1
|
Boy RL, Hong A, Aoki JI, Floeter-Winter LM, Laranjeira-Silva MF. Reporter gene systems: a powerful tool for Leishmania studies. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100165. [DOI: 10.1016/j.crmicr.2022.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
2
|
Rodríguez-Serrato MA, Salinas-Carmona MC, Limón-Flores AY. Immune response to Leishmania mexicana: the host-parasite relationship. Pathog Dis 2020; 78:5917983. [PMID: 33016312 DOI: 10.1093/femspd/ftaa060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/01/2020] [Indexed: 11/12/2022] Open
Abstract
Leishmaniosis is currently considered a serious public health problem and it is listed as a neglected tropical disease by World Health Organization (WHO). Despite the efforts of the scientific community, it has not been possible to develop an effective vaccine. Current treatment consists of antimonials that is expensive and can cause adverse effects. It is essential to fully understand the immunopathogenesis of the disease to develop new strategies to prevent, treat and eradicate the disease. Studies on animal models have shown a new paradigm in the resolution or establishment of infection by Leishmania mexicana where a wide range of cytokines, antibodies and cells are involved. In recent years, the possibility of a new therapy with monoclonal antibodies has been considered, where isotype, specificity and concentration are critical for effective therapy. Would be better to create/generate a vaccine to induce host protection or produce passive immunization with engineering monoclonal antibodies to a defined antigen? This review provides an overview that includes the current known information on the immune response that are involved in the complex host-parasite relationship infection caused by L. mexicana.
Collapse
Affiliation(s)
- Mayra A Rodríguez-Serrato
- Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario Dr. Jose Eleuterio González, Servicio y Departamento de Inmunología, Av. Madero y Av. Gonzalitos s/n, Colonia Mitras Centro, Monterrey, Nuevo León, México
| | - Mario C Salinas-Carmona
- Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario Dr. Jose Eleuterio González, Servicio y Departamento de Inmunología, Av. Madero y Av. Gonzalitos s/n, Colonia Mitras Centro, Monterrey, Nuevo León, México
| | - Alberto Yairh Limón-Flores
- Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario Dr. Jose Eleuterio González, Servicio y Departamento de Inmunología, Av. Madero y Av. Gonzalitos s/n, Colonia Mitras Centro, Monterrey, Nuevo León, México
| |
Collapse
|
3
|
Misra P, Singh S. Site specific microbiome of Leishmania parasite and its cross-talk with immune milieu. Immunol Lett 2019; 216:79-88. [PMID: 31678358 DOI: 10.1016/j.imlet.2019.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/17/2019] [Accepted: 10/02/2019] [Indexed: 12/12/2022]
Abstract
Microbiota consists of commensal, symbiotic and pathogenic microorganisms found in all multicellular organisms. These micro-organisms are found in or on many parts of the body, including the intestinal tract, skin, mouth, and the reproductive tract. This review focuses on interplay of site specific microbiota, vector microbiota along with immune response and severity of Leishmaniasis. Herein, we have reviewed and summarized the counter effect of microbiome post infection with the Leishmania parasite. We have studied skin microbiome along with the gut microbiome of sand-fly which is the vector for transmission of this disease. Our major focus was to understand the skin and gut microbiome during Leishmania infection,their interaction and effect on immunological responses generated during the infection.Moreover, systems biology approach is envisioned to enumerate bacterial species in skin microbiota and Phlebotmus gut microbiota during Leishmania infection.
Collapse
Affiliation(s)
- Pragya Misra
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India
| | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India.
| |
Collapse
|
4
|
Tedla MG, Every AL, Scheerlinck JPY. Investigating immune responses to parasites using transgenesis. Parasit Vectors 2019; 12:303. [PMID: 31202271 PMCID: PMC6570953 DOI: 10.1186/s13071-019-3550-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/03/2019] [Indexed: 11/10/2022] Open
Abstract
Parasites comprise diverse and complex organisms, which substantially impact human and animal health. Most parasites have complex life-cycles, and by virtue of co-evolution have developed multifaceted, often life-cycle stage-specific relationships with the immune system of their hosts. The complexity in the biology of many parasites often limits our knowledge of parasite-specific immune responses, to in vitro studies only. The relatively recent development of methods to stably manipulate the genetic make-up of many parasites has allowed a better understanding of host-parasite interactions, particularly in vivo. In this regard, the use of transgenic parasites can facilitate the study of immunomodulatory mechanisms under in vivo conditions. Therefore, in this review, we specifically highlighted the current developments in the use of transgenic parasites to unravel the host's immune response to different life-cycle stages of some key parasite species such as Leishmania, Schistosoma, Toxoplasma, Plasmodium and Trypanosome and to some degree, the use of transgenic nematode parasites is also briefly discussed.
Collapse
Affiliation(s)
- Mebrahtu G. Tedla
- Centre for Animal Biotechnology, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC 3010 Australia
| | - Alison L. Every
- Centre for Animal Biotechnology, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC 3010 Australia
- Present Address: College of Science, Health and Engineering, La Trobe University, Melbourne, VIC 3086 Australia
| | - Jean-Pierre Y. Scheerlinck
- Centre for Animal Biotechnology, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC 3010 Australia
| |
Collapse
|
5
|
Santos-Gomes GM, Rodrigues A, Teixeira F, Carreira J, Alexandre-Pires G, Carvalho S, Santos-Mateus D, Martins C, Vale-Gato I, Marques C, Tomás AM. Immunization with the Leishmania infantum recombinant cyclophilin protein 1 confers partial protection to subsequent parasite infection and generates specific memory T cells. Vaccine 2014; 32:1247-53. [PMID: 24486368 DOI: 10.1016/j.vaccine.2014.01.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/13/2013] [Accepted: 01/14/2014] [Indexed: 12/15/2022]
Abstract
Control of zoonotic visceral leishmaniosis can be achieved using several available drugs. These drugs present high toxicity and require longer treatment regimens which complicate compliance to the treatment. Other control measures directed to the vector or the reservoirs are useful tools to restrain the spreading of this disease but the effects are transitory. A safe, affordable and efficient vaccine conferring long lasting immunity should be the most cost effective way of controlling zoonotic visceral leishmaniosis. The present study aims at characterizing a cyclophilin protein 1 of Leishmania infantum (LiCyP1) and investigating whether recombinant LiCyP1 (LirCyP1) is able to confer protection against infection by evaluating viable parasite load and the generation of specific CD4(+) and CD8(+) effector and central memory T cells in rodent model. LiCyP1 is present in the cytoplasm of L. infantum amastigotes and promastigotes. Immunization of BALB/c mice with LirCyP1 confers high protection to L. infantum infection, causing a marked reduction in parasite replication in the liver and spleen. Furthermore, helper and cytotoxic memory T cell subsets able to specifically recognize parasite antigens expanded in immunized and in challenged mice. CD4(+) T cell subpopulation of intermediate phenotype (CD62L(high)CD127(low)) of challenging mice also presented an accentuated expansion after the recall. This study demonstrated that LirCyP1 confers partial protection to L. infantum infection, promoting the generation of a desired long lasting immunity. LirCyP1 can be considered a potential candidate for the design of a vaccine against zoonotic visceral leishmaniosis.
Collapse
Affiliation(s)
- G M Santos-Gomes
- Unidade de Ensino e Investigação de Parasitologia Médica, Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008 Lisboa, Portugal.
| | - A Rodrigues
- Unidade de Ensino e Investigação de Parasitologia Médica, Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - F Teixeira
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal; ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Largo Prof. Abel Salazar 2, 4099-003 Porto, Portugal
| | - J Carreira
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal; ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Largo Prof. Abel Salazar 2, 4099-003 Porto, Portugal
| | - G Alexandre-Pires
- CIISA, Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - S Carvalho
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal; ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Largo Prof. Abel Salazar 2, 4099-003 Porto, Portugal
| | - D Santos-Mateus
- Unidade de Ensino e Investigação de Parasitologia Médica, Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - C Martins
- Departamento de Imunologia, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires de Pátria, Lisboa, Portugal
| | - I Vale-Gato
- Unidade de Ensino e Investigação de Parasitologia Médica, Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - C Marques
- Unidade de Ensino e Investigação de Parasitologia Médica, Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - A M Tomás
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal; ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Largo Prof. Abel Salazar 2, 4099-003 Porto, Portugal
| |
Collapse
|
6
|
Abstract
Genetic manipulation of single-celled organisms such as the Leishmania parasite enables in depth analysis of the consequences of genotypic change on biological function. In probing the immune responses to infection, use of transgenic Leishmania has the potential to unravel both the contribution of the parasite to the infection process and the cellular interactions and mechanisms that characterize the innate and adaptive immune responses of the host. Here, we briefly review recent technical advances in parasite genetics and explore how these methods are being used to investigate parasite virulence factors, elucidate immune regulatory mechanisms and contribute to the development of novel therapeutics for the leishmaniases. Recent developments in imaging technology, such as bioluminescence and intravital imaging, combined with parasite transfection with fluorescent or enzyme-encoding marker genes, provides a rich opportunity for novel assessment of intimate, real-time host-parasite interactions at a previously unexplored level. Further advances in transgenic technology, such as the introduction of robust inducible gene cassettes for expression in intracellular parasite stages or the development of RNA interference methods for down-regulation of parasite gene expression in the host, will further advance our ability to probe host-parasite interactions and unravel disease-promoting mechanisms in the leishmaniases.
Collapse
Affiliation(s)
- L Beattie
- Immunology and Infection Unit, Department of Biology, University of York, Hull York Medical School, Heslington, York, UK
| | - K J Evans
- Immunology and Infection Unit, Department of Biology, University of York, Hull York Medical School, Heslington, York, UK
| | - P M Kaye
- Immunology and Infection Unit, Department of Biology, University of York, Hull York Medical School, Heslington, York, UK
| | - D F Smith
- Immunology and Infection Unit, Department of Biology, University of York, Hull York Medical School, Heslington, York, UK
| |
Collapse
|
7
|
|
8
|
Locksley RM, Wakil AE, Corry DB, Pingel S, Bix M, Fowell DJ. The development of effector T cell subsets in murine Leishmania major infection. CIBA FOUNDATION SYMPOSIUM 2007; 195:110-7; discussion 117-22. [PMID: 8724833 DOI: 10.1002/9780470514849.ch8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Leishmania major infection has proven an exceptional model for CD4+ subset development in inbred mice. Most strains contain infection coincident with the appearance of T helper 1 (Th1) cells that produce gamma-interferon (IFN-gamma) required for macrophage activation. In contrast, mice on the BALB background are unable to control infection due to the development of Th2 cells that produce counter-regulatory cytokines, particularly interleukin 4 (IL-4), capable of abrogating the effects of IFN-gamma. Selective gene disruption studies in mice have illustrated critical components of the host response to L. major. Mice deficient in beta 2 microglobulin, which have no major histocompatibility complex (MHC) class I or CD8+ T cells, control infection as well as wild-type mice, whereas mice deficient in MHC class II (and CD4+ T cells) suffer fatal infection. Mice with disruption of the gene coding IFN-gamma are also incapable of containing infection, reflecting absolute requirements for this cytokine. A number of interventions have been demonstrated to abrogate Th2 cell development in BALB mice, enabling these mice to control infection. Each of these--IL-12, anti-IL-4, anti-IL-2, anti-CD4 and CTLA4-Ig--has in common the capacity to make IL-4 rate limiting at the time of CD4+ cell priming.
Collapse
Affiliation(s)
- R M Locksley
- Department of Medicine, University of California, San Francisco 94143, USA
| | | | | | | | | | | |
Collapse
|
9
|
Polley R, Stager S, Prickett S, Maroof A, Zubairi S, Smith DF, Kaye PM. Adoptive immunotherapy against experimental visceral leishmaniasis with CD8+ T cells requires the presence of cognate antigen. Infect Immun 2006; 74:773-6. [PMID: 16369038 PMCID: PMC1346645 DOI: 10.1128/iai.74.1.773-776.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD8+ T cells have a protective role in experimental visceral leishmaniasis. However, the observation that inflammatory cytokines induce bystander activation of CD8+ T cells questions the need for antigen-dependent effector function. Here, we demonstrate that successful adoptive immunotherapy with CD8+ T cells is strictly dependent upon the presence of cognate antigen.
Collapse
Affiliation(s)
- Rosalind Polley
- Immunology and Infection Unit, Dept. of Biology, University of York, P.O. Box 373, York YO10 5YW, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
10
|
Bertholet S, Debrabant A, Afrin F, Caler E, Mendez S, Tabbara KS, Belkaid Y, Sacks DL. Antigen requirements for efficient priming of CD8+ T cells by Leishmania major-infected dendritic cells. Infect Immun 2005; 73:6620-8. [PMID: 16177338 PMCID: PMC1230980 DOI: 10.1128/iai.73.10.6620-6628.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD4(+) and CD8(+) T-cell responses have been shown to be critical for the development and maintenance of acquired resistance to infections with the protozoan parasite Leishmania major. Monitoring the development of immunodominant or clonally restricted T-cell subsets in response to infection has been difficult, however, due to the paucity of known epitopes. We have analyzed the potential of L. major transgenic parasites, expressing the model antigen ovalbumin (OVA), to be presented by antigen-presenting cells to OVA-specific OT-II CD4(+) or OT-I CD8(+) T cells. Truncated OVA was expressed in L. major as part of a secreted or nonsecreted chimeric protein with L. donovani 3' nucleotidase (NT-OVA). Dendritic cells (DC) but not macrophages infected with L. major that secreted NT-OVA could prime OT-I T cells to proliferate and release gamma interferon. A diminished T-cell response was observed when DC were infected with parasites expressing nonsecreted NT-OVA or with heat-killed parasites. Inoculation of mice with transgenic parasites elicited the proliferation of adoptively transferred OT-I T cells and their recruitment to the site of infection in the skin. Together, these results demonstrate the possibility of targeting heterologous antigens to specific cellular compartments in L. major and suggest that proteins secreted or released by L. major in infected DC are a major source of peptides for the generation of parasite-specific CD8(+) T cells. The ability of L. major transgenic parasites to activate OT-I CD8(+) T cells in vivo will permit the analysis of parasite-driven T-cell expansion, differentiation, and recruitment at the clonal level.
Collapse
Affiliation(s)
- Sylvie Bertholet
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Antoine JC, Prina E, Courret N, Lang T. Leishmania spp.: on the interactions they establish with antigen-presenting cells of their mammalian hosts. ADVANCES IN PARASITOLOGY 2005; 58:1-68. [PMID: 15603761 DOI: 10.1016/s0065-308x(04)58001-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Identification of macrophages as host cells for the mammalian stage of Leishmania spp. traces back to about 40 years ago, but many questions concerning the ways these parasites establish themselves in these cells, which are endowed with potent innate microbicidal mechanisms, are still unanswered. It is known that microbicidal activities of macrophages can be enhanced or induced by effector T lymphocytes following the presentation of antigens via MHC class I or class II molecules expressed at the macrophage plasma membrane. However, Leishmania spp. have evolved mechanisms to evade or to interfere with antigen presentation processes, allowing parasites to partially resist these T cell-mediated immune responses. Recently, the presence of Leishmania amastigotes within dendritic cells has been reported suggesting that they could also be host cells for these parasites. Dendritic cells have been described as the only cells able to induce the activation of naive T lymphocytes. However, certain Leishmania species infect dendritic cells without inducing their maturation and impair the migration of these cells, which could delay the onset of the adaptive immune responses as both processes are required for naive T cell activation. This review examines how Leishmania spp. interact with these two cell types, macrophages and dendritic cells, and describes some of the strategies used by Leishmania spp. to survive in these inducible or constitutive antigen-presenting cells.
Collapse
Affiliation(s)
- Jean-Claude Antoine
- Unité d'Immunophysiologie et Parasitisme Intracellulaire, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris cedex 15, France.
| | | | | | | |
Collapse
|
12
|
Lüder CG, Seeber F. Toxoplasma gondii and MHC-restricted antigen presentation: on degradation, transport and modulation. Int J Parasitol 2001; 31:1355-69. [PMID: 11566303 DOI: 10.1016/s0020-7519(01)00260-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Resistance against Toxoplasma gondii, an obligate intracellular protozoan parasite surrounded by a parasitophorous vacuolar membrane, is mediated by the cellular arm of the immune system, namely CD8+ and CD4+ T cells. Thus, priming and activation of these cells by presentation of antigenic peptides in the context of major histocompatibility complex class I and class II molecules have to take place. This is despite the fact that the vacuolar membrane avoids fusion with the endocytic compartment and acts like a molecular sieve, restricting passive diffusion of larger molecules. This raises several cell biological and immunological questions which will be discussed in this review in the context of our current knowledge about major histocompatibility complex-restricted antigen presentation in other systems: (1) By which pathways are parasite-derived antigens presented to T cells? (2) Has the parasite evolved mechanisms to interfere with major histocompatibility complex-restricted antigen presentation in order to avoid immune recognition? (3) To what extent and by which mechanism is antigenic material, originating from the parasite, able to pass through the vacuolar membrane into the cytosol of the infected cell and is it then accessible to the antigen presentation machinery of the infected cell? (4) What are the actual antigen-presenting cells which prime specific T cells in lymphoid organs? An understanding of these mechanisms will not only provide new insights into the pathogenesis of Toxoplasma gondii and possibly other intravacuolar parasites, but will also improve vaccination strategies.
Collapse
Affiliation(s)
- C G Lüder
- Department of Bacteriology, Georg-August-Universität Göttingen, Kreuzbergring 57, D-37075 Göttingen, Germany.
| | | |
Collapse
|
13
|
Yoshida A, Nagata T, Uchijima M, Koide Y. Protective CTL response is induced in the absence of CD4+ T cells and IFN-gamma by gene gun DNA vaccination with a minigene encoding a CTL epitope of Listeria monocytogenes. Vaccine 2001; 19:4297-306. [PMID: 11457557 DOI: 10.1016/s0264-410x(01)00146-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Our work was undertaken to learn the mechanism of induction of protective cytotoxic T lymphocytes (CTL) by gene gun DNA vaccination with p91m encoding an H-2Kd-restricted T cell epitope of listeriolysin O (LLO). Vaccination with p91m induced vigorous antigen-specific CD8+ CTL that produce IFN-gamma and was able to confer partial protection against listerial challenge. However, the p91m-induced protective immunity was revealed to be independent of the IFN-gamma and CD4+ T cell help. The CTL induction is also suggested to require neither adjuvant activity of the plasmid used nor IFN-gamma. The data may be feasible for the design of CTL inducing vaccines in various immunodeficiencies.
Collapse
Affiliation(s)
- A Yoshida
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, 431-3192, Hamamatsu, Japan
| | | | | | | |
Collapse
|
14
|
Chakkalath HR, Siddiqui AA, Shankar AH, Dobson DE, Beverley SM, Titus RG. Priming of a beta-galactosidase (beta-GAL)-specific type 1 response in BALB/c mice infected with beta-GAL-transfected Leishmania major. Infect Immun 2000; 68:809-14. [PMID: 10639450 PMCID: PMC97209 DOI: 10.1128/iai.68.2.809-814.2000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To determine whether an ongoing response to Leishmania major would affect the response to a non-cross-reacting, non-leishmanial antigen, susceptible BALB/c mice and resistant C3H mice were infected with L. major parasites expressing Escherichia coli beta-galactosidase (beta-GAL); this parasite was designated L. major-betaGAL. BALB/c and C3H mice responded to infection with L. major-betaGAL by mounting a CD4 T-cell response to both parasite antigens and to the reporter antigen, beta-GAL. The phenotypes of these T cells were characterized after generating T-cell lines from infected mice. As expected, BALB/c mice responded to infection with L. major-betaGAL by producing interleukin 4 in response to the parasite and C3H mice produced gamma interferon (IFN-gamma) in response to the parasite and beta-GAL. Interestingly, however, BALB/c mice produced IFN-gamma in response to beta-GAL. Taken together, these results demonstrate that priming of IFN-gamma-producing cells can occur in BALB/c mice despite the fact the animals are simultaneously mounting a potent Th2 response to L. major.
Collapse
Affiliation(s)
- H R Chakkalath
- Department of Tropical Public Health, Harvard School of Public Health, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
15
|
Salaiza-Suazo N, Volkow P, Tamayo R, Moll H, Gillitzer R, Pérez-Torres A, Pérez-Montfort R, Domínguez JD, Velasco-Castrejón O, Crippa M, Becker I. Treatment of two patients with diffuse cutaneous leishmaniasis caused by Leishmania mexicana modifies the immunohistological profile but not the disease outcome. Trop Med Int Health 1999; 4:801-11. [PMID: 10632987 DOI: 10.1046/j.1365-3156.1999.00491.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two patients with diffuse cutaneous leishmaniasis caused by Leishmania mexicana were treated with two leishmanicidal drugs (pentamidine and allopurinol) combined with recombinant interferon-gamma restoring Th-1 favouring conditions in the patients. Parasites decreased dramatically in the lesions and macrophages diminished concomitantly, while IL-12-producing Langerhans cells and interferon-gamma- producing NK and CD8 + lymphocytes increased in a reciprocal manner. The CD4+/CD8 + ratio in the peripheral blood normalized. During exogenous administration of interferon-gamma the parasites' capacity to inhibit the oxidative burst of the patients' monocytes was abolished. Even though Th-1-favouring conditions were restored, both patients relapsed two months after therapy was discontinued. We conclude that the tendency to develop a disease-promoting Th-2 response in DCL patients is unaffected by, and independent of, parasite numbers. Even though intensive treatment in DCL patients induced Th-1 disease restricting conditions, the disease-promoting immunomodulation of few persistent Leishmania sufficed to revert the immune response.
Collapse
Affiliation(s)
- N Salaiza-Suazo
- Departamento de Medicina Experimental, Faculdad de Medicina, UNAM, Mexico
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Huber M, Timms E, Mak TW, Röllinghoff M, Lohoff M. Effective and long-lasting immunity against the parasite Leishmania major in CD8-deficient mice. Infect Immun 1998; 66:3968-70. [PMID: 9673288 PMCID: PMC108466 DOI: 10.1128/iai.66.8.3968-3970.1998] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The results of earlier investigations that tested whether CD8(+) T cells are required in the defense against Leishmania major have been inconsistent. We used CD8-deficient mice to directly address this issue. After primary infection with L. major, CD8-deficient mice controlled the infection for over 1 year and mounted strong T helper 1 cell responses. Thus, CD8(+) T cells are not required for the long-term control of a primary infection with L. major.
Collapse
Affiliation(s)
- M Huber
- Institut für Klinische Mikrobiologie und Immunologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | | | | | | | | |
Collapse
|
17
|
Rodrigues V, Santana da Silva J, Campos-Neto A. Transforming growth factor beta and immunosuppression in experimental visceral leishmaniasis. Infect Immun 1998; 66:1233-6. [PMID: 9488418 PMCID: PMC108038 DOI: 10.1128/iai.66.3.1233-1236.1998] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hamsters infected with Leishmania donovani develop a disease similar to human kala-azar. They present hypergammaglobulinemia, and their T cells do not respond to parasite antigens. This unresponsiveness has been primarily ascribed to defects in antigen-presenting cells (APCs), because these cells are unable to stimulate proliferation of parasite-specific T cells from immunized animals. In this study, we show that APCs (adherent spleen cells) from L. donovani-infected hamsters produce high levels of the inhibitory cytokine transforming growth factor beta (TGF-beta). Immunohistochemical studies with an anti-TGF-beta monoclonal antibody (MAb) showed that this cytokine is abundantly produced in vivo by the spleen cells of infected animals. In addition, high levels of TGF-beta are produced in vitro by infected hamster cells, either spontaneously or after stimulation with parasite antigen or lipopolysaccharide. Furthermore, in vivo-infected adherent cells obtained from spleens of L. donovani-infected hamsters caused profound inhibition of the in vitro antigen-induced proliferative response of lymph node cells from hamsters immunized with leishmanial antigens. Moreover, this inhibition was totally abrogated by the anti-TGF-beta MAb. These results suggest that the immunosuppression observed in visceral leishmaniasis is, at least in part, due to the abundant production of TGF-beta during the course of the infection.
Collapse
Affiliation(s)
- V Rodrigues
- Immunology Laboratory, Medical School of Triângulo Mineiro, Uberaba, MG, Brazil.
| | | | | |
Collapse
|
18
|
Garcia MR, Graham S, Harris RA, Beverley SM, Kaye PM. Epitope cleavage by Leishmania endopeptidase(s) limits the efficiency of the exogenous pathway of major histocompatibility complex class I-associated antigen presentation. Eur J Immunol 1997; 27:1005-13. [PMID: 9130657 DOI: 10.1002/eji.1830270430] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The activation of CD8+ T cell responses is commonplace during infection with a number of nonviral pathogens. Consequently, there has been much interest in the pathways of presentation of such exogenous antigens for major histocompatibility complex class I-restricted recognition. We had previously shown that Leishmania promastigotes transfected with the ovalbumin (OVA) gene could efficiently target OVA to the parasitophorous vacuole (PV), with subsequent recognition by class II-restricted T cells. We now report the results of studies aimed at evaluating the PV as a route of entry into the exogenous class I pathway. Bone marrow-derived macrophages can present soluble OVA (albeit at high concentrations) to the OVA(257-264)-specific T cell hybridoma 13.13. In contrast, infection with OVA-transfected Leishmania promastigotes failed to result in the stimulation of this hybridoma. This appeared unrelated to variables such as antigen concentration, parasite survival, and macrophage activation status. These results prompted an analysis of the effects of promastigotes on class I peptide binding using RMA-S cells and OVA(257-264). Our data indicate that the major surface protease of Leishmania, gp63, inhibits this interaction by virtue of its endopeptidase activity against the OVA(257-264) peptide. The data suggest that this activity, if maintained within the PV, would result in loss of the OVA(257-264) epitope. Although we can therefore draw no conclusions from these studies regarding the efficiency of the PV as a site of entry of antigen into the exogenous class I pathway, we have identified a further means by which parasites may manipulate the immune repertoire of their host.
Collapse
Affiliation(s)
- M R Garcia
- Department of Medical Parasitology, London School of Hygiene and Tropical Medicine, GB
| | | | | | | | | |
Collapse
|
19
|
Pinelli E, Gonzalo RM, Boog CJ, Rutten VP, Gebhard D, del Real G, Ruitenberg EJ. Leishmania infantum-specific T cell lines derived from asymptomatic dogs that lyse infected macrophages in a major histocompatibility complex-restricted manner. Eur J Immunol 1995; 25:1594-600. [PMID: 7614987 DOI: 10.1002/eji.1830250619] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Protective immunity to leishmaniasis has been demonstrated in murine models to be mediated by T cells and the cytokines they produce. We have previously shown that resistance to experimental Leishmania infantum infection in the dog, a natural host and reservoir of the parasite, is associated with the proliferation of peripheral blood mononuclear cells (PBMC) to parasite antigen and to the production of interleukin-2 and tumour necrosis factor. In this study we show that PBMC from asymptomatic experimentally infected dogs produce interferon-gamma upon parasite antigen-specific stimulation, whereas lymphocytes from symptomatic dogs do not. In addition, we report for the first time the lysis of L. infantum-infected macrophages by PBMC from asymptomatic dogs and by parasite-specific T cell lines derived from these animals. These T cell lines were generated by restimulation in vitro with parasite soluble antigen and irradiated autologous PBMC as antigen-presenting cells. We show that lysis of infected macrophages by T cell lines is major histocompatibility complex restricted. Characterization of parasite-specific cytotoxic T cell lines revealed that the responding cells are CD8+. However, for some animals, CD4+ T cells that lyse infected macrophages were also found. In contrast to asymptomatic dogs, lymphocytes from symptomatic dogs failed to proliferate and produce interferon-gamma after Leishmania antigen stimulation in vitro and were not capable of lysing infected macrophages. These results suggest that both the production of interferon-gamma and the destruction of the parasitized host cells by Leishmania-specific T cells play an important role in resistance to visceral leishmaniasis.
Collapse
Affiliation(s)
- E Pinelli
- Department of Immunology, Faculty of Veterinary Medicine, University of Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
20
|
da Conceição-Silva F, Perlaza BL, Louis JA, Romero P. Leishmania major infection in mice primes for specific major histocompatibility complex class I-restricted CD8+ cytotoxic T cell responses. Eur J Immunol 1994; 24:2813-7. [PMID: 7957573 DOI: 10.1002/eji.1830241135] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This report shows that lymphoid tissues of mice which have resolved a primary infection with Leisihmania major contain parasite-specific major histocompatibility complex (MHC) class I-restricted cytolytic CD8+ T cell precusors that can be expanded after specific restimulation in vitro with syngeneic antigen-presenting cells pulsed with a cyanogen bromide digest of L. major. In H-2b mice, two distinct populations of CD8+ T cells were identified which both lysed target cells pulsed with L. major-derived peptides but were restricted by a different H-2b class I gene product. Interestingly, these two populations appear to recognize different parasite-derived peptides. It is noteworthy that one Kb-restricted CD8+ T cell line was able to specifically lyse syngeneic macrophages infected with viable L. major, indicating that some L. major-derived peptides may reach the MHC class I pathway of presentation from the phagolysosomal compartment where the parasites are confined in infected macrophages. The importance of these parasite-specific MHC class I restricted cytolytic CD8+ T cells for the elimination of L. major by the infected host remains to be determined.
Collapse
Affiliation(s)
- F da Conceição-Silva
- WHO-Immunology Research and Training Centre, University of Lausanne, Epalinges, Switzerland
| | | | | | | |
Collapse
|
21
|
Stefani MM, Müller I, Louis JA. Leishmania major-specific CD8+ T cells are inducers and targets of nitric oxide produced by parasitized macrophages. Eur J Immunol 1994; 24:746-52. [PMID: 7510243 DOI: 10.1002/eji.1830240338] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Lines of Leishmania major-specific CD8+ T cells were derived from the lymph nodes and spleens of CBA mice, immune following resolution of a primary infection, 7 days after secondary challenge with viable L. major. Specific stimulation of these CD8+ T cells by bone marrow-derived macrophages infected with L. major led to the release of interferon-gamma by CD8+ T cells and nitric oxide by macrophages. Interestingly, the nitric oxide released by bone marrow-derived macrophages down-regulated the production of interferon-gamma by specifically activated CD8+ T cells. The proliferation and long-term maintenance of these parasite-specific CD8+ T cells was impaired by the nitric oxide produced by stimulating infected macrophages as a result of cytokines released by activated stimulating infected macrophages as a result of cytokines released by activated CD8+ T cells. Taken together, the results indicate that L. major-specific CD8+ T cells are sensitive to the toxic effect of the nitric oxide that they induce.
Collapse
Affiliation(s)
- M M Stefani
- WHO Immunology Research, University of Lausanne, Epalinges, Switzerland
| | | | | |
Collapse
|
22
|
Lang T, de Chastellier C, Frehel C, Hellio R, Metezeau P, Leao SDS, Antoine JC. Distribution of MHC class I and of MHC class II molecules in macrophages infected with Leishmania amazonensis. J Cell Sci 1994; 107 ( Pt 1):69-82. [PMID: 8175924 DOI: 10.1242/jcs.107.1.69] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Macrophages, being apparently the only cells that in vivo allow the growth of the intracellular pathogen Leishmania, are likely candidates to present antigens to Leishmania-specific CD4+ and CD8+ T lymphocytes, known to be involved in the resolution or in the development of lesions induced by these parasites, and recognizing processed antigens bound to MHC class I and MHC class II molecules, respectively. In the present study, we analysed by confocal microscopy and by immunoelectron microscopy the subcellular distribution of both MHC class I and class II molecules in mouse (Balb/c and C57BL/6 strains) bone marrow-derived macrophages infected for 12 to 48 hours with Leishmania amazonensis amastigotes and activated with gamma interferon to determine the intracellular sites where Leishmania antigens and MHC molecules meet and can possibly interact. Double labelings with anti-MHC molecule antibodies and with either propidium iodide or an anti-amastigote antibody allowed localization of MHC molecules with regard to the endocytic compartments housing Leishmania amastigotes, organelles known as the parasitophorous vacuoles (PV) and which most likely contain the highest concentration of parasite antigens in the host cell. Both uninfected and infected macrophages from Balb/c mice expressed the MHC class I molecules H-2Kd and H-2Dd on their cell surface but no significant amount of these molecules could be detected in the PV, which indicates that, if infected macrophages play a role in the induction of Leishmania-specific CD8+ T lymphocytes, PV are probably not loading compartments for MHC class I molecules. In contrast, MHC class II molecules were found to be associated with the PV membranes as shown previously with microscopic techniques at lower resolution (Antoine et al. Infect. Immun. 59, 764–775, 1991). In addition, we show here that, 48 hours after infection of Balb/c macrophages, in about 90% of PV containing MHC class II molecules, the latter were mainly or solely localized at the attachment zone of amastigotes to PV membranes. This peculiar distribution, especially well demonstrated using confocal microscopy, was confirmed by subcellular fluorescence cytometry of infected macrophages stained for the MHC class II molecules. The following data agree with the idea that PV-associated MHC class II molecules establish specific interactions with plasma membrane components of amastigotes. First, the polarized localization of class II appeared specific to these molecules, since the distribution of the lysosomal glycoproteins Igp110 and Igp120, of the macrosialin (a macrophage-specific marker of endocytic compartments) and of the GTP-binding protein rab7p, shown here as being PV membrane components, was homogeneous.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- T Lang
- Unité d'Immunophysiologie Cellulaire, Institut Pasteur, Paris, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Mice homozygous for a beta 2-microglobulin (beta 2-m) gene disruption lack the beta 2-m protein and are deficient in functional major histocompatibility complex class I (MHC I) molecules. The mutant mice have normal numbers of CD4+8- T helper cells but lack MHC I-directed CD4-8+ alpha/beta T cells. The beta 2-m mutant and wild-type mice were infected with Leishmania major or L. mexicana, which cause cutaneous leishmaniasis in the Old and New World, respectively. In both mutant and wild-type mice, the infection with L. major was controlled at a low level of parasitization, while L. mexicana caused a progressive disease. Assuming the absence of compensatory mechanisms, it is concluded that MHC I-directed CD8+ T cells are not important for the course of a Leishmania infection, supporting the prevailing view that control or exacerbation of the disease is modulated by type 1 (TH1) or type 2 (TH2) CD4+8- T cells, respectively.
Collapse
Affiliation(s)
- P Overath
- Max-Planck-Institut für Biologie, Abteilung Membranbiochemie, Tübingen, Germany
| | | |
Collapse
|