rep 2024; 43:113982. [PMID: 38517893 PMCID: PMC11088445 DOI: 10.1016/j.celrep.2024.113982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/19/2024] [Accepted: 03/06/2024] [Indexed: 03/24/2024] Open
Abstract
The Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) is a ubiquitous mediator of cellular Ca2+ signals with both enzymatic and structural functions. Here, we briefly introduce the complex regulation of CaMKII and then provide a comprehensive overview of the expanding toolbox to study CaMKII. Beyond a variety of distinct mutants, these tools now include optical methods for measurement and manipulation, with the latter including light-induced inhibition, stimulation, and sequestration. Perhaps most importantly, there are now three mechanistically distinct classes of specific CaMKII inhibitors, and their combined use enables the interrogation of CaMKII functions in a manner that is powerful and sophisticated yet also accessible. This review aims to provide guidelines for the interpretation of the results obtained with these tools, with careful consideration of their direct and indirect effects.
Collapse
Affiliation(s)
- Carolyn Nicole Brown
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Karl Ulrich Bayer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
4
|
Lei M, Salvage SC, Jackson AP, Huang CLH. Cardiac arrhythmogenesis: roles of ion channels and their functional modification. Front Physiol 2024; 15:1342761. [PMID: 38505707 PMCID: PMC10949183 DOI: 10.3389/fphys.2024.1342761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/22/2024] [Indexed: 03/21/2024] Open
Abstract
Cardiac arrhythmias cause significant morbidity and mortality and pose a major public health problem. They arise from disruptions in the normally orderly propagation of cardiac electrophysiological activation and recovery through successive cardiomyocytes in the heart. They reflect abnormalities in automaticity, initiation, conduction, or recovery in cardiomyocyte excitation. The latter properties are dependent on surface membrane electrophysiological mechanisms underlying the cardiac action potential. Their disruption results from spatial or temporal instabilities and heterogeneities in the generation and propagation of cellular excitation. These arise from abnormal function in their underlying surface membrane, ion channels, and transporters, as well as the interactions between them. The latter, in turn, form common regulatory targets for the hierarchical network of diverse signaling mechanisms reviewed here. In addition to direct molecular-level pharmacological or physiological actions on these surface membrane biomolecules, accessory, adhesion, signal transduction, and cytoskeletal anchoring proteins modify both their properties and localization. At the cellular level of excitation-contraction coupling processes, Ca2+ homeostatic and phosphorylation processes affect channel activity and membrane excitability directly or through intermediate signaling. Systems-level autonomic cellular signaling exerts both acute channel and longer-term actions on channel expression. Further upstream intermediaries from metabolic changes modulate the channels both themselves and through modifying Ca2+ homeostasis. Finally, longer-term organ-level inflammatory and structural changes, such as fibrotic and hypertrophic remodeling, similarly can influence all these physiological processes with potential pro-arrhythmic consequences. These normal physiological processes may target either individual or groups of ionic channel species and alter with particular pathological conditions. They are also potentially alterable by direct pharmacological action, or effects on longer-term targets modifying protein or cofactor structure, expression, or localization. Their participating specific biomolecules, often clarified in experimental genetically modified models, thus constitute potential therapeutic targets. The insights clarified by the physiological and pharmacological framework outlined here provide a basis for a recent modernized drug classification. Together, they offer a translational framework for current drug understanding. This would facilitate future mechanistically directed therapeutic advances, for which a number of examples are considered here. The latter are potentially useful for treating cardiac, in particular arrhythmic, disease.
Collapse
Affiliation(s)
- Ming Lei
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Samantha C. Salvage
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Antony P. Jackson
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Christopher L.-H. Huang
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Lebek S, Caravia XM, Chemello F, Tan W, McAnally JR, Chen K, Xu L, Liu N, Bassel-Duby R, Olson EN. Elimination of CaMKIIδ Autophosphorylation by CRISPR-Cas9 Base Editing Improves Survival and Cardiac Function in Heart Failure in Mice. Circulation 2023; 148:1490-1504. [PMID: 37712250 PMCID: PMC10842988 DOI: 10.1161/circulationaha.123.065117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Cardiovascular diseases are the main cause of worldwide morbidity and mortality, highlighting the need for new therapeutic strategies. Autophosphorylation and subsequent overactivation of the cardiac stress-responsive enzyme CaMKIIδ (Ca2+/calmodulin-dependent protein kinase IIδ) serves as a central driver of multiple cardiac disorders. METHODS To develop a comprehensive therapy for heart failure, we used CRISPR-Cas9 adenine base editing to ablate the autophosphorylation site of CaMKIIδ. We generated mice harboring a phospho-resistant CaMKIIδ mutation in the germline and subjected these mice to severe transverse aortic constriction, a model for heart failure. Cardiac function, transcriptional changes, apoptosis, and fibrosis were assessed by echocardiography, RNA sequencing, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and standard histology, respectively. Specificity toward CaMKIIδ gene editing was assessed using deep amplicon sequencing. Cellular Ca2+ homeostasis was analyzed using epifluorescence microscopy in Fura-2-loaded cardiomyocytes. RESULTS Within 2 weeks after severe transverse aortic constriction surgery, 65% of all wild-type mice died, and the surviving mice showed dramatically impaired cardiac function. In contrast to wild-type mice, CaMKIIδ phospho-resistant gene-edited mice showed a mortality rate of only 11% and exhibited substantially improved cardiac function after severe transverse aortic constriction. Moreover, CaMKIIδ phospho-resistant mice were protected from heart failure-related aberrant changes in cardiac gene expression, myocardial apoptosis, and subsequent fibrosis, which were observed in wild-type mice after severe transverse aortic constriction. On the basis of identical mouse and human genome sequences encoding the autophosphorylation site of CaMKIIδ, we deployed the same editing strategy to modify this pathogenic site in human induced pluripotent stem cells. It is notable that we detected a >2000-fold increased specificity for editing of CaMKIIδ compared with other CaMKII isoforms, which is an important safety feature. While wild-type cardiomyocytes showed impaired Ca2+ transients and an increased frequency of arrhythmias after chronic β-adrenergic stress, CaMKIIδ-edited cardiomyocytes were protected from these adverse responses. CONCLUSIONS Ablation of CaMKIIδ autophosphorylation by adenine base editing may offer a potential broad-based therapeutic concept for human cardiac disease.
Collapse
Affiliation(s)
- Simon Lebek
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
- Department of Internal Medicine II, University Hospital Regensburg; Regensburg, Germany
| | - Xurde M. Caravia
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Francesco Chemello
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Wei Tan
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - John R. McAnally
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Ning Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Eric N. Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center; Dallas, TX USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center; Dallas, TX USA
| |
Collapse
|
6
|
Zhang W, Dong E, Zhang J, Zhang Y. CaMKII, 'jack of all trades' in inflammation during cardiac ischemia/reperfusion injury. J Mol Cell Cardiol 2023; 184:48-60. [PMID: 37813179 DOI: 10.1016/j.yjmcc.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023]
Abstract
Myocardial infarction and revascularization cause cardiac ischemia/reperfusion (I/R) injury featuring cardiomyocyte death and inflammation. The Ca2+/calmodulin dependent protein kinase II (CaMKII) family are serine/ threonine protein kinases that are involved in I/R injury. CaMKII exists in four different isoforms, α, β, γ, and δ. In the heart, CaMKII-δ is the predominant isoform,with multiple splicing variants, such as δB, δC and δ9. During I/R, elevated intracellular Ca2+ concentrations and reactive oxygen species activate CaMKII. In this review, we summarized the regulation and function of CaMKII in multiple cell types including cardiomyocytes, endothelial cells, and macrophages during I/R. We conclude that CaMKII mediates inflammation in the microenvironment of the myocardium, resulting in cell dysfunction, elevated inflammation, and cell death. However, different CaMKII-δ variants exhibit distinct or even opposite functions. Therefore, reagents/approaches that selectively target specific CaMKII isoforms and variants are needed for evaluating and counteracting the exact role of CaMKII in I/R injury and developing effective treatments against I/R injury.
Collapse
Affiliation(s)
- Wenjia Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Erdan Dong
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing 100191, China; Haihe Laboratory of Cell Ecosystem, Beijing 100191, China
| | - Junxia Zhang
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing 100191, China; Haihe Laboratory of Cell Ecosystem, Beijing 100191, China.
| | - Yan Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| |
Collapse
|
7
|
Mustroph J, Baier MJ, Unsin D, Provaznik Z, Kozakov K, Lebek S, Tarnowski D, Schildt S, Voigt N, Wagner S, Maier LS, Neef S. Ethanol-Induced Atrial Fibrillation Results From Late INa and Can Be Prevented by Ranolazine. Circulation 2023; 148:698-700. [PMID: 37603603 PMCID: PMC10437457 DOI: 10.1161/circulationaha.123.064561] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Affiliation(s)
- Julian Mustroph
- Departments of Internal Medicine II (J.M., M.J.B., D.U., S.L., D.T., S.S., S.W., L.S.M., S.N.), University Medical Center Regensburg, Germany
| | - Maria J. Baier
- Departments of Internal Medicine II (J.M., M.J.B., D.U., S.L., D.T., S.S., S.W., L.S.M., S.N.), University Medical Center Regensburg, Germany
| | - Denise Unsin
- Departments of Internal Medicine II (J.M., M.J.B., D.U., S.L., D.T., S.S., S.W., L.S.M., S.N.), University Medical Center Regensburg, Germany
| | - Zdenek Provaznik
- Cardiothoracic Surgery (Z.P., K.K.), University Medical Center Regensburg, Germany
| | - Kostiantyn Kozakov
- Cardiothoracic Surgery (Z.P., K.K.), University Medical Center Regensburg, Germany
| | - Simon Lebek
- Departments of Internal Medicine II (J.M., M.J.B., D.U., S.L., D.T., S.S., S.W., L.S.M., S.N.), University Medical Center Regensburg, Germany
| | - Daniel Tarnowski
- Departments of Internal Medicine II (J.M., M.J.B., D.U., S.L., D.T., S.S., S.W., L.S.M., S.N.), University Medical Center Regensburg, Germany
| | - Sönke Schildt
- Departments of Internal Medicine II (J.M., M.J.B., D.U., S.L., D.T., S.S., S.W., L.S.M., S.N.), University Medical Center Regensburg, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg August University Göttingen, Germany (N.V.)
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany (N.V.)
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Germany (N.V.)
| | - Stefan Wagner
- Departments of Internal Medicine II (J.M., M.J.B., D.U., S.L., D.T., S.S., S.W., L.S.M., S.N.), University Medical Center Regensburg, Germany
| | - Lars S. Maier
- Departments of Internal Medicine II (J.M., M.J.B., D.U., S.L., D.T., S.S., S.W., L.S.M., S.N.), University Medical Center Regensburg, Germany
| | - Stefan Neef
- Departments of Internal Medicine II (J.M., M.J.B., D.U., S.L., D.T., S.S., S.W., L.S.M., S.N.), University Medical Center Regensburg, Germany
| |
Collapse
|
8
|
Narasimhan B, Gandhi K, Moras E, Wu L, Da Wariboko A, Aronow W. Experimental drugs for supraventricular tachycardia: an analysis of early phase clinical trials. Expert Opin Investig Drugs 2023; 32:825-838. [PMID: 37728554 DOI: 10.1080/13543784.2023.2259309] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
INTRODUCTION Supraventricular tachycardias (SVT) are a diverse group of commonly encountered arrhythmias arising at or above the atrioventricular (AV) node. Conventional anti-arrhythmic medications are restricted by extensive side-effect profiles and limited efficacy. Catheter ablation has emerged as a first-line therapy for many arrhythmias but is not a suitable option for all patients. This has prompted the exploration of novel pharmacological approaches targeting specific molecular mechanisms of SVT. AREAS COVERED This review article aims to summarize recent advancements in pharmacological therapeutics for SVT and their clinical implications. The understanding of molecular mechanisms underlying these arrhythmias, particularly atrial fibrillation, has opened up new possibilities for targeted interventions. Beyond the manipulation of ion channels and membrane potentials, pharmacotherapy now focuses on upstream targets such as inflammation, oxidative stress, and structural remodeling. This review strives to provide a comprehensive overview of recent advancements in pharmacological therapeutics directed at the management of SVT. We begin by providing a brief summary of the mechanisms and management of commonly encountered SVT before delving into individual agents, which in turn are stratified based on their molecular treatment targets. EXPERT OPINION The evolving landscape of pharmacologic therapy offers hope for more personalized and tailored interventions in the management of SVT.
Collapse
Affiliation(s)
- Bharat Narasimhan
- DeBakey Cardiovascular Institute, Houston Methodist, Houston, TX, USA
| | - Kruti Gandhi
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Errol Moras
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Lingling Wu
- Department of Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Akanibo Da Wariboko
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Wilbert Aronow
- Department of Cardiology, Westchester Medical Center, Valhalla, NY, USA
| |
Collapse
|
9
|
Hegner P, Lebek S, Schaner B, Ofner F, Gugg M, Maier LS, Arzt M, Wagner S. CaMKII-Dependent Contractile Dysfunction and Pro-Arrhythmic Activity in a Mouse Model of Obstructive Sleep Apnea. Antioxidants (Basel) 2023; 12:antiox12020315. [PMID: 36829874 PMCID: PMC9952298 DOI: 10.3390/antiox12020315] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Left ventricular contractile dysfunction and arrhythmias frequently occur in patients with sleep-disordered breathing (SDB). The CaMKII-dependent dysregulation of cellular Ca homeostasis has recently been described in SDB patients, but these studies only partly explain the mechanism and are limited by the patients' heterogeneity. Here, we analyzed contractile function and Ca homeostasis in a mouse model of obstructive sleep apnea (OSA) that is not limited by confounding comorbidities. OSA was induced by artificial tongue enlargement with polytetrafluorethylene (PTFE) injection into the tongue of wildtype mice and mice with a genetic ablation of the oxidative activation sites of CaMKII (MMVV knock-in). After eight weeks, cardiac function was assessed with echocardiography. Reactive oxygen species (ROS) and Ca transients were measured using confocal and epifluorescence microscopy, respectively. Wildtype PTFE mice exhibited an impaired ejection fraction, while MMVV PTFE mice were fully protected. As expected, isolated cardiomyocytes from PTFE mice showed increased ROS production. We further observed decreased levels of steady-state Ca transients, decreased levels of caffeine-induced Ca transients, and increased pro-arrhythmic activity (defined as deviations from the diastolic Ca baseline) only in wildtype but not in MMVV PTFE mice. In summary, in the absence of any comorbidities, OSA was associated with contractile dysfunction and pro-arrhythmic activity and the inhibition of the oxidative activation of CaMKII conveyed cardioprotection, which may have therapeutic implications.
Collapse
Affiliation(s)
- Philipp Hegner
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Simon Lebek
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Benedikt Schaner
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Florian Ofner
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Mathias Gugg
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Lars Siegfried Maier
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Michael Arzt
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Stefan Wagner
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany
- Correspondence:
| |
Collapse
|
10
|
Reyes Gaido OE, Nkashama LJ, Schole KL, Wang Q, Umapathi P, Mesubi OO, Konstantinidis K, Luczak ED, Anderson ME. CaMKII as a Therapeutic Target in Cardiovascular Disease. Annu Rev Pharmacol Toxicol 2023; 63:249-272. [PMID: 35973713 PMCID: PMC11019858 DOI: 10.1146/annurev-pharmtox-051421-111814] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
CaMKII (the multifunctional Ca2+ and calmodulin-dependent protein kinase II) is a highly validated signal for promoting a variety of common diseases, particularly in the cardiovascular system. Despite substantial amounts of convincing preclinical data, CaMKII inhibitors have yet to emerge in clinical practice. Therapeutic inhibition is challenged by the diversity of CaMKII isoforms and splice variants and by physiological CaMKII activity that contributes to learning and memory. Thus, uncoupling the harmful and beneficial aspects of CaMKII will be paramount to developing effective therapies. In the last decade, several targeting strategies have emerged, including small molecules, peptides, and nucleotides, which hold promise in discriminating pathological from physiological CaMKII activity. Here we review the cellular and molecular biology of CaMKII, discuss its role in physiological and pathological signaling, and consider new findings and approaches for developing CaMKII therapeutics.
Collapse
Affiliation(s)
- Oscar E Reyes Gaido
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | | | - Kate L Schole
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Qinchuan Wang
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Priya Umapathi
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Olurotimi O Mesubi
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Klitos Konstantinidis
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Elizabeth D Luczak
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Mark E Anderson
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
- Departments of Physiology and Genetic Medicine and Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Lu Y, Ji J, Chu S, Shen F, Yang W, Lei W, Jiang M, Bai G. CaMKII, that binds with ligustilide, as a potential drug target of Suxiao jiuxin pill, a traditional Chinese medicine to dilate thoracic aorta. Clin Transl Med 2022; 12:e907. [PMID: 35678102 PMCID: PMC9178388 DOI: 10.1002/ctm2.907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 12/01/2022] Open
Affiliation(s)
- Yujie Lu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Jie Ji
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Simeng Chu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Fukui Shen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Wen Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Wei Lei
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| |
Collapse
|
12
|
Zhang J, Liang R, Wang K, Zhang W, Zhang M, Jin L, Xie P, Zheng W, Shang H, Hu Q, Li J, Chen G, Wu F, Lan F, Wang L, Wang SQ, Li Y, Zhang Y, Liu J, Lv F, Hu X, Xiao RP, Lei X, Zhang Y. Novel CaMKII-δ Inhibitor Hesperadin Exerts Dual Functions to Ameliorate Cardiac Ischemia/Reperfusion Injury and Inhibit Tumor Growth. Circulation 2022; 145:1154-1168. [PMID: 35317609 DOI: 10.1161/circulationaha.121.055920] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Cardiac ischemia/reperfusion (I/R) injury has emerged as an important therapeutic target for ischemic heart disease, the leading cause of morbidity and mortality worldwide. At present, there is no effective therapy for reducing cardiac I/R injury. CaMKII (Ca2+/calmodulin-dependent kinase II) plays a pivotal role in the pathogenesis of severe heart conditions, including I/R injury. Pharmacological inhibition of CaMKII is an important strategy in the protection against myocardial damage and cardiac diseases. To date, there is no drug targeting CaMKII for the clinical therapy of heart disease. Furthermore, at present, there is no selective inhibitor of CaMKII-δ, the major CaMKII isoform in the heart. METHODS A small-molecule kinase inhibitor library and a high-throughput screening system for the kinase activity assay of CaMKII-δ9 (the most abundant CaMKII-δ splice variant in human heart) were used to screen for CaMKII-δ inhibitors. Using cultured neonatal rat ventricular myocytes, human embryonic stem cell-derived cardiomyocytes, and in vivo mouse models, in conjunction with myocardial injury induced by I/R (or hypoxia/reoxygenation) and CaMKII-δ9 overexpression, we sought to investigate the protection of hesperadin against cardiomyocyte death and cardiac diseases. BALB/c nude mice with xenografted tumors of human cancer cells were used to evaluate the in vivo antitumor effect of hesperadin. RESULTS Based on the small-molecule kinase inhibitor library and screening system, we found that hesperadin, an Aurora B kinase inhibitor with antitumor activity in vitro, directly bound to CaMKII-δ and specifically blocked its activation in an ATP-competitive manner. Hesperadin functionally ameliorated both I/R- and overexpressed CaMKII-δ9-induced cardiomyocyte death, myocardial damage, and heart failure in both rodents and human embryonic stem cell-derived cardiomyocytes. In addition, in an in vivo BALB/c nude mouse model with xenografted tumors of human cancer cells, hesperadin delayed tumor growth without inducing cardiomyocyte death or cardiac injury. CONCLUSIONS Here, we identified hesperadin as a specific small-molecule inhibitor of CaMKII-δ with dual functions of cardioprotective and antitumor effects. These findings not only suggest that hesperadin is a promising leading compound for clinical therapy of cardiac I/R injury and heart failure, but also provide a strategy for the joint therapy of cancer and cardiovascular disease caused by anticancer treatment.
Collapse
Affiliation(s)
- Junxia Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
| | - Ruqi Liang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering (R.L., X.L.), Peking University, Beijing, China
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing, China (K.W.)
| | - Wenjia Zhang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, School of Basic Medical Sciences, Ministry of Education (W. Zhang, Yan Zhang), Peking University Health Science Center, Beijing, China
| | - Mao Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
| | - Li Jin
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
| | - Peng Xie
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
| | - Wen Zheng
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
| | - Haibao Shang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
| | - Qingmei Hu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
| | - Jiayi Li
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
| | - Gengjia Chen
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
| | - Fujian Wu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (F.W., F.L.)
| | - Feng Lan
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (F.W., F.L.)
| | - Lipeng Wang
- College of Life Sciences (L.W., S.-Q.W.), Peking University, Beijing, China
| | - Shi-Qiang Wang
- College of Life Sciences (L.W., S.-Q.W.), Peking University, Beijing, China
| | - Yongfeng Li
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences (Y.L., Yong Zhang), Peking University Health Science Center, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, IDG/McGovern Institute for Brain Research at PKU. Beijing, China (Y.L., Yong Zhang)
| | - Yong Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, School of Basic Medical Sciences, Ministry of Education (W. Zhang, Yan Zhang), Peking University Health Science Center, Beijing, China
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences (Y.L., Yong Zhang), Peking University Health Science Center, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, IDG/McGovern Institute for Brain Research at PKU. Beijing, China (Y.L., Yong Zhang)
| | - Jinghao Liu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
| | - Fengxiang Lv
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
| | - Xinli Hu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
| | - Rui-Ping Xiao
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences (R.-P.X., X.L.), Peking University, Beijing, China
- Beijing City Key Laboratory of Cardiometabolic Molecular Medicine (R.-P.X.), Peking University, Beijing, China
- PKU-Nanjing Joint Institute of Translational Medicine, Nanjing, China (R.-P.X.)
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering (R.L., X.L.), Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences (R.-P.X., X.L.), Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies (X.L.), Peking University, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology (J.Z., M.Z., L.J., P.X., W. Zheng, H.S., Q.H., J. Li, G.C., J. Liu, F.L., X.H., R.-P.X., Yan Zhang), Peking University, Beijing, China
| |
Collapse
|
13
|
Emerging Antiarrhythmic Drugs for Atrial Fibrillation. Int J Mol Sci 2022; 23:ijms23084096. [PMID: 35456912 PMCID: PMC9029767 DOI: 10.3390/ijms23084096] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF), the most common cardiac arrhythmia worldwide, is driven by complex mechanisms that differ between subgroups of patients. This complexity is apparent from the different forms in which AF presents itself (post-operative, paroxysmal and persistent), each with heterogeneous patterns and variable progression. Our current understanding of the mechanisms responsible for initiation, maintenance and progression of the different forms of AF has increased significantly in recent years. Nevertheless, antiarrhythmic drugs for the management of AF have not been developed based on the underlying arrhythmia mechanisms and none of the currently used drugs were specifically developed to target AF. With the increased knowledge on the mechanisms underlying different forms of AF, new opportunities for developing more effective and safer AF therapies are emerging. In this review, we provide an overview of potential novel antiarrhythmic approaches based on the underlying mechanisms of AF, focusing both on the development of novel antiarrhythmic agents and on the possibility of repurposing already marketed drugs. In addition, we discuss the opportunity of targeting some of the key players involved in the underlying AF mechanisms, such as ryanodine receptor type-2 (RyR2) channels and atrial-selective K+-currents (IK2P and ISK) for antiarrhythmic therapy. In addition, we highlight the opportunities for targeting components of inflammatory signaling (e.g., the NLRP3-inflammasome) and upstream mechanisms targeting fibroblast function to prevent structural remodeling and progression of AF. Finally, we critically appraise emerging antiarrhythmic drug principles and future directions for antiarrhythmic drug development, as well as their potential for improving AF management.
Collapse
|
14
|
Lin DJ, Lee WS, Chien YC, Chen TY, Yang KT. The link between abnormalities of calcium handling proteins and catecholaminergic polymorphic ventricular tachycardia. Tzu Chi Med J 2021; 33:323-331. [PMID: 34760626 PMCID: PMC8532576 DOI: 10.4103/tcmj.tcmj_288_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/09/2021] [Accepted: 03/03/2021] [Indexed: 01/18/2023] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT), a rare autosomal dominant or recessive disease, usually results in syncope or sudden cardiac death. Most CPVT patients do not show abnormal cardiac structure and electrocardiogram features and symptoms, usually onset during adrenergically mediated physiological conditions. CPVT tends to occur at a younger age and is not easy to be diagnosed and managed. The main cause of CPVT is associated with mishandling Ca2+ in cardiomyocytes. Intracellular Ca2+ is strictly controlled by a protein located in the sarcoplasm reticulum (SR), such as ryanodine receptor, histidine-rich Ca2+-binding protein, triadin, and junctin. Mutation in these proteins results in misfolding or malfunction of these proteins, thereby affecting their Ca2+-binding affinity, and subsequently disturbs Ca2+ homeostasis during excitation–contraction coupling (E-C coupling). Furthermore, transient disturbance of Ca2+ homeostasis increases membrane potential and causes Ca2+ store overload-induced Ca2+ release, which in turn leads to delayed after depolarization and arrhythmia. Previous studies have focused on the interaction between ryanodine receptors and protein kinase or phosphatase in the cytosol. However, recent studies showed the regulation signaling for ryanodine receptor not only from the cytosol but also within the SR. The changing of Ca2+ concentration is critical for protein interaction inside the SR which changes protein conformation to regulate the open probability of ryanodine receptors. Thus, it influences the threshold of Ca2+ released from the SR, making it easier to release Ca2+ during E-C coupling. In this review, we briefly discuss how Ca2+ handling protein variations affect the Ca2+ handling in CPVT.
Collapse
Affiliation(s)
- Ding-Jyun Lin
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Sen Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Tsung-Yu Chen
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Kun-Ta Yang
- Master Program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
15
|
Siri-Angkul N, Dadfar B, Jaleel R, Naushad J, Parambathazhath J, Doye AA, Xie LH, Gwathmey JK. Calcium and Heart Failure: How Did We Get Here and Where Are We Going? Int J Mol Sci 2021; 22:ijms22147392. [PMID: 34299010 PMCID: PMC8306046 DOI: 10.3390/ijms22147392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 12/13/2022] Open
Abstract
The occurrence and prevalence of heart failure remain high in the United States as well as globally. One person dies every 30 s from heart disease. Recognizing the importance of heart failure, clinicians and scientists have sought better therapeutic strategies and even cures for end-stage heart failure. This exploration has resulted in many failed clinical trials testing novel classes of pharmaceutical drugs and even gene therapy. As a result, along the way, there have been paradigm shifts toward and away from differing therapeutic approaches. The continued prevalence of death from heart failure, however, clearly demonstrates that the heart is not simply a pump and instead forces us to consider the complexity of simplicity in the pathophysiology of heart failure and reinforces the need to discover new therapeutic approaches.
Collapse
Affiliation(s)
- Natthaphat Siri-Angkul
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Behzad Dadfar
- Department of General Medicine, School of Medicine, Mazandaran University of Medical Sciences, Sari 1471655836, Iran
| | - Riya Jaleel
- School of International Education, Zhengzhou University, Zhengzhou 450001, China
| | - Jazna Naushad
- Weill Cornell Medicine Qatar, Doha P. O. Box 24144, Qatar
| | | | | | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA
| | - Judith K. Gwathmey
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
- Correspondence: ; Tel.: +973-972-2411; Fax: +973-972-7489
| |
Collapse
|
16
|
Yang Y, Jiang K, Liu X, Qin M, Xiang Y. CaMKII in Regulation of Cell Death During Myocardial Reperfusion Injury. Front Mol Biosci 2021; 8:668129. [PMID: 34141722 PMCID: PMC8204011 DOI: 10.3389/fmolb.2021.668129] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide. In spite of the mature managements of myocardial infarction (MI), post-MI reperfusion (I/R) injury results in high morbidity and mortality. Cardiomyocyte Ca2+ overload is a major factor of I/R injury, initiating a cascade of events contributing to cardiomyocyte death and myocardial dysfunction. Ca2+/calmodulin-dependent protein kinase II (CaMKII) plays a critical role in cardiomyocyte death response to I/R injury, whose activation is a key feature of myocardial I/R in causing intracellular mitochondrial swelling, endoplasmic reticulum (ER) Ca2+ leakage, abnormal myofilament contraction, and other adverse reactions. CaMKII is a multifunctional serine/threonine protein kinase, and CaMKIIδ, the dominant subtype in heart, has been widely studied in the activation, location, and related pathways of cardiomyocytes death, which has been considered as a potential targets for pharmacological inhibition. In this review, we summarize a brief overview of CaMKII with various posttranslational modifications and its properties in myocardial I/R injury. We focus on the molecular mechanism of CaMKII involved in regulation of cell death induced by myocardial I/R including necroptosis and pyroptosis of cardiomyocyte. Finally, we highlight that targeting CaMKII modifications and cell death involved pathways may provide new insights to understand the conversion of cardiomyocyte fate in the setting of myocardial I/R injury.
Collapse
Affiliation(s)
- Yingjie Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Jiang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xu Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mu Qin
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yaozu Xiang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
17
|
Mustroph J, Sag CM, Bähr F, Schmidtmann AL, Gupta SN, Dietz A, Islam MMT, Lücht C, Beuthner BE, Pabel S, Baier MJ, El-Armouche A, Sossalla S, Anderson ME, Möllmann J, Lehrke M, Marx N, Mohler PJ, Bers DM, Unsöld B, He T, Dewenter M, Backs J, Maier LS, Wagner S. Loss of CASK Accelerates Heart Failure Development. Circ Res 2021; 128:1139-1155. [PMID: 33593074 DOI: 10.1161/circresaha.120.318170] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Julian Mustroph
- Department of Internal Medicine II, University Medical Center Regensburg, Germany (J. Mustroph, C.M.S., C.L., S.P., M.J.B., S.S., B.U., L.S.M., S.W.)
| | - Can M Sag
- Department of Internal Medicine II, University Medical Center Regensburg, Germany (J. Mustroph, C.M.S., C.L., S.P., M.J.B., S.S., B.U., L.S.M., S.W.)
| | - Felix Bähr
- Cardiology & Pneumology, University Medical Center Göttingen, Germany (F.B., A.-L.S., S.N.G., A.D., M.M.T.I., B.E.B., S.S.)
| | - Anna-Lena Schmidtmann
- Cardiology & Pneumology, University Medical Center Göttingen, Germany (F.B., A.-L.S., S.N.G., A.D., M.M.T.I., B.E.B., S.S.)
| | - Shamindra N Gupta
- Cardiology & Pneumology, University Medical Center Göttingen, Germany (F.B., A.-L.S., S.N.G., A.D., M.M.T.I., B.E.B., S.S.)
| | - Alexander Dietz
- Cardiology & Pneumology, University Medical Center Göttingen, Germany (F.B., A.-L.S., S.N.G., A.D., M.M.T.I., B.E.B., S.S.)
| | - M M Towhidul Islam
- Cardiology & Pneumology, University Medical Center Göttingen, Germany (F.B., A.-L.S., S.N.G., A.D., M.M.T.I., B.E.B., S.S.)
| | - Charlotte Lücht
- Department of Internal Medicine II, University Medical Center Regensburg, Germany (J. Mustroph, C.M.S., C.L., S.P., M.J.B., S.S., B.U., L.S.M., S.W.)
| | - Bo Eric Beuthner
- Cardiology & Pneumology, University Medical Center Göttingen, Germany (F.B., A.-L.S., S.N.G., A.D., M.M.T.I., B.E.B., S.S.)
| | - Steffen Pabel
- Department of Internal Medicine II, University Medical Center Regensburg, Germany (J. Mustroph, C.M.S., C.L., S.P., M.J.B., S.S., B.U., L.S.M., S.W.)
| | - Maria J Baier
- Department of Internal Medicine II, University Medical Center Regensburg, Germany (J. Mustroph, C.M.S., C.L., S.P., M.J.B., S.S., B.U., L.S.M., S.W.)
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Technical University Dresden, Germany (A.E.-A.)
| | - Samuel Sossalla
- Department of Internal Medicine II, University Medical Center Regensburg, Germany (J. Mustroph, C.M.S., C.L., S.P., M.J.B., S.S., B.U., L.S.M., S.W.).,Cardiology & Pneumology, University Medical Center Göttingen, Germany (F.B., A.-L.S., S.N.G., A.D., M.M.T.I., B.E.B., S.S.)
| | | | - Julia Möllmann
- Clinic for Cardiology, Angiology, and Internal Intensive Care, University Clinic Aachen, Germany (J. Möllmann, M.L., N.M.)
| | - Michael Lehrke
- Clinic for Cardiology, Angiology, and Internal Intensive Care, University Clinic Aachen, Germany (J. Möllmann, M.L., N.M.)
| | - Nikolaus Marx
- Clinic for Cardiology, Angiology, and Internal Intensive Care, University Clinic Aachen, Germany (J. Möllmann, M.L., N.M.)
| | - Peter J Mohler
- College of Medicine, the Ohio State University Wexner Medical Center, Columbus (P.J.M.)
| | - Donald M Bers
- College of Biological Sciences, University of California at Davis (D.M.B.)
| | - Bernhard Unsöld
- Department of Internal Medicine II, University Medical Center Regensburg, Germany (J. Mustroph, C.M.S., C.L., S.P., M.J.B., S.S., B.U., L.S.M., S.W.)
| | - Tao He
- Department of Molecular Cardiology and Epigenetics, University Clinic Heidelberg, Germany (T.H., M.D., J.B.)
| | - Matthias Dewenter
- Department of Molecular Cardiology and Epigenetics, University Clinic Heidelberg, Germany (T.H., M.D., J.B.)
| | - Johannes Backs
- Department of Molecular Cardiology and Epigenetics, University Clinic Heidelberg, Germany (T.H., M.D., J.B.)
| | - Lars S Maier
- Department of Internal Medicine II, University Medical Center Regensburg, Germany (J. Mustroph, C.M.S., C.L., S.P., M.J.B., S.S., B.U., L.S.M., S.W.)
| | - Stefan Wagner
- Department of Internal Medicine II, University Medical Center Regensburg, Germany (J. Mustroph, C.M.S., C.L., S.P., M.J.B., S.S., B.U., L.S.M., S.W.)
| |
Collapse
|
18
|
Mustroph J, Drzymalski M, Baier M, Pabel S, Biedermann A, Memmel B, Durczok M, Neef S, Sag CM, Floerchinger B, Rupprecht L, Schmid C, Zausig Y, Bégis G, Briand V, Ozoux ML, Tamarelle D, Ballet V, Janiak P, Beauverger P, Maier LS, Wagner S. The oral Ca/calmodulin-dependent kinase II inhibitor RA608 improves contractile function and prevents arrhythmias in heart failure. ESC Heart Fail 2020; 7:2871-2883. [PMID: 32691522 PMCID: PMC7524064 DOI: 10.1002/ehf2.12895] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/29/2020] [Accepted: 06/24/2020] [Indexed: 01/15/2023] Open
Abstract
Aims Excessive activation of Ca/calmodulin‐dependent kinase II (CaMKII) is of critical importance in heart failure (HF) and atrial fibrillation. Unfortunately, lack of selectivity, specificity, and bioavailability have slowed down development of inhibitors for clinical use. We investigated a novel CaMKIIδ/CaMKIIɣ‐selective, ATP‐competitive, orally available CaMKII inhibitor (RA608) on right atrial biopsies of 119 patients undergoing heart surgery. Furthermore, we evaluated its oral efficacy to prevent deterioration of HF in mice after transverse aortic constriction (TAC). Methods and results In human atrial cardiomyocytes and trabeculae, respectively, RA608 significantly reduced sarcoplasmic reticulum Ca leak, reduced diastolic tension, and increased sarcoplasmic reticulum Ca content. Patch‐clamp recordings confirmed the safety of RA608 in human cardiomyocytes. C57BL6/J mice were subjected to TAC, and left ventricular function was monitored by echocardiography. Two weeks after TAC, RA608 was administered by oral gavage for 7 days. Oral RA608 treatment prevented deterioration of ejection fraction. At 3 weeks after TAC, ejection fraction was 46.1 ± 3.7% (RA608) vs. 34.9 ± 2.6% (vehicle), n = 9 vs. n = 12, P < 0.05, ANOVA, which correlated with significantly less CaMKII autophosphorylation at threonine 287. Moreover, a single oral dose significantly reduced inducibility of atrial and ventricular arrhythmias in CaMKIIδ transgenic mice 4 h after administration. Atrial fibrillation was induced in 6/6 mice for vehicle vs. 1/7 for RA608, P < 0.05, 'n − 1' χ2 test. Ventricular tachycardia was induced in 6/7 for vehicle vs. 2/7 for RA608, P < 0.05, 'n − 1' χ2 test. Conclusions RA608 is the first orally administrable CaMKII inhibitor with potent efficacy in human myocytes. Moreover, oral administration potently inhibits arrhythmogenesis and attenuates HF development in mice in vivo.
Collapse
Affiliation(s)
- Julian Mustroph
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Marzena Drzymalski
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Maria Baier
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Steffen Pabel
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Alexander Biedermann
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Bernadette Memmel
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Melanie Durczok
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Stefan Neef
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Can Martin Sag
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Bernhard Floerchinger
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Leopold Rupprecht
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Christof Schmid
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - York Zausig
- Department of Anesthesiology, University Medical Center Regensburg, Regensburg, Germany
| | | | | | | | | | | | - Philip Janiak
- Sanofi Research & Development (R&D), Chilly-Mazarin, France
| | | | - Lars S Maier
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Stefan Wagner
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| |
Collapse
|