1
|
Thai BS, Chia LY, Nguyen ATN, Qin C, Ritchie RH, Hutchinson DS, Kompa A, White PJ, May LT. Targeting G protein-coupled receptors for heart failure treatment. Br J Pharmacol 2024; 181:2270-2286. [PMID: 37095602 DOI: 10.1111/bph.16099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/26/2023] Open
Abstract
Heart failure remains a leading cause of morbidity and mortality worldwide. Current treatment for patients with heart failure include drugs targeting G protein-coupled receptors such as β-adrenoceptor antagonists (β-blockers) and angiotensin II type 1 receptor antagonists (or angiotensin II receptor blockers). However, many patients progress to advanced heart failure with persistent symptoms, despite treatment with available therapeutics that have been shown to reduce mortality and mortality. GPCR targets currently being explored for the development of novel heart failure therapeutics include adenosine receptor, formyl peptide receptor, relaxin/insulin-like family peptide receptor, vasopressin receptor, endothelin receptor and the glucagon-like peptide 1 receptor. Many GPCR drug candidates are limited by insufficient efficacy and/or dose-limiting unwanted effects. Understanding the current challenges hindering successful clinical translation and the potential to overcome existing limitations will facilitate the future development of novel heart failure therapeutics. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Bui San Thai
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Ling Yeong Chia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Anh T N Nguyen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Chengxue Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Rebecca H Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Dana S Hutchinson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Andrew Kompa
- Department Medicine and Radiology, University of Melbourne, St Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Paul J White
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Lauren T May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Dhalla NS, Mota KO, Elimban V, Shah AK, de Vasconcelos CML, Bhullar SK. Role of Vasoactive Hormone-Induced Signal Transduction in Cardiac Hypertrophy and Heart Failure. Cells 2024; 13:856. [PMID: 38786079 PMCID: PMC11119949 DOI: 10.3390/cells13100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Heart failure is the common concluding pathway for a majority of cardiovascular diseases and is associated with cardiac dysfunction. Since heart failure is invariably preceded by adaptive or maladaptive cardiac hypertrophy, several biochemical mechanisms have been proposed to explain the development of cardiac hypertrophy and progression to heart failure. One of these includes the activation of different neuroendocrine systems for elevating the circulating levels of different vasoactive hormones such as catecholamines, angiotensin II, vasopressin, serotonin and endothelins. All these hormones are released in the circulation and stimulate different signal transduction systems by acting on their respective receptors on the cell membrane to promote protein synthesis in cardiomyocytes and induce cardiac hypertrophy. The elevated levels of these vasoactive hormones induce hemodynamic overload, increase ventricular wall tension, increase protein synthesis and the occurrence of cardiac remodeling. In addition, there occurs an increase in proinflammatory cytokines and collagen synthesis for the induction of myocardial fibrosis and the transition of adaptive to maladaptive hypertrophy. The prolonged exposure of the hypertrophied heart to these vasoactive hormones has been reported to result in the oxidation of catecholamines and serotonin via monoamine oxidase as well as the activation of NADPH oxidase via angiotensin II and endothelins to promote oxidative stress. The development of oxidative stress produces subcellular defects, Ca2+-handling abnormalities, mitochondrial Ca2+-overload and cardiac dysfunction by activating different proteases and depressing cardiac gene expression, in addition to destabilizing the extracellular matrix upon activating some metalloproteinases. These observations support the view that elevated levels of various vasoactive hormones, by producing hemodynamic overload and activating their respective receptor-mediated signal transduction mechanisms, induce cardiac hypertrophy. Furthermore, the occurrence of oxidative stress due to the prolonged exposure of the hypertrophied heart to these hormones plays a critical role in the progression of heart failure.
Collapse
Affiliation(s)
- Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (V.E.); (S.K.B.)
| | - Karina O. Mota
- Department of Physiology, Center of Biological and Health Sciences, Federal University of Sergipe, Sao Cristóvao 49100-000, Brazil; (K.O.M.); (C.M.L.d.V.)
| | - Vijayan Elimban
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (V.E.); (S.K.B.)
| | - Anureet K. Shah
- Department of Nutrition and Food Science, California State University, Los Angeles, CA 90032-8162, USA;
| | - Carla M. L. de Vasconcelos
- Department of Physiology, Center of Biological and Health Sciences, Federal University of Sergipe, Sao Cristóvao 49100-000, Brazil; (K.O.M.); (C.M.L.d.V.)
| | - Sukhwinder K. Bhullar
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (V.E.); (S.K.B.)
| |
Collapse
|
3
|
Musale V, Wasserman DH, Kang L. Extracellular matrix remodelling in obesity and metabolic disorders. LIFE METABOLISM 2023; 2:load021. [PMID: 37383542 PMCID: PMC10299575 DOI: 10.1093/lifemeta/load021] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Obesity causes extracellular matrix (ECM) remodelling which can develop into serious pathology and fibrosis, having metabolic effects in insulin-sensitive tissues. The ECM components may be increased in response to overnutrition. This review will focus on specific obesity-associated molecular and pathophysiological mechanisms of ECM remodelling and the impact of specific interactions on tissue metabolism. In obesity, complex network of signalling molecules such as cytokines and growth factors have been implicated in fibrosis. Increased ECM deposition contributes to the pathogenesis of insulin resistance at least in part through activation of cell surface integrin receptors and CD44 signalling cascades. These cell surface receptors transmit signals to the cell adhesome which orchestrates an intracellular response that adapts to the extracellular environment. Matrix proteins, glycoproteins, and polysaccharides interact through ligand-specific cell surface receptors that interact with the cytosolic adhesion proteins to elicit specific actions. Cell adhesion proteins may have catalytic activity or serve as scaffolds. The vast number of cell surface receptors and the complexity of the cell adhesome have made study of their roles challenging in health and disease. Further complicating the role of ECM-cell receptor interactions is the variation between cell types. This review will focus on recent insights gained from studies of two highly conserved, ubiquitously axes and how they contribute to insulin resistance and metabolic dysfunction in obesity. These are the collagen-integrin receptor-IPP (ILK-PINCH-Parvin) axis and the hyaluronan-CD44 interaction. We speculate that targeting ECM components or their receptor-mediated cell signalling may provide novel insights into the treatment of obesity-associated cardiometabolic complications.
Collapse
Affiliation(s)
- Vishal Musale
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland DD1 9SY, UK
| | - David H. Wasserman
- Department of Molecular Physiology and Biophysics, Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, TN 37235, USA
| | - Li Kang
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland DD1 9SY, UK
| |
Collapse
|
4
|
Role of c-Src and reactive oxygen species in cardiovascular diseases. Mol Genet Genomics 2023; 298:315-328. [PMID: 36700976 DOI: 10.1007/s00438-023-01992-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/04/2023] [Indexed: 01/27/2023]
Abstract
Oxidative stress, caused by the over production of oxidants or inactivity of antioxidants, can modulate the redox state of several target proteins such as tyrosine kinases, mitogen-activated protein kinases and tyrosine phosphatases. c-Src is one such non-receptor tyrosine kinase which activates NADPH oxidases (Noxs) in response to various growth factors and shear stress. Interaction between c-Src and Noxs is influenced by cell type and primary messengers such as angiotensin II, which binds to G-protein coupled receptor and activates the intracellular signaling cascade. c-Src stimulated activation of Noxs results in elevated release of intracellular and extracellular reactive oxygen species (ROS). These ROS species disturb vascular homeostasis and cause cardiac hypertrophy, coronary artery disease, atherosclerosis and hypertension. Interaction between c-Src and ROS in the pathobiology of cardiac fibrosis is hypothesized to be influenced by cell type and stimuli. c-Src and ROS have a bidirectional relationship, thus increased ROS levels due to c-Src mediated activation of Noxs can further activate c-Src by promoting the oxidation and sulfenylation of critical cysteine residues. This review highlights the role of c-Src and ROS in mediating downstream signaling pathways underlying cardiovascular diseases. Furthermore, due to the central role of c-Src in activation of various signaling proteins involved in differentiation, migration, proliferation, and cytoskeletal reorganization of vascular cells, it is presented as therapeutic target for treating cardiovascular diseases except cardiac fibrosis.
Collapse
|
5
|
The Carthamus tinctorius L. and Lepidium apetalum Willd. Drug Pair Inhibits EndMT through the TGF β1/Snail Signaling Pathway in the Treatment of Myocardial Fibrosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:6018375. [PMID: 36686974 PMCID: PMC9851799 DOI: 10.1155/2023/6018375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023]
Abstract
Background Myocardial fibrosis (MF) is an essential pathological factor for heart failure. Previous studies have shown that the combination of Carthamus tinctorius L. and Lepidium apetalum Willd. (C-L), two types of Chinese herbal medicine, can ameliorate MF after myocardial infarction (MI) in rats and inhibit the activation of myocardial fibroblasts. However, the mechanism of C-L in the treatment of MF remains unclear. Methods A rat model of MF with left anterior descending coronary ligation-induced MI was first established. Then, the effects of C-L on cardiac function, MF, and endothelial-to-mesenchymal transition (EndMT) were evaluated by the left ventricular ejection fraction (LVEF), serum N-terminal pro-brain natriuretic peptide (NT-proBNP) levels, Masson's trichrome staining, and immunohistochemical and immunofluorescence staining. Next, a hypoxia-induced cardiac microvascular endothelial cell (CMEC) model was established to observe the effects of C-L on EndMT. The supernatant of CMECs was collected and used to culture cardiac fibroblasts (CFs) and observe the effects of CMEC paracrine factors on CFs. Results Animal experiments indicated that C-L improves the cardiac function of rats after MI, inhibits the progression of EndMT and MF, and downregulates TGFβ1, Snail, and CTGF expression. Cell experiments showed that drug-loaded serum containing C-L inhibits the EndMT of CMECs under hypoxic conditions. The culture supernatant of CMECs grown under hypoxic conditions significantly activated CFs. After treatment with C-L, the activating factor for CFs in hypoxic CMEC culture supernatant was substantially downregulated, and the effect of the culture supernatant on CF activation was also reduced. However, TGFβ1 agonists inhibited the effects of C-L on CMECs and CFs. Conclusion Our data demonstrated that by regulating the TGFβ1/Snail pathway, C-L inhibits EndMT of CMECs and reduces the release of CF-activating factors in cells undergoing EndMT.
Collapse
|
6
|
Teuber JP, Essandoh K, Hummel SL, Madamanchi NR, Brody MJ. NADPH Oxidases in Diastolic Dysfunction and Heart Failure with Preserved Ejection Fraction. Antioxidants (Basel) 2022; 11:1822. [PMID: 36139898 PMCID: PMC9495396 DOI: 10.3390/antiox11091822] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases regulate production of reactive oxygen species (ROS) that cause oxidative damage to cellular components but also regulate redox signaling in many cell types with essential functions in the cardiovascular system. Research over the past couple of decades has uncovered mechanisms by which NADPH oxidase (NOX) enzymes regulate oxidative stress and compartmentalize intracellular signaling in endothelial cells, smooth muscle cells, macrophages, cardiomyocytes, fibroblasts, and other cell types. NOX2 and NOX4, for example, regulate distinct redox signaling mechanisms in cardiac myocytes pertinent to the onset and progression of cardiac hypertrophy and heart failure. Heart failure with preserved ejection fraction (HFpEF), which accounts for at least half of all heart failure cases and has few effective treatments to date, is classically associated with ventricular diastolic dysfunction, i.e., defects in ventricular relaxation and/or filling. However, HFpEF afflicts multiple organ systems and is associated with systemic pathologies including inflammation, oxidative stress, arterial stiffening, cardiac fibrosis, and renal, adipose tissue, and skeletal muscle dysfunction. Basic science studies and clinical data suggest a role for systemic and myocardial oxidative stress in HFpEF, and evidence from animal models demonstrates the critical functions of NOX enzymes in diastolic function and several HFpEF-associated comorbidities. Here, we discuss the roles of NOX enzymes in cardiovascular cells that are pertinent to the development and progression of diastolic dysfunction and HFpEF and outline potential clinical implications.
Collapse
Affiliation(s)
- James P. Teuber
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kobina Essandoh
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Scott L. Hummel
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Ann Arbor Veterans Affairs Health System, Ann Arbor, MI 48105, USA
| | | | - Matthew J. Brody
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Cornuault L, Rouault P, Duplàa C, Couffinhal T, Renault MA. Endothelial Dysfunction in Heart Failure With Preserved Ejection Fraction: What are the Experimental Proofs? Front Physiol 2022; 13:906272. [PMID: 35874523 PMCID: PMC9304560 DOI: 10.3389/fphys.2022.906272] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) has been recognized as the greatest single unmet need in cardiovascular medicine. Indeed, the morbi-mortality of HFpEF is high and as the population ages and the comorbidities increase, so considerably does the prevalence of HFpEF. However, HFpEF pathophysiology is still poorly understood and therapeutic targets are missing. An unifying, but untested, theory of the pathophysiology of HFpEF, proposed in 2013, suggests that cardiovascular risk factors lead to a systemic inflammation, which triggers endothelial cells (EC) and coronary microvascular dysfunction. This cardiac small vessel disease is proposed to be responsible for cardiac wall stiffening and diastolic dysfunction. This paradigm is based on the fact that microvascular dysfunction is highly prevalent in HFpEF patients. More specifically, HFpEF patients have been shown to have decreased cardiac microvascular density, systemic endothelial dysfunction and a lower mean coronary flow reserve. Importantly, impaired coronary microvascular function has been associated with the severity of HF. This review discusses evidence supporting the causal role of endothelial dysfunction in the pathophysiology of HFpEF in human and experimental models.
Collapse
|
8
|
Greenberg HZE, Zhao G, Shah AM, Zhang M. Role of oxidative stress in calcific aortic valve disease and its therapeutic implications. Cardiovasc Res 2022; 118:1433-1451. [PMID: 33881501 PMCID: PMC9074995 DOI: 10.1093/cvr/cvab142] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is the end result of active cellular processes that lead to the progressive fibrosis and calcification of aortic valve leaflets. In western populations, CAVD is a significant cause of cardiovascular morbidity and mortality, and in the absence of effective drugs, it will likely represent an increasing disease burden as populations age. As there are currently no pharmacological therapies available for preventing, treating, or slowing the development of CAVD, understanding the mechanisms underlying the initiation and progression of the disease is important for identifying novel therapeutic targets. Recent evidence has emerged of an important causative role for reactive oxygen species (ROS)-mediated oxidative stress in the pathophysiology of CAVD, inducing the differentiation of valve interstitial cells into myofibroblasts and then osteoblasts. In this review, we focus on the roles and sources of ROS driving CAVD and consider their potential as novel therapeutic targets for this debilitating condition.
Collapse
Affiliation(s)
- Harry Z E Greenberg
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Guoan Zhao
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Henan, China
| | - Ajay M Shah
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Min Zhang
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
9
|
Comparative Efficacy of Antihypertensive Agents in Flow-Mediated Vasodilation of Patients with Hypertension: Network Meta-Analysis of Randomized Controlled Trial. Int J Hypertens 2022; 2022:2432567. [PMID: 35535214 PMCID: PMC9078796 DOI: 10.1155/2022/2432567] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/20/2022] [Accepted: 03/10/2022] [Indexed: 11/17/2022] Open
Abstract
Hypertension induces both structural and functional changes in blood vessels, thereby increasing endothelial dysfunction, which in turn, contributes to an increase in blood pressure. A popular and widely used noninvasive tool, flow-mediated dilation (FMD), is used to examine peripheral artery endothelium-dependent dilation. This study aimed to compare the efficacies of different classes of antihypertensive agents based on their effects on FMD. PubMed, Embase, and Cochrane Library were queried till November 1, 2020. Comparative studies on the efficacies of two or more antihypertensive agents or placebos for hypertensive patients were included. The outcomes were variations in mean systolic and diastolic blood pressure. Two reviewers independently reviewed and filtered the literature and extracted the data; the Cochrane “risk of bias” method was used to evaluate the methodological quality of the randomized controlled trials. A network meta-analysis was performed using Stata 15.0 software with a total of 49 studies. Subgroup analysis based on age and duration of treatments was performed. As compared to the placebo group, patients receiving the antihypertensive drugs exhibited significantly enhanced FMD (ARB + CCB: 4.01%, 95% CI, 0.92–7.11%, p < 0.001; ACEI + ARB: 2.81%, 95% CI, 1.19–4.43%, p < 0.001; ACEI: 2.55%, 95% CI, 1.34–3.77%, p < 0.001; ARB: 2.22%, 95% CI, 1.05–3.38%, p < 0.001; β-blocker: 2.23%, 95% CI, 0.93–3.52%, p < 0.001). In the SUCRA curve for network meta-analysis, the combination of CCB and ARB was found to be the most effective in increasing FMD (SUCRA = 89.0%), followed by ACEI monotherapy (SUCRA = 74.2%). ARB combined with CCB was superior in improving the endothelial function measured as the FMD; ACEI monotherapy was the most effective treatment among the antihypertension medications. There were no significant differences between antihypertensive drug-based monotherapies.
Collapse
|
10
|
Fu X, Tang J, Wen P, Huang Z, Najafi M. Redox interactions-induced cardiac toxicity in cancer therapy. Arch Biochem Biophys 2021; 708:108952. [PMID: 34097901 DOI: 10.1016/j.abb.2021.108952] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023]
Abstract
Cancer patients undergoing radiotherapy, chemotherapy, or targeted cancer therapy are exposed to the risk of several side effects because of the heavy production of ROS by ionizing radiation or some chemotherapy drugs. Damages to DNA, mitochondria, membrane and other organelles within normal tissue cells such as cardiomyocytes and endothelial cells lead to the release of some toxins which are associated with triggering inflammatory cells to release several types of cytokines, chemokines, ROS, and RNS. The release of some molecules following radiotherapy or chemotherapy stimulates reduction/oxidation (redox) reactions. Redox reactions cause remarkable changes in the level of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Excessive production of ROS and RNS or suppression of antioxidant defense enzymes leads to damage to critical macromolecules, which may continue for long times. Increased levels of some cytokines and oxidative injury are hallmarks of heart injury following cancer therapy. Redox reactions may be involved in several heart disorders such as fibrosis, cardiomyopathy, and endothelium injury. In the current review, we explain the cellular and molecular mechanisms of redox interactions following radiotherapy, chemotherapy, and targeted cancer therapy. Afterward, we explain the evidence of the involvement of redox reactions in heart diseases.
Collapse
Affiliation(s)
- Xiao Fu
- College of Basic Medicine, Shaoyang University, Shaoyang, 422000, China
| | - Juan Tang
- College of Basic Medicine, Shaoyang University, Shaoyang, 422000, China
| | - Ping Wen
- College of Basic Medicine, Shaoyang University, Shaoyang, 422000, China
| | - Zezhi Huang
- Shaoyang Key Laboratory of Molecular Biology Diagnosis, Shaoyang, 422000, China.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
11
|
Souza-Neto FV, Jiménez-González S, Delgado-Valero B, Jurado-López R, Genty M, Romero-Miranda A, Rodríguez C, Nieto ML, Martínez-Martínez E, Cachofeiro V. The Interplay of Mitochondrial Oxidative Stress and Endoplasmic Reticulum Stress in Cardiovascular Fibrosis in Obese Rats. Antioxidants (Basel) 2021; 10:antiox10081274. [PMID: 34439522 PMCID: PMC8389298 DOI: 10.3390/antiox10081274] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
We have evaluated the role of mitochondrial oxidative stress and its association with endoplasmic reticulum (ER) stress activation in the progression of obesity-related cardiovascular fibrosis. MitoQ (200 µM) was orally administered for 7 weeks to male Wistar rats that were fed a high-fat diet (HFD, 35% fat) or a control diet (CT, 3.5% fat). Obese animals presented cardiovascular fibrosis accompanied by increased levels of extracellular matrix proteins and profibrotic mediators. These alterations were associated with ER stress activation characterized by enhanced levels (in heart and aorta vs. CT group, respectively) of immunoglobulin binding protein (BiP; 2.1-and 2.6-fold, respectively), protein disulfide-isomerase A6 (PDIA6; 1.9-fold) and CCAAT-enhancer-binding homologous protein (CHOP; 1.5- and 1.8-fold, respectively). MitoQ treatment was able to prevent (p < 0.05) these modifications at cardiac and aortic levels. MitoQ (5 nM) and the ER stress inhibitor, 4-phenyl butyric acid (4 µM), were able to block the prooxidant and profibrotic effects of angiotensin II (Ang II, 10−6 M) in cardiac and vascular cells. Therefore, the data show a crosstalk between mitochondrial oxidative stress and ER stress activation, which mediates the development of cardiovascular fibrosis in the context of obesity and in which Ang II can play a relevant role.
Collapse
Affiliation(s)
- Francisco V. Souza-Neto
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.V.S.-N.); (S.J.-G.); (B.D.-V.); (R.J.-L.); (M.G.); (A.R.-M.)
| | - Sara Jiménez-González
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.V.S.-N.); (S.J.-G.); (B.D.-V.); (R.J.-L.); (M.G.); (A.R.-M.)
| | - Beatriz Delgado-Valero
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.V.S.-N.); (S.J.-G.); (B.D.-V.); (R.J.-L.); (M.G.); (A.R.-M.)
| | - Raquel Jurado-López
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.V.S.-N.); (S.J.-G.); (B.D.-V.); (R.J.-L.); (M.G.); (A.R.-M.)
| | - Marie Genty
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.V.S.-N.); (S.J.-G.); (B.D.-V.); (R.J.-L.); (M.G.); (A.R.-M.)
| | - Ana Romero-Miranda
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.V.S.-N.); (S.J.-G.); (B.D.-V.); (R.J.-L.); (M.G.); (A.R.-M.)
| | - Cristina Rodríguez
- Institut de Recerca del Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain;
- Instituto de Investigación Biomédica Sant Pau (IB Sant Pau), 08025 Barcelona, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28220 Majadahonda, Spain;
| | - María Luisa Nieto
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28220 Majadahonda, Spain;
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, 47002 Valladolid, Spain
| | - Ernesto Martínez-Martínez
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.V.S.-N.); (S.J.-G.); (B.D.-V.); (R.J.-L.); (M.G.); (A.R.-M.)
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28220 Majadahonda, Spain;
- Correspondence: (E.M.-M.); (V.C.); Tel.: +34-913941483 (E.M.-M.); +34-913941489 (V.C.)
| | - Victoria Cachofeiro
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.V.S.-N.); (S.J.-G.); (B.D.-V.); (R.J.-L.); (M.G.); (A.R.-M.)
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28220 Majadahonda, Spain;
- Correspondence: (E.M.-M.); (V.C.); Tel.: +34-913941483 (E.M.-M.); +34-913941489 (V.C.)
| |
Collapse
|
12
|
Wang M, Murdoch CE, Brewer AC, Ivetic A, Evans P, Shah AM, Zhang M. Endothelial NADPH oxidase 4 protects against angiotensin II-induced cardiac fibrosis and inflammation. ESC Heart Fail 2021; 8:1427-1437. [PMID: 33511759 PMCID: PMC8006688 DOI: 10.1002/ehf2.13228] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/07/2020] [Accepted: 01/13/2021] [Indexed: 12/21/2022] Open
Abstract
Aims Endothelial activation and inflammatory cell infiltration have important roles in the development of cardiac fibrosis induced by renin–angiotensin system activation. NADPH oxidases (Nox proteins) are expressed in endothelial cells (ECs) and alter their function. Previous studies indicated that Nox2 in ECs contributes to angiotensin II (AngII)‐induced cardiac fibrosis. However, the effects of EC Nox4 on cardiac fibrosis are unknown. Methods and results Transgenic (TG) mice overexpressing endothelial‐restricted Nox4 were studied alongside wild‐type (WT) littermates as controls. At baseline, Nox4 TG mice had significantly enlarged hearts compared with WT, with elongated cardiomyocytes (increased by 18.5%, P < 0.01) and eccentric hypertrophy but well‐preserved cardiac function by echocardiography and in vivo pressure–volume analysis. Animals were subjected to a chronic AngII infusion (AngII, 1.1 mg/kg/day) for 14 days. Whereas WT/AngII developed a 2.1‐fold increase in interstitial cardiac fibrosis as compared with WT/saline controls (P < 0.01), TG/AngII mice developed significant less fibrosis (1.4‐fold increase, P > 0.05), but there were no differences in cardiac hypertrophy or contractile function between the two groups. TG hearts displayed significantly decreased inflammatory cell infiltration with reduced levels of vascular cell adhesion molecule 1 in both the vasculature and myocardium compared with WT after AngII treatment. TG microvascular ECs stimulated with AngII in vitro supported significantly less leukocyte adhesion than WT ECs. Conclusions A chronic increase in endothelial Nox4 stimulates physiological cardiac hypertrophy and protects against AngII‐induced cardiac fibrosis by inhibiting EC activation and the recruitment of inflammatory cells. Mice with endothelium‐specific overexpression of Nox4 (EndoNox4 TG) exhibit eccentric hypertrophy with well‐preserved cardiac function at baseline. EndoNox4 TG mice develop significantly less interstitial cardiac fibrosis in response to chronic pressure AngII stimulation, independent of cardiac hypertrophy. Overexpression of Nox4 in endothelial cells reduces AngII‐induced endothelial activation. An increase in endothelial Nox4 inhibits AngII‐induced recruitment of inflammatory cells in the heart.
Collapse
Affiliation(s)
- Minshu Wang
- School of Cardiovascular Medicine and Sciences, James Black Centre, King's College London British Heart Foundation Centre of Excellence, 125 Coldharbour Lane, London, SE5 9NU, UK.,Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Colin E Murdoch
- School of Cardiovascular Medicine and Sciences, James Black Centre, King's College London British Heart Foundation Centre of Excellence, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Alison C Brewer
- School of Cardiovascular Medicine and Sciences, James Black Centre, King's College London British Heart Foundation Centre of Excellence, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Aleksandar Ivetic
- School of Cardiovascular Medicine and Sciences, James Black Centre, King's College London British Heart Foundation Centre of Excellence, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Paul Evans
- Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK
| | - Ajay M Shah
- School of Cardiovascular Medicine and Sciences, James Black Centre, King's College London British Heart Foundation Centre of Excellence, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Min Zhang
- School of Cardiovascular Medicine and Sciences, James Black Centre, King's College London British Heart Foundation Centre of Excellence, 125 Coldharbour Lane, London, SE5 9NU, UK
| |
Collapse
|