Agenès F, Freitas AA. Transfer of small resting B cells into immunodeficient hosts results in the selection of a self-renewing activated B cell population.
J Exp Med 1999;
189:319-30. [PMID:
9892614 PMCID:
PMC2192996 DOI:
10.1084/jem.189.2.319]
[Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
We studied the role of bone marrow B cell production in the renewal of peripheral B cells and the feedback mechanisms that control the entry of newly formed B cells into the peripheral B cell pools. When resting lymph node B cells are injected into B cell-deficient hosts, a fraction of the transferred cells expands and constitutes a highly selected population that survives for prolonged periods of time by continuous cell renewal at the periphery. Although the number of donor B cells recovered is low, a significant fraction shows an activated phenotype, and the serum immunoglobulin (Ig)M levels are as in normal mice. This population of activated B cells is resistant to replacement by a new cohort of B cells and is able to feedback regulate both the entry of newly formed B cells into the peripheral pool and terminal differentiation. These findings suggest that peripheral B cell selection follows the first come, first served rule and that IgM-secreting cells are generated from a pool of stable activated B cells with an independent homeostasis.
Collapse