1
|
Thomas OG, Olsson T. Mimicking the brain: Epstein-Barr virus and foreign agents as drivers of neuroimmune attack in multiple sclerosis. Front Immunol 2023; 14:1304281. [PMID: 38022632 PMCID: PMC10655090 DOI: 10.3389/fimmu.2023.1304281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
T cells have an essential role in adaptive immunity against pathogens and cancer, but failure of thymic tolerance mechanisms can instead lead to escape of T cells with the ability to attack host tissues. Multiple sclerosis (MS) occurs when structures such as myelin and neurons in the central nervous system (CNS) are the target of autoreactive immune responses, resulting in lesions in the brain and spinal cord which cause varied and episodic neurological deficits. A role for autoreactive T cell and antibody responses in MS is likely, and mounting evidence implicates Epstein-Barr virus (EBV) in disease mechanisms. In this review we discuss antigen specificity of T cells involved in development and progression of MS. We examine the current evidence that these T cells can target multiple antigens such as those from pathogens including EBV and briefly describe other mechanisms through which viruses could affect disease. Unravelling the complexity of the autoantigen T cell repertoire is essential for understanding key events in the development and progression of MS, with wider implications for development of future therapies.
Collapse
Affiliation(s)
- Olivia G. Thomas
- Therapeutic Immune Design, Centre for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Neuroimmunology Unit, Department of Clinical Neuroscience, Centre for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Tomas Olsson
- Therapeutic Immune Design, Centre for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
2
|
An Overview of the Intrinsic Role of Citrullination in Autoimmune Disorders. J Immunol Res 2019; 2019:7592851. [PMID: 31886309 PMCID: PMC6899306 DOI: 10.1155/2019/7592851] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/03/2019] [Accepted: 09/28/2019] [Indexed: 02/07/2023] Open
Abstract
A protein undergoes many types of posttranslation modification. Citrullination is one of these modifications, where an arginine amino acid is converted to a citrulline amino acid. This process depends on catalytic enzymes such as peptidylarginine deiminase enzymes (PADs). This modification leads to a charge shift, which affects the protein structure, protein-protein interactions, and hydrogen bond formation, and it may cause protein denaturation. The irreversible citrullination reaction is not limited to a specific protein, cell, or tissue. It can target a wide range of proteins in the cell membrane, cytoplasm, nucleus, and mitochondria. Citrullination is a normal reaction during cell death. Apoptosis is normally accompanied with a clearance process via scavenger cells. A defect in the clearance system either in terms of efficiency or capacity may occur due to massive cell death, which may result in the accumulation and leakage of PAD enzymes and the citrullinated peptide from the necrotized cell which could be recognized by the immune system, where the immunological tolerance will be avoided and the autoimmune disorders will be subsequently triggered. The induction of autoimmune responses, autoantibody production, and cytokines involved in the major autoimmune diseases will be discussed.
Collapse
|
3
|
Myelin Basic Protein Citrullination in Multiple Sclerosis: A Potential Therapeutic Target for the Pathology. Neurochem Res 2016; 41:1845-56. [PMID: 27097548 DOI: 10.1007/s11064-016-1920-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/02/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
Abstract
Multiple sclerosis (MS) is a multifactorial demyelinating disease characterized by neurodegenerative events and autoimmune response against myelin component. Citrullination or deimination, a post-translational modification of protein-bound arginine into citrulline, catalyzed by Ca(2+) dependent peptidylarginine deiminase enzyme (PAD), plays an essential role in physiological processes include gene expression regulation, apoptosis and the plasticity of the central nervous system, while aberrant citrullination can generate new epitopes, thus involving in the initiation and/or progression of autoimmune disorder like MS. Myelin basic protein (MBP) is the major myelin protein and is generally considered to maintain the stability of the myelin sheath. This review describes the MBP citrullination and its consequence, as well as offering further support for the "inside-out" hypothesis that MS is primarily a neurodegenerative disease with secondary inflammatory demyelination. In addition, it discusses the role of MBP citrullination in the immune inflammation and explores the potential of inhibition of PAD enzymes as a therapeutic strategy for the disease.
Collapse
|
4
|
Cygan NK, Scheinost JC, Butters TD, Wentworth P. Adduction of cholesterol 5,6-secosterol aldehyde to membrane-bound myelin basic protein exposes an immunodominant epitope. Biochemistry 2011; 50:2092-100. [PMID: 21314187 PMCID: PMC3062686 DOI: 10.1021/bi200109q] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Myelin degradation in the central nervous system (CNS) is a clinical hallmark of multiple sclerosis (MS). A reduction in the net positive charge of myelin basic protein (MBP) via deimination of arginine to citrulline has been shown to correlate strongly with disease severity and has been linked to myelin instability and a defect that precedes neurodegeneration and leads to autoimmune attack. Recently, we have shown that lipid-derived aldehydes, such as cholesterol 5,6-secosterols atheronal A (1a) and atheronal B (1b), modulate the misfolding of certain proteins such as apolipoprotein B(100), β-amyloid, α-synuclein, and κ- and λ-antibody light chains in a process involving adduction of the hydrophobic aldehyde to lysine side chains, resulting in a decrease in the net positive charge of the protein. In this study, we show that the presence of either atheronal A (1a) or atheronal B (1b) in large unilamellar vesicles (cyt-LUVs) with the lipid composition found in the cytosolic myelin sheath and bovine MBP (bMBP) leads to an atheronal concentration-dependent increase in the surface exposure of the immunodominant epitope (V86-T98) as determined by antibody binding. Other structural changes in bMBP were also observed; specifically, 1a and 1b induce a decrease in the surface exposure of L36-P50 relative to control cyt-LUVs as measured both by antibody binding and by a reduction in the level of cathepsin D proteolysis of F42 and F43. Structure-activity relationship studies with analogues of 1a and 1b point to the aldehyde moiety of both compounds being critical to their effects on bMBP structure. The atheronals also cause a reduction in the size of the bMBP-cyt-LUV aggregates, as determined by fluorescence microscopy and dynamic light scattering. These results suggest that formation of an imine between inflammatory-derived aldehydes, which effectively reduces the cationic nature of MBP, can lead to structural changes in MBP and a decrease in myelin stability akin to deimination and as such may make a hitherto unknown contribution to the onset and progression of MS.
Collapse
Affiliation(s)
- Natalie K. Cygan
- The Scripps-Oxford Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Johanna C. Scheinost
- The Scripps-Oxford Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Terry D. Butters
- The Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Paul Wentworth
- The Scripps-Oxford Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, U.S.A
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, U.S.A
| |
Collapse
|
5
|
The double-edged sword of autoimmunity: lessons from multiple sclerosis. Toxins (Basel) 2010; 2:856-77. [PMID: 22069614 PMCID: PMC3153218 DOI: 10.3390/toxins2040856] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 04/21/2010] [Indexed: 02/08/2023] Open
Abstract
The relationship between immune responses to self-antigens and autoimmune disease is unclear. In contrast to its animal model experimental autoimmune encephalomyelitis (EAE), which is driven by T cell responses to myelin antigens, the target antigen of the intrathecal immune response in multiple sclerosis (MS) has not been identified. Although the immune response in MS contributes significantly to tissue destruction, the action of immunocompetent cells within the central nervous system (CNS) may also hold therapeutic potential. Thus, treatment of MS patients with glatiramer acetate triggers a protective immune response. Here we review the immunopathogenesis of MS and some recent findings on the mechanism of glatiramer acetate (GA).
Collapse
|
6
|
Lucchinetti C. Pathological Heterogeneity of Idiopathic Central Nervous System Inflammatory Demyelinating Disorders. Curr Top Microbiol Immunol 2008; 318:19-43. [DOI: 10.1007/978-3-540-73677-6_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Lambracht-Washington D, O'Connor KC, Cameron EM, Jowdry A, Ward ES, Frohman E, Racke MK, Monson NL. Antigen specificity of clonally expanded and receptor edited cerebrospinal fluid B cells from patients with relapsing remitting MS. J Neuroimmunol 2007; 186:164-76. [PMID: 17451814 PMCID: PMC2709235 DOI: 10.1016/j.jneuroim.2007.03.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 02/20/2007] [Accepted: 03/02/2007] [Indexed: 12/19/2022]
Abstract
We re-engineered the immunoglobulin rearrangements from clonally expanded CSF B cells of three Multiple Sclerosis patients as Fab fragments, and used three methods to test for their antigen (Ag) specificity. Nine out of ten Fab fragments were reactive to Myelin Basic Protein (MBP). The one Fab that did not react to MBP was a product of receptor editing. Two of the nine MBP reactive Fabs were also reactive to GFAP and CNPase, indicating that these clones were polyreactive. Targeting the mechanisms that allow these self-reactive B cells to reside in the CSF of MS patients may prove to be a potent immunotherapeutic strategy.
Collapse
|
8
|
Musse AA, Harauz G. Molecular "negativity" may underlie multiple sclerosis: role of the myelin basic protein family in the pathogenesis of MS. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 79:149-72. [PMID: 17531841 DOI: 10.1016/s0074-7742(07)79007-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Myelin basic protein (MBP) binds to negatively charged lipids on the cytosolic surface of oligodendrocyte membranes and is responsible for adhesion of these surfaces in the multilayered myelin sheath. The pattern of extensive posttranslational modifications of MBP is dynamic during normal central nervous system development and during myelin degeneration in multiple sclerosis (MS), affecting its interactions with the myelin membranes and other proteins. In particular, the degree of deimination (or citrullination) of MBP is correlated with the severity of MS, and may represent a primary defect that precedes neurodegeneration due to autoimmune attack. That MBP deimination also affects topological accessibility of an otherwise partially buried immunodominant epitope of the protein indicates that this modification may play a major role in the autoimmune pathogenesis of the disease. In this chapter, we describe the structural and functional consequences of MBP deimination in healthy and diseased myelin.
Collapse
Affiliation(s)
- Abdiwahab A Musse
- Department of Molecular and Cellular Biology, Biophysics Interdepartmental Group, University of Guelph, Ontario N1G 2W1, Canada
| | | |
Collapse
|
9
|
Musse AA, Boggs JM, Harauz G. Deimination of membrane-bound myelin basic protein in multiple sclerosis exposes an immunodominant epitope. Proc Natl Acad Sci U S A 2006; 103:4422-7. [PMID: 16537438 PMCID: PMC1450187 DOI: 10.1073/pnas.0509158103] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The degradation of myelin in the CNS is the hallmark of multiple sclerosis. Reduction in the net positive charge of myelin basic protein (MBP), through deimination, correlates strongly with disease severity and may mediate myelin instability and loss of compaction. Using Cys scanning, spin labeling, EPR spectroscopy, and site-specific proteolysis, we show that in the membrane-bound state the primary immunodominant epitope, V83-T92, of the less cationic recombinant murine MBP C8 mimic (rmC8) forms a more highly surface-exposed and shorter amphipathic alpha-helix than in the unmodified form, recombinant murine MBP C1 mimic (rmC1), analogous to the most cationic and abundant isomer of MBP in normal myelin. Moreover, cathepsin D digested lipid-associated rmC8 3-fold faster than rmC1, and cleavage at F86-F87 occurred more readily in rmC8 than rmC1. These findings suggest a mechanism for initial loss of myelin stability and the autoimmune pathogenesis of multiple sclerosis.
Collapse
Affiliation(s)
- Abdiwahab A. Musse
- *Department of Molecular and Cellular Biology, and Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Joan M. Boggs
- Department of Structural Biology and Biochemistry, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8; and
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada M5G 1L5
| | - George Harauz
- *Department of Molecular and Cellular Biology, and Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada N1G 2W1
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
10
|
D'Souza CA, Wood DD, She YM, Moscarello MA. Autocatalytic Cleavage of Myelin Basic Protein: An Alternative to Molecular Mimicry. Biochemistry 2005; 44:12905-13. [PMID: 16171406 DOI: 10.1021/bi051152f] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although multiple sclerosis (MS) is thought to be an autoimmune disease, the mechanisms by which immunodominant epitopes are generated and lymphocytes are activated are not known. Here, myelin basic protein-component 1 (MBP-C1) from MS tissue was shown to undergo autocatalytic cleavage at slightly alkaline pH. Importantly, one of the major peptides released contained the immunodominant epitope 84-89. Interestingly, MBP isolated from MS patients showed a faster time course of cleavage and a more robust release of epitope 84-89 than MBP isolated from normal individuals. The cleavage reaction was not inhibited by protease inhibitors, except for phenylmethanesulfonyl fluoride (PMSF), a serine protease inhibitor. Since PMSF inhibition suggested a role for a serine residue in the cleavage, we labeled myelin basic protein with diisopropyl fluorophosphate (DFP), known to bind active site serine residues. Mass spectrometry was used to identify the labeled peptide, which consisted of residues 140-152. Since this peptide contained a single serine residue, we concluded it to be the active serine. The importance of this cleavage mechanism is that it provides for a ready source of the immunodominant peptide for sensitization of T-cells. It is not necessary to invoke other mechanisms such as molecular mimicry.
Collapse
Affiliation(s)
- Cheryl A D'Souza
- Department of Structural Biology and Biochemistry, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | | | |
Collapse
|
11
|
Lionel A, de Seze J, Didier L, Sandrine FN, Sylvain D, Patrick V, Lionel P. Evolution of self-reactive IgG antibody repertoires in patients with relapsing-remitting multiple sclerosis. Immunol Lett 2005; 97:55-62. [PMID: 15626476 DOI: 10.1016/j.imlet.2004.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Revised: 09/06/2004] [Accepted: 09/23/2004] [Indexed: 10/26/2022]
Abstract
We have previously demonstrated a distortion of self-reactive IgG antibody repertoires in patients with multiple sclerosis (MS) compared to controls, by immunoblotting assays, using human brain homogenates. The analysis of the immune profiles against human brain antigens allowed us to distinguish MS patients, and to associate a particular pattern of reactivity for each clinical form of MS. The aim of the present study was to evaluate the evolution of such patterns in patients with relapsing-remitting MS (RRMS). In a first step, we confirmed, by western blotting using human brains as source of antigens, the existence of specific repertoires of IgG reactivity in whole serum collected from healthy subjects (n = 32) and from untreated patients with RRMS (n = 56). In a second step, the evaluation of patterns was performed at baseline and 1 year later in untreated RRMS patients (n = 15), and in RRMS patients treated with IFN-beta (n = 41). In both groups, little change in IgG reactivity in whole serum was found. However, a higher degree of stability was noted in treated versus untreated patients (P < 0.01). Our results have showed a specific and relatively stable pattern of reactivity for each RRMS individual tested against brain antigens even after a 1-year treatment prevailing in treated patients suggesting that IFN-beta could stabilize IgG antibody repertoires.
Collapse
Affiliation(s)
- Almeras Lionel
- Laboratoire d'immunologie EA2686, Faculté de Médecine, 1, Place de Verdun, 59045 Lille Cedex, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
An autoimmune response to one or more myelin-protein components is thought to be part of the pathogenesis of multiple sclerosis (MS). The immunodominant-autoantibody epitope may be localized on a linear peptide segment, on a conformation-sensitive epitope, or on an epitope resulting from post-translational modifications. Primary, secondary, and tertiary structures of myelin proteins may determine the specific site for binding of autoantibodies. A myelin protein-specific autoantibody can bind to either a linear or conformational epitope, whereas all of the T cell epitopes are linear. At present, the conformational epitopes of myelin proteins have not been identified; most of the methods used to identify the myelin-protein epitopes corresponding to the pathogenesis of multiple sclerosis are involved in the linear epitope mapping. Polymorphism or mutations may cause inappropriate expression of the myelin proteins with alterations to their linear and/or conformational epitopes, and make them susceptible to autoantibody binding, especially if these changes occur at the surface of the protein. This review focuses on the specificity of autoantibodies to the epitopes of myelin proteins and correlates this to the structures of proteins. Factors that influence the expression of myelin-protein epitopes such as the alpha-helical or beta-sheet structure of the protein, the tri-proline site, and the post-translational modifications as well as physicochemical properties of amino acid changed are included.
Collapse
Affiliation(s)
- Permphan Dharmasaroja
- Faculty of Science, Department of Anatomy, Mahidol University, 272 Rama VI Road, Rajthevi, Bangkok 10400, Thailand.
| |
Collapse
|
13
|
Andersson M, Yu M, Söderström M, Weerth S, Baig S, Solders G, Link H. Multiple MAG peptides are recognized by circulating T and B lymphocytes in polyneuropathy and multiple sclerosis. Eur J Neurol 2002; 9:243-51. [PMID: 11985632 DOI: 10.1046/j.1468-1331.2002.00391.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abnormal immune responses to myelin associated glycoprotein (MAG), a component of myelin of the central and peripheral nervous system, have been suggested to play a role in the pathogenesis of multiple sclerosis (MS) and certain types of inflammatory polyneuropathy. To identify possible immunodominant MAG peptides in neuroinflammation, we examined T and B cell responses to five selected synthetic MAG peptides and myelin proteins in 21 patients with non-inflammatory polyneuropathy, 26 patients with MS, 10 optic neuritis patients and 17 healthy subjects. Enzyme-linked immunosorbent spot-forming cell assays were adopted, allowing the detection and enumeration of individual antigen responsive T and B cells in body fluids. Patients with polyneuropathy as well as those with MS had elevated levels of T and B cells recognizing MAG and its peptides. Any of the five MAG peptides under study functioned as immunodominant T and/or B cell epitope in individual subjects. None of the MAG peptides elicited a specific disease-associated T or B cell response. The enhanced T and B cell response to myelin components like MAG may play some role in initiation and/or progression of these diseases, but they could also represent secondary responses associated with myelin damage and indicate tolerization rather than autoaggressive immunity.
Collapse
Affiliation(s)
- M Andersson
- Department of Neurology, Karolinska Institute, Huddinge University Hospital, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
14
|
de Seze J, Dubucquoi S, Lefranc D, Virecoulon F, Nuez I, Dutoit V, Vermersch P, Prin L. IgG reactivity against citrullinated myelin basic protein in multiple sclerosis. J Neuroimmunol 2001; 117:149-55. [PMID: 11431015 DOI: 10.1016/s0165-5728(01)00312-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
An increased level of citrullinated myelin basic protein (MBP-C8) has been reported in the brains of multiple sclerosis (MS) patients. However, the involvement of the immune response to post-translational modified MBP in the pathophysiology of MS remains speculative. The aim of this study was to compare the levels of immunoglobulin G antibodies to several MBP epitopes, before and after citrullination, in the cerebrospinal fluid (CSF) and sera of MS patients using enzyme-linked immunosorbent assay (ELISA). We analyzed antibody reactivity against various MBP-peptides in the CSF and sera of 60 MS patients, and 30 patients with other neurological diseases (OND) as controls. The peptides tested were: MBP(75-98) (peptide 1), native (peptide 2) and citrullinated (peptide 3) MBP(108-126) (ARG(122)-->Cit(122)), and native (peptide 4) and citrullinated (peptide 5) MBP(151-170) (ARG(159, 170)-->Cit(159, 170)). All selected peptides could support an immune reactivity in CSF and sera of MS and OND patients. A higher reactivity against peptide 4 was found in the CSF of MS patients compared with OND patients (P<0.0001), but not against citrullinated peptides (peptides 3 and 5). However, we observed that the citrullination state of peptide 2 modified the patterns of immune reactivity more markedly in MS patients (P<0.0001) than in OND patients (P<0.02). Although some MBP epitopes could be a potential target in MS, our data did not demonstrate any difference of antibody response to MBP peptides in their citrullinated forms.
Collapse
Affiliation(s)
- J de Seze
- Department of Immunology, CHRU of Lille, Lille, France.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
There is much evidence to implicate B cells, plasma cells, and their products in the pathogenesis of MS. Despite unequivocal evidence that the animal model for MS, EAE, is initiated by myelin-specific T cells, there is accumulating evidence of a role for B cells, plasma cells, and their products in EAE pathogenesis. The role(s) played by B cells, plasma cells, and antibodies in CNS inflammatory demyelinating diseases are likely to be multifactorial and complex, involving distinct and perhaps opposing roles for B cells versus antibody.
Collapse
Affiliation(s)
- A H Cross
- Department of Neurology and Neurosurgery, Washington University School of Medicine, Box 8111, 660 S. Euclid, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
16
|
Abstract
Myelin basic protein (MBP) or a fragment thereof may enter cerebrospinal fluid (CSF) and other body fluids in an etiologically nonspecific fashion to provide information about the status of central nervous system (CNS) myelin damage. MBP immunochemically detected is referred to as MBP-like material (MBPLM). The clinical utility of the assay for MBPLM in CSF is to document the presence, continuation, or resolution of CNS myelin injury. The analysis of CSF for MBPLM is subject to many variables, among which are the antisera and the form of the assay utilized. The dominant epitope of CSF MBPLM is in the decapeptide of 80-89 from the intact MBP molecule of 170 residues. Normally, CSF has no detected MBPLM. Following an acute relapse of MS, MBPLM rises quickly in the range of ng/ml and rapidly declines and disappears. The presence of MBPLM in CSF in chronic and progressive phases of the disease is unusual, but it may sometimes be detected in low levels, depending on the assay used for detection. The level of CSF MBPLM is related to both the mass of CNS myelin damage and how recently it occurred. The level of CSF MBPLM rarely is elevated in optic neuritis. The level of CSF MBPLM is unrelated to CSF protein level, level of IgG, presence of oligoclonal bands or pleocytosis. CSF MBPLM has the potential of serving as a marker of therapeutic effectiveness in MS and does have predictive value for response to glucocorticoids given for worsening of disease. The detection of MBPLM in body fluids other than CSF would be of great value because of the resulting improved feasibility for objectively monitoring the natural history of MS and response to therapy. Studies on blood have yet to produce a valid assay of MBPLM. Urinary MBPLM, though different in its features from that in CSF, may provide a correlate, not with acute demyelination in MS as is the case for CSF, but with progression of disease.
Collapse
Affiliation(s)
- J N Whitaker
- Department of Neurology, University of Alabama at Birmingham, USA
| |
Collapse
|
17
|
Yacyshyn B, Meddings J, Sadowski D, Bowen-Yacyshyn MB. Multiple sclerosis patients have peripheral blood CD45RO+ B cells and increased intestinal permeability. Dig Dis Sci 1996; 41:2493-8. [PMID: 9011463 DOI: 10.1007/bf02100148] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Increased intestinal permeability and the CD45RO isoform expression of the leukocyte common antigen on peripheral blood CD20+ B cells are found in Crohn's disease. Others have observed that multiple sclerosis (MS) patients may have an increased risk of coacquisition of Crohn's disease. The aim of this study was to identify an association between these diseases using peripheral blood CD45 isoform expression and intestinal permeability in MS. Lactulose/mannitol permeability and peripheral blood CD20+ B cell CD45RO expression were defined in healthy controls, MS patients, and patients coincidentally affected by MS and Crohn's or MS and ulcerative colitis (UC). Five of 20 MS patients had increased intestinal permeability, a finding not previously reported. High levels of CD45RO were found on circulating CD20+ B cells from patients with MS. This has not been reported previously in MS and is found in very few other conditions. Eight patients with coincident MS and Crohn's disease or MS and UC were studied. Coincident MS and UC patients expressed CD45RO on CD20+ B cells, a finding not identified in UC patients alone. A subgroup of MS patients has increased intestinal permeability. These patients express CD45RO CD20+ B cells, also found in Crohn's disease.
Collapse
Affiliation(s)
- B Yacyshyn
- Department of Medicine, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
18
|
Kiernan JA. Vascular permeability in the peripheral autonomic and somatic nervous systems: controversial aspects and comparisons with the blood-brain barrier. Microsc Res Tech 1996; 35:122-36. [PMID: 8923447 DOI: 10.1002/(sici)1097-0029(19961001)35:2<122::aid-jemt3>3.0.co;2-s] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endothelium, choroidal epithelium, and arachnoid exclude plasma proteins from most parts of the mammalian central nervous system (CNS). Nerve roots, in contrast, have permeable capillaries and permeable pia-arachnoid sheaths. Diffusion of plasma proteins into the cerebrospinal fluid is probably prevented by slow bulk flow along a pressure gradient from the subarachnoid space into the veins of the roots. In nerves, the perineurium prevents diffusion of proteins from the epineurium into the endoneurium. Capillaries within fascicles are permeable to macromolecules, though less so than the microvessels of roots and ganglia. Endoneurial vascular permeability is lowest in rats and mice, but even in these species albumin is normally present in the extracellular spaces around the nerve fibers. The so-called blood-nerve barrier is not equivalent to the blood-brain barrier. Capillaries in sensory and sympathetic ganglia are fully permeable to macromolecules, and extravasated protein is in contact with neuronal cell bodies and neurites. An impenetrable perineurium surrounds each ganglion, but serves no obvious purpose when the vessels inside are as permeable as those outside. The enteric nervous system lacks a perineurium, and the neurons in its avascular ganglia and tracts are exposed to extracellular fluid formed by permeable vessels in adjacent tissues of the gut. The reasons for excluding macromolecules from some parts of the nervous system are obscure. Carrier-mediated transport, which maintains a constant supply of ions, glucose, and other metabolites to cells in the CNS, would be impossible if larger molecules could diffuse freely. Presumably the metabolic needs of ganglia are adequately met by exchange vessels similar to those of nonnervous tissues. Most of the CNS is protected from exogenous toxic substances that bind to plasma proteins. Peripheral neurons and glial cells are damaged by some such substances because of the lack of blood-tissue barriers.
Collapse
Affiliation(s)
- J A Kiernan
- Department of Anatomy, University of Western Ontario, London, Canada
| |
Collapse
|
19
|
Sellebjerg F, Madsen HO, Frederiksen JL, Ryder LP, Svejgaard A. Acute optic neuritis: myelin basic protein and proteolipid protein antibodies, affinity, and the HLA system. Ann Neurol 1995; 38:943-50. [PMID: 8526468 DOI: 10.1002/ana.410380616] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Anti-myelin basic protein, anti-proteolipid protein, and anti-myelin basic protein peptide (amino acid residues 1-20, 63-88, and 89-101) antibody-secreting cells were studied in 20 patients with idiopathic optic neuritis, 20 with optic neuritis as part of multiple sclerosis, and 20 neurological control subjects. Antibody-secreting cells were enumerated with an immunospot assay; the relative binding affinity of the antibodies was estimated by elution with thiocyanate. Patients with optic neuritis had more anti-myelin basic protein and anti-proteolipid protein antibodies than did control subjects (both p < 0.05); there was no difference between idiopathic optic neuritis and optic neuritis as a symptom of multiple sclerosis. Presence of the multiple sclerosis-associated DRB1*1501 gene was not associated with preferential synthesis of high-affinity antibodies reactive with a single myelin basic protein peptide or with preferential synthesis of either anti-myelin basic protein or anti-proteolipid protein antibodies. The results demonstrate a potential for intrathecal synthesis of both anti-myelin basic protein and anti-proteolipid protein antibodies of high apparent affinity in patients with optic neuritis.
Collapse
Affiliation(s)
- F Sellebjerg
- Department of Neurology, University of Copenhagen, Glostrup Hospital, Denmark
| | | | | | | | | |
Collapse
|
20
|
Abstract
Evidence is emerging that the major T- and B-cell response in multiple sclerosis (MS) is directed to a region of myelin basic protein (MBP) between residues 84 and 103. In rodent models of MS, immunization to this component of MBP evokes experimental autoimmune encephalomyelitis (EAE). T cells found in EAE lesions show similarities in the VJ and VDJ regions of their alpha and beta chains with T cells in MS lesions, and with T cells that are specific for MBPp84-103 isolated from patients with MS. If this region of MBP is critical in the pathogenesis of MS, then therapy aimed at controlling the immune response to this immunodominant region of MBP may be beneficial in treating MS.
Collapse
Affiliation(s)
- L Steinman
- Department of Neurologic Sciences, Beckman Center for Molecular and Genetic Medicine, Stanford University, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
21
|
Sellebjerg F, Frederiksen JL, Olsson T, Link H, Madsen HO, Ryder LP, Svejgaard A. Peptide specificity of anti-myelin basic protein antibodies in patients with acute optic neuritis and the HLA system. Scand J Immunol 1994; 39:575-80. [PMID: 7516573 DOI: 10.1111/j.1365-3083.1994.tb03415.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Multiple sclerosis (MS) may be an autoimmune disease, partially caused by autoreactivity to myelin basic protein (MBP) and other central nervous system proteins. Acute optic neuritis (ON) is a frequent first symptom of MS. The role of the HLA system in anti-MBP antibody production in ON was investigated employing a restriction fragment length polymorphism system for genomic HLA-DQ and -DR typing and an immunospot assay for the detection of individual cells secreting antibodies to three different synthetic MBP peptides. Thirty-two out of 40 patients (80%) with ON had cells in cerebrospinal fluid secreting anti-MBP peptide antibodies while this occurred in 10/19 patients with other neurological diseases (53%; mainly in patients with inflammatory diseases in the central nervous system). This difference was statistically significant (P = 0.03). None of the three examined peptides were immunodominant in any patient group. It was found, however, that presence of HLA DR15, which is associated with MS, may be associated further with predominant production of antibodies to the MBP amino acids 63-88 in patients with ON (P = 0.002, corrected for multiple comparisons).
Collapse
Affiliation(s)
- F Sellebjerg
- Department of Neurology, Glostrup Hospital, University of Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
22
|
Whitaker JN, Williams PH, Layton BA, McFarland HF, Stone LA, Smith ME, Kachelhofer RD, Bradley EL, Burgard S, Zhao G. Correlation of clinical features and findings on cranial magnetic resonance imaging with urinary myelin basic protein-like material in patients with multiple sclerosis. Ann Neurol 1994; 35:577-85. [PMID: 7513981 DOI: 10.1002/ana.410350511] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Immunoreactive material that appears to be a peptide encompassing all or a portion of residues 80 to 89 of myelin basic protein is present in normal unconcentrated urine and is increased in certain patients with multiple sclerosis (MS). Compared with normal controls, urines collected randomly from 158 MS patients or in a clinical research unit from 8 patients with MS had higher mean values of urinary MBP-like material (MBPLM). The level of MBPLM in urine showed no direct relationship to MBPLM in cerebrospinal fluid and did not correlate with clinical relapses of disease. In the other neurological disease control group (26 patients), some patients with other inflammatory diseases, but not stroke or early phase Guillain-Barré syndrome, also showed elevations. Among the subtypes of MS, those with secondary chronic progressive disease had the highest values. Urinary MBPLM showed no definite correlation with or effect of treatment with glucocorticoids and immunosuppressants except that a lower level of urinary MBPLM showed a weak relationship with improvement following treatment with methylprednisolone/prednisone. In a serial study of 8 patients with unenhanced cranial magnetic resonance imaging and 20 patients with gadolinium-enhanced cranial magnetic resonance imaging, urinary MBPLM did not show a direct correlation with new or enhancing lesions. Urinary MBPLM does not parallel acute myelin damage but appears to reflect an ongoing process, possibly linked to attempted efforts at remyelination.
Collapse
Affiliation(s)
- J N Whitaker
- Department of Neurology, University of Alabama at Birmingham 35294-0007
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mustafa M, Diener P, Sun JB, Link H, Olsson T. Immunopharmacologic modulation of experimental allergic encephalomyelitis: low-dose cyclosporin-A treatment causes disease relapse and increased systemic T and B cell-mediated myelin-directed autoimmunity. Scand J Immunol 1993; 38:499-507. [PMID: 7504825 DOI: 10.1111/j.1365-3083.1993.tb03232.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Therapies with immunosuppressive drugs in autoimmune experimental diseases often down-regulate disease but sometimes may lead to paradoxical disease exacerbation. To elucidate possible mechanisms behind such phenomena the effects were studied of mitoxantrone (Mx) and cyclosporin A (CsA) given at high and low doses on clinical course, and on autoreactive T- and B-cell responses in actively induced experimental allergic encephalomyelitis (EAE) in Lewis rats. Treatment with Mx and high dose CsA abrogated EAE and decreased dramatically the measured immune responses compared to vehicle-treated control EAE rats. Low-dose CsA treatment caused a disease relapse 20-30 days post immunization (p.i.). This relapse was accompanied by increased numbers of cells spontaneously producing IFN-gamma in the CNS and regional lymph nodes. Furthermore, anti-myelin and anti-MBP secreting cells were increased as were numbers of primed T cells that produced IFN-gamma in response to myelin antigens. It was concluded that these aspects of the myelin autoreactive immune response correlated well with clinical disease and are useful in evaluating immunotherapeutic intervention. Low-dose CsA treatment may interfere with systemic down-regulatory mechanisms acting on both T- and B-cell myelin-directed autoimmunity.
Collapse
Affiliation(s)
- M Mustafa
- Department of Neurology, Karolinska Institutet, Huddinge University Hospital, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
24
|
Abstract
Multiple sclerosis (MS) is acquired as a systemic "trait" by individuals who are genetically susceptible. This condition does not involve the central nervous system (CNS) and is characterized by a state of hyperactive immunocompetent responsiveness. It develops as the result of an antigenic challenge by a viral protein, either from a viral infection or a vaccination. In order for MS to become a disease affecting the CNS, it is necessary for the blood-brain barrier's (BBB) impermeability to be altered. This is now a fully recognized fact. As a result of this change, the MS lesion, which consists of edema and inflammation occurs. It may but need not lead to demyelination. Several mechanisms can cause this increased permeability of the BBB. The role of the immune system, and in particular of T lymphocytes in initiating and continuing the process of lesion formation remains extremely controversial. In fact, there are unanswered questions regarding the actual target of MS: is it the myelin sheath itself or its forming cell, the oligodendrocyte, or is it the BBB itself leading to bystander demyelination? The role of mild, concussional trauma to the CNS in producing the alteration of the BBB and therefore acting as a trigger or facilitator in the development or enlargement of MS lesions in the CNS, is based on considerable clinical, neuropathological and experimental evidence. Along with another viral infection, it must be one of the commonest causes of progression of MS, and quite often leads to the onset of the clinical manifestations of an hitherto asymptomatic condition.
Collapse
Affiliation(s)
- C M Poser
- Department of Neurology, Harvard Medical School, Boston, MA
| |
Collapse
|