1
|
Para R, Romero R, Miller D, Galaz J, Done B, Peyvandipour A, Gershater M, Tao L, Motomura K, Ruden DM, Isherwood J, Jung E, Kanninen T, Pique-Regi R, Tarca AL, Gomez-Lopez N. The Distinct Immune Nature of the Fetal Inflammatory Response Syndrome Type I and Type II. Immunohorizons 2021; 5:735-751. [PMID: 34521696 PMCID: PMC9394103 DOI: 10.4049/immunohorizons.2100047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/05/2021] [Indexed: 11/19/2022] Open
Abstract
Fetal inflammatory response syndrome (FIRS) is strongly associated with neonatal morbidity and mortality and can be classified as type I or type II. Clinically, FIRS type I and type II are considered as distinct syndromes, yet the molecular underpinnings of these fetal inflammatory responses are not well understood because of their low prevalence and the difficulty of postdelivery diagnosis. In this study, we performed RNA sequencing of human cord blood samples from preterm neonates diagnosed with FIRS type I or FIRS type II. We found that FIRS type I was characterized by an upregulation of host immune responses, including neutrophil and monocyte functions, together with a proinflammatory cytokine storm and a downregulation of T cell processes. In contrast, FIRS type II comprised a mild chronic inflammatory response involving perturbation of HLA transcripts, suggestive of fetal semiallograft rejection. Integrating single-cell RNA sequencing-derived signatures with bulk transcriptomic data confirmed that FIRS type I immune responses were mainly driven by monocytes, macrophages, and neutrophils. Last, tissue- and cell-specific signatures derived from the BioGPS Gene Atlas further corroborated the role of myeloid cells originating from the bone marrow in FIRS type I. Collectively, these data provide evidence that FIRS type I and FIRS type II are driven by distinct immune mechanisms; whereas the former involves the innate limb of immunity consistent with host defense, the latter resembles a process of semiallograft rejection. These findings shed light on the fetal immune responses caused by infection or alloreactivity that can lead to deleterious consequences in neonatal life.
Collapse
Affiliation(s)
- Robert Para
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI;
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI
- Detroit Medical Center, Detroit, MI
- Department of Obstetrics and Gynecology, Florida International University, Miami, FL
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Bogdan Done
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Azam Peyvandipour
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI
| | - Meyer Gershater
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Li Tao
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Kenichiro Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Douglas M Ruden
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Jenna Isherwood
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Tomi Kanninen
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Roger Pique-Regi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI
| | - Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI;
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI; and
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI;
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
4
|
Gyotoku T, Fukui Y, Sasazuki T. An endogenously processed self peptide and the corresponding exogenous peptide bound to the same MHC class II molecule could be distinct ligands for TCR with different kinetic stability. Eur J Immunol 1998; 28:4050-61. [PMID: 9862341 DOI: 10.1002/(sici)1521-4141(199812)28:12<4050::aid-immu4050>3.0.co;2-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Immunization with self peptides often elicits activation of CD4+ T cells in vivo. Although such peptides have been suggested to be derived from minor self determinants or self antigens sequestered from the immune system, we found that immunization with Ealpha peptide (Ealpha52-68), a major self determinant bound to I-Ab molecules, elicits an immune response in Ealpha-transgenic C57BL/6 (Ealpha-B6) mice where Ealpha52-68 is endogenously processed and presented by I-Ab molecules in the thymus and periphery. To better understand this response, a panel of T cell hybridomas raised against exogenous Ealpha52-68 were analyzed for their reactivity to spleen cells from Ealpha-B6 mice. Some hybridomas were stimulated with Ealpha-B6 spleen cells in the absence of exogenous Ealpha52-68, whereas others were not stimulated with them. The Ealpha52-68/I-Ab complex recognized by the TCR that is expressed on the hybridoma with reactivity to Ealpha-B6 spleen cells was found to be quite stable, whereas the complex recognized by the TCR on the hybridoma specific for the exogenous Ealpha52-68 lost the stimulation activity by incubation the complex at 37 degrees C for 10 min. Stimulation experiments using extensively substituted Ealpha analogue peptides suggested that amino acid residues at positions 57, 58, 60 and 62 of Ealpha52-68 are involved in the interaction with TCR recognizing the Ealpha52-68/I-Ab complex expressed on Ealpha-B6 spleen cells. While amino acid substitutions at positions 60 and 62 also affected the recognition of TCR specific for exogenous Ealpha52-68, all or many amino acid substitutions were allowed at position 58 or 57, respectively, without impairing the TCR recognition. Taken together, these results suggest that endogenously processed self peptide and the corresponding exogenous peptide bound to the same MHC class II molecule could be distinct TCR ligands with different kinetic stability and probably with different configuration.
Collapse
Affiliation(s)
- T Gyotoku
- Department of Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
6
|
Kasai M, Hirokawa K, Kajino K, Ogasawara K, Tatsumi M, Hermel E, Monaco JJ, Mizuochi T. Difference in antigen presentation pathways between cortical and medullary thymic epithelial cells. Eur J Immunol 1996; 26:2101-7. [PMID: 8814253 DOI: 10.1002/eji.1830260921] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Antigen presentation by thymic epithelial cells (TEC) to T cells that undergo maturation is one of the major events in the selection of the T cell repertoire. We have already reported that medullary TEC lines (mTEC) established from newborn C57BL/6 (H-2b) mice are able to present a soluble antigen, ovalbumin (OVA), to OVA-specific, I-Ab restricted helper T cell lines but cortical TEC (cTEC) lines are not (Mizuochi, T. et al., J. Exp. Med. 1992. 175: 1601). In this report, to clarify the cause of this difference, we analyzed the biochemical nature as well as the distribution of both major histocompatibility complex (MHC) class II molecules and invariant chains (Ii) in both TEC by immunoprecipitation and laser confocal scanning microscopic analysis, as well as the expression of mRNA encoding H-2Ma or H-2Mb. Our results demonstrate that cTEC and mTEC are both able to present peptide antigens to peptide-specific, I-Ab-restricted helper T cell hybridoma and are able to present class II MHC alloantigens to an I-Ab-specific T cell line, that mRNA for H-2Ma and H-2Mb are expressed in both TEC, that cTEC and mTEC apparently incorporate tetramethylrhodamine isothiocyanate-labeled OVA in the same manner, and that the SDS-stable MHC class II molecules, onto which peptides were loaded, are formed in both cTEC and mTEC. However, these molecules were more rapidly degraded in mTEC than in cTEC. In addition, two Ii-derived polypeptides of approximately 21 kDa and 10 kDa were precipitated by the anti-class II monoclonal antibody Y3P; 10-kDa polypeptides were detected in the both TEC, while 21-kDa polypeptides were detected only in cTEC. Finally, beta chains of MHC class II with less sialylated oligosaccharides were precipitated from the cell surface of cTEC. Taken together, these results suggest that there are substantial differences in the antigen-presenting pathways of cTEC and mTEC, and these difference might be responsible for T cell selection events in the thymus.
Collapse
Affiliation(s)
- M Kasai
- Department of Bacterial and Blood Products, National Institute of Health, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|