1
|
Honjo K, Won WJ, King RG, Ianov L, Crossman DK, Easlick JL, Shakhmatov MA, Khass M, Vale AM, Stephan RP, Li R, Davis RS. Fc Receptor-Like 6 (FCRL6) Discloses Progenitor B Cell Heterogeneity That Correlates With Pre-BCR Dependent and Independent Pathways of Natural Antibody Selection. Front Immunol 2020; 11:82. [PMID: 32117244 PMCID: PMC7033751 DOI: 10.3389/fimmu.2020.00082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/13/2020] [Indexed: 11/24/2022] Open
Abstract
B-1a cells produce "natural" antibodies (Abs) to neutralize pathogens and clear neo self-antigens, but the fundamental selection mechanisms that shape their polyreactive repertoires are poorly understood. Here, we identified a B cell progenitor subset defined by Fc receptor-like 6 (FCRL6) expression, harboring innate-like defense, migration, and differentiation properties conducive for natural Ab generation. Compared to FCRL6- pro B cells, the repressed mitotic, DNA damage repair, and signaling activity of FCRL6+ progenitors, yielded VH repertoires with biased distal Ighv segment accessibility, constrained diversity, and hydrophobic and charged CDR-H3 sequences. Beyond nascent autoreactivity, VH11 productivity, which predominates phosphatidylcholine-specific B-1a B cell receptors (BCRs), was higher for FCRL6+ cells as was pre-BCR formation, which was required for Myc induction and VH11, but not VH12, B-1a development. Thus, FCRL6 revealed unexpected heterogeneity in the developmental origins, regulation, and selection of natural Abs at the pre-BCR checkpoint with implications for autoimmunity and lymphoproliferative disorders.
Collapse
MESH Headings
- Animals
- Antibodies/immunology
- Antibodies/metabolism
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Female
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/immunology
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/immunology
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Phosphatidylcholines/immunology
- Phosphatidylcholines/metabolism
- Precursor Cells, B-Lymphoid/immunology
- Precursor Cells, B-Lymphoid/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Fc/genetics
- Receptors, Fc/immunology
- Receptors, Fc/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Kazuhito Honjo
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Woong-Jai Won
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rodney G. King
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Lara Ianov
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - David K. Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Juliet L. Easlick
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mikhail A. Shakhmatov
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mohamed Khass
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Genetic Engineering and Biotechnology Division, National Research Center, Cairo, Egypt
| | - Andre M. Vale
- Program in Immunobiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Robert P. Stephan
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ran Li
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Randall S. Davis
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
2
|
Arends T, Dege C, Bortnick A, Danhorn T, Knapp JR, Jia H, Harmacek L, Fleenor CJ, Straign D, Walton K, Leach SM, Feeney AJ, Murre C, O'Connor BP, Hagman JR. CHD4 is essential for transcriptional repression and lineage progression in B lymphopoiesis. Proc Natl Acad Sci U S A 2019; 116:10927-10936. [PMID: 31085655 PMCID: PMC6561196 DOI: 10.1073/pnas.1821301116] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cell lineage specification is a tightly regulated process that is dependent on appropriate expression of lineage and developmental stage-specific transcriptional programs. Here, we show that Chromodomain Helicase DNA-binding protein 4 (CHD4), a major ATPase/helicase subunit of Nucleosome Remodeling and Deacetylase Complexes (NuRD) in lymphocytes, is essential for specification of the early B cell lineage transcriptional program. In the absence of CHD4 in B cell progenitors in vivo, development of these cells is arrested at an early pro-B-like stage that is unresponsive to IL-7 receptor signaling and unable to efficiently complete V(D)J rearrangements at Igh loci. Our studies confirm that chromatin accessibility and transcription of thousands of gene loci are controlled dynamically by CHD4 during early B cell development. Strikingly, CHD4-deficient pro-B cells express transcripts of many non-B cell lineage genes, including genes that are characteristic of other hematopoietic lineages, neuronal cells, and the CNS, lung, pancreas, and other cell types. We conclude that CHD4 inhibits inappropriate transcription in pro-B cells. Together, our data demonstrate the importance of CHD4 in establishing and maintaining an appropriate transcriptome in early B lymphopoiesis via chromatin accessibility.
Collapse
Affiliation(s)
- Tessa Arends
- Program in Molecular Biology, University of Colorado Denver, Aurora, CO 80045
| | - Carissa Dege
- Department of Immunology and Microbiology, University of Colorado Denver, Aurora, CO 80045
| | - Alexandra Bortnick
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093
| | - Thomas Danhorn
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206
| | - Jennifer R Knapp
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206
| | - Haiqun Jia
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Laura Harmacek
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206
| | - Courtney J Fleenor
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Desiree Straign
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Kendra Walton
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206
| | - Sonia M Leach
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Ann J Feeney
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Cornelis Murre
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093
| | - Brian P O'Connor
- Department of Immunology and Microbiology, University of Colorado Denver, Aurora, CO 80045
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - James R Hagman
- Program in Molecular Biology, University of Colorado Denver, Aurora, CO 80045;
- Department of Immunology and Microbiology, University of Colorado Denver, Aurora, CO 80045
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| |
Collapse
|
3
|
Verma-Gaur J, Torkamani A, Schaffer L, Head SR, Schork NJ, Feeney AJ. Noncoding transcription within the Igh distal V(H) region at PAIR elements affects the 3D structure of the Igh locus in pro-B cells. Proc Natl Acad Sci U S A 2012; 109:17004-9. [PMID: 23027941 PMCID: PMC3479473 DOI: 10.1073/pnas.1208398109] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Noncoding sense and antisense germ-line transcription within the Ig heavy chain locus precedes V(D)J recombination and has been proposed to be associated with Igh locus accessibility, although its precise role remains elusive. However, no global analysis of germ-line transcription throughout the Igh locus has been done. Therefore, we performed directional RNA-seq, demonstrating the locations and extent of both sense and antisense transcription throughout the Igh locus. Surprisingly, the majority of antisense transcripts are localized around two Pax5-activated intergenic repeat (PAIR) elements in the distal IghV region. Importantly, long-distance loops measured by chromosome conformation capture (3C) are observed between these two active PAIR promoters and Eμ, the start site of Iμ germ-line transcription, in a lineage- and stage-specific manner, even though this antisense transcription is Eμ-independent. YY1(-/-) pro-B cells are greatly impaired in distal V(H) gene rearrangement and Igh locus compaction, and we demonstrate that YY1 deficiency greatly reduces antisense transcription and PAIR-Eμ interactions. ChIP-seq shows high level YY1 binding only at Eμ, but low levels near some antisense promoters. PAIR-Eμ interactions are not disrupted by DRB, which blocks transcription elongation without disrupting transcription factories once they are established, but the looping is reduced after heat-shock treatment, which disrupts transcription factories. We propose that transcription-mediated interactions, most likely at transcription factories, initially compact the Igh locus, bringing distal V(H) genes close to the DJ(H) rearrangement which is adjacent to Eμ. Therefore, we hypothesize that one key role of noncoding germ-line transcription is to facilitate locus compaction, allowing distal V(H) genes to undergo efficient rearrangement.
Collapse
Affiliation(s)
- Jiyoti Verma-Gaur
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Ali Torkamani
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, and The Scripps Translational Science Institute, La Jolla, CA 92037; and
| | - Lana Schaffer
- Next Generation Sequencing Core Facility, The Scripps Research Institute, La Jolla, CA 92037
| | - Steven R. Head
- Next Generation Sequencing Core Facility, The Scripps Research Institute, La Jolla, CA 92037
| | - Nicholas J. Schork
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, and The Scripps Translational Science Institute, La Jolla, CA 92037; and
| | - Ann J. Feeney
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
4
|
Bossen C, Mansson R, Murre C. Chromatin topology and the regulation of antigen receptor assembly. Annu Rev Immunol 2012; 30:337-56. [PMID: 22224771 DOI: 10.1146/annurev-immunol-020711-075003] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During an organism's ontogeny and in the adult, each B and T lymphocyte generates a unique antigen receptor, thereby creating the organism's ability to respond to a vast number of different antigens. The antigen receptor loci are organized into distinct regions that contain multiple variable (V), diversity (D), and/or joining (J) and constant (C) coding elements that are scattered across large genomic regions. In this review, we discuss the epigenetic modifications that take place in the different antigen receptor loci, the chromatin structure adopted by the antigen receptor loci to allow recombination of elements separated by large genomic distances, and the relationship between epigenetics and chromatin structure and how they relate to the generation of antigen receptor diversity.
Collapse
Affiliation(s)
- Claudia Bossen
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, California 92093-0377, USA
| | | | | |
Collapse
|
5
|
Abstract
Cells of the immune system are generated through a developmental cascade that begins in haematopoietic stem cells. During this process, gene expression patterns are programmed in a series of stages that bring about the restriction of cell potential, ultimately leading to the formation of specialized innate immune cells and mature lymphocytes that express antigen receptors. These events involve the regulation of both gene expression and DNA recombination, mainly through the control of chromatin accessibility. In this Review, we describe the epigenetic changes that mediate this complex differentiation process and try to understand the logic of the programming mechanism.
Collapse
|
6
|
Matheson LS, Corcoran AE. Local and global epigenetic regulation of V(D)J recombination. Curr Top Microbiol Immunol 2011; 356:65-89. [PMID: 21695632 DOI: 10.1007/82_2011_137] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Despite using the same Rag recombinase machinery expressed in both lymphocyte lineages, V(D)J recombination of immunoglobulins only occurs in B cells and T cell receptor recombination is confined to T cells. This vital segregation of recombination targets is governed by the coordinated efforts of several epigenetic mechanisms that control both the general chromatin accessibility of these loci to the Rag recombinase, and the movement and synapsis of distal gene segments in these enormous multigene AgR loci, in a lineage and developmental stage-specific manner. These mechanisms operate both locally at individual gene segments and AgR domains, and globally over large distances in the nucleus. Here we will discuss the roles of several epigenetic components that regulate V(D)J recombination of the immunoglobulin heavy chain locus in B cells, both in the context of the locus itself, and of its 3D nuclear organization, focusing in particular on non-coding RNA transcription. We will also speculate about how several newly described epigenetic mechanisms might impact on AgR regulation.
Collapse
Affiliation(s)
- Louise S Matheson
- Laboratory of Chromatin and Gene Expression, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | | |
Collapse
|
7
|
Abstract
Immune receptor gene expression is regulated by a series of developmental events that modify their accessibility in a locus, cell type, stage and allele-specific manner. This is carried out by a programmed combination of many different molecular mechanisms, including region-wide replication timing, changes in nuclear localization, chromatin contraction, histone modification, nucleosome positioning and DNA methylation. These modalities ultimately work by controlling steric interactions between receptor loci and the recombination machinery.
Collapse
Affiliation(s)
- Yehudit Bergman
- Department of Developmental Biology and Cancer Research, The Hebrew University, Hadassah Medical School, Jerusalem 91120, Israel.
| | | |
Collapse
|
8
|
Corcoran AE. The epigenetic role of non-coding RNA transcription and nuclear organization in immunoglobulin repertoire generation. Semin Immunol 2010; 22:353-61. [PMID: 20863715 DOI: 10.1016/j.smim.2010.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 08/12/2010] [Indexed: 01/04/2023]
Abstract
Within the lymphocyte lineages, restriction of immunoglobulin V(D)J recombination to B cells and T cell receptor (TCR) recombination to T cells is governed by a myriad of epigenetic mechanisms that control the chromatin accessibility of these loci to the Rag recombinase machinery in a lineage and developmental stage-specific manner. These mechanisms operate both locally at individual gene segments, and globally over large chromatin domains in these enormous multigene loci. In this review we will explore the established and emerging roles of three aspects of epigenetic regulation that contribute to large-scale control of the immunoglobulin heavy chain locus in B cells: non-coding RNA transcription, regulatory elements, and nuclear organization. Recent conceptual and technological advances have produced a paradigm shift in our thinking about how these components regulate gene expression in general and V(D)J recombination in particular.
Collapse
Affiliation(s)
- Anne E Corcoran
- Laboratory of Chromatin and Gene Expression, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
9
|
Featherstone K, Wood AL, Bowen AJ, Corcoran AE. The mouse immunoglobulin heavy chain V-D intergenic sequence contains insulators that may regulate ordered V(D)J recombination. J Biol Chem 2010; 285:9327-9338. [PMID: 20100833 DOI: 10.1074/jbc.m109.098251] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
During immunoglobulin heavy chain (Igh) V(D)J recombination, D to J precedes V to DJ recombination in an ordered manner, controlled by differential chromatin accessibility of the V and DJ regions and essential for correct antibody assembly. However, with the exception of the intronic enhancer Emu, which regulates D to J recombination, cis-acting regulatory elements have not been identified. We have assembled the sequence of a strategically located 96-kb V-D intergenic region in the mouse Igh and analyzed its activity during lymphocyte development. We show that Emu-dependent D antisense transcription, proposed to open chromatin before D to J recombination, extends into the V-D region for more than 30 kb in B cells before, during, and after V(D)J recombination and in T cells but terminates 40 kb from the first V gene. Thus, subsequent V antisense transcription before V to DJ recombination is actively prevented and must be independently activated. To find cis-acting elements that regulate this differential chromatin opening, we identified six DNase I-hypersensitive sites (HSs) in the V-D region. One conserved HS upstream of the first D gene locally regulates D genes. Two further conserved HSs near the D region mark a sharp decrease in antisense transcription, and both HSs bind CTCF in vivo. Further, they both possess enhancer-blocking activity in vivo. Thus, we propose that they are enhancer-blocking insulators preventing Emu-dependent chromatin opening extending into the V region. Thus, they are the first elements identified that may control ordered V(D)J recombination and correct assembly of antibody genes.
Collapse
Affiliation(s)
- Karen Featherstone
- Laboratory of Chromatin and Gene Expression, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Andrew L Wood
- Laboratory of Chromatin and Gene Expression, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Adam J Bowen
- Laboratory of Chromatin and Gene Expression, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Anne E Corcoran
- Laboratory of Chromatin and Gene Expression, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom.
| |
Collapse
|
10
|
Bolland DJ, Wood AL, Corcoran AE. Large-Scale Chromatin Remodeling at the Immunoglobulin Heavy Chain Locus: A Paradigm for Multigene Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 650:59-72. [DOI: 10.1007/978-1-4419-0296-2_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Ono M, Nose M. Persistent expression of an unproductive immunoglobulin heavy chain allele with DH-JH-gamma configuration in peripheral tissues. APMIS 2008; 115:1350-6. [PMID: 18184404 DOI: 10.1111/j.1600-0463.2007.apm_870.xml.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genomic recombination events, including VDJ recombination (VDJR) and class-switch recombination (CSR), are indispensable for the adaptation and progression of the acquired immune system. These processes are completed by orderly, temporal onsets of the gene rearrangements along with B-cell differentiation. The presence of various premature transcripts of immunoglobulin heavy chain (IgH) alleles has been demonstrated during B-cell ontogeny. These include D(H)-J(H) (DJ)-mu, J(H)-mu, and sterile transcripts of C(H). Since these transcripts can be detected during the onset of VDJR and CSR, their presence is believed to reflect a structural change in the genome, favoring VDJR and CSR. This report presents evidence of persistent DJ transcription and onset of CSR on an unproductive IgH allele in peripheral tissues. Nucleotide sequence analysis revealed that these transcripts showed DJ-gamma (Dgamma) configuration and that characteristics of the variable region were essentially the same as those of the DJ-mu transcript previously described. It was noted that the small intestine abundantly expresses Dgamma transcripts with gamma2b and gamma1 isotypes of the IgH constant region. The present findings indicate the onset of CSR preceding V(H) to DJ joining in an unproductive IgH allele of the peripheral B cell and the specificity for the gut-associated condition for B-cell differentiation in the small intestine.
Collapse
Affiliation(s)
- Masao Ono
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | |
Collapse
|
12
|
Bolland DJ, Wood AL, Afshar R, Featherstone K, Oltz EM, Corcoran AE. Antisense intergenic transcription precedes Igh D-to-J recombination and is controlled by the intronic enhancer Emu. Mol Cell Biol 2007; 27:5523-33. [PMID: 17526723 PMCID: PMC1952079 DOI: 10.1128/mcb.02407-06] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
V(D)J recombination is believed to be regulated by alterations in chromatin accessibility to the recombinase machinery, but the mechanisms responsible remain unclear. We previously proposed that antisense intergenic transcription, activated throughout the mouse Igh VH region in pro-B cells, remodels chromatin for VH-to-DJH recombination. Using RNA fluorescence in situ hybridization, we now show that antisense intergenic transcription occurs throughout the Igh DHJH region before D-to-J recombination, indicating that this is a widespread process in V(D)J recombination. Transcription initiates near the Igh intronic enhancer Emu and is abrogated in mice lacking this enhancer, indicating that Emu regulates DH antisense transcription. Emu was recently demonstrated to regulate DH-to-JH recombination of the Igh locus. Together, these data suggest that Emu controls DH-to-JH recombination by activating this form of germ line Igh transcription, thus providing a long-range, processive mechanism by which Emu can regulate chromatin accessibility throughout the DH region. In contrast, Emu deletion has no effect on VH antisense intergenic transcription, which is rarely associated with DH antisense transcription, suggesting differential regulation and separate roles for these processes at sequential stages of V(D)J recombination. These results support a directive role for antisense intergenic transcription in enabling access to the recombination machinery.
Collapse
Affiliation(s)
- Daniel J Bolland
- Laboratory of Chromatin and Gene Expression, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | | | | | | | | | | |
Collapse
|
13
|
Afshar R, Pierce S, Bolland DJ, Corcoran A, Oltz EM. Regulation of IgH gene assembly: role of the intronic enhancer and 5'DQ52 region in targeting DHJH recombination. THE JOURNAL OF IMMUNOLOGY 2006; 176:2439-47. [PMID: 16456003 DOI: 10.4049/jimmunol.176.4.2439] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The assembly of Ag receptor genes by V(D)J recombination is regulated by transcriptional promoters and enhancers which control chromatin accessibility at Ig and TCR gene segments to the RAG-1/RAG-2 recombinase complex. Paradoxically, germline deletions of the IgH enhancer (Emu) only modestly reduce D(H)-->J(H) rearrangements when assessed in peripheral B cells. However, deletion of Emu severely impairs recombination of V(H) gene segments, which are located over 100 kb away. We now test two alternative explanations for the minimal effect of Emu deletions on primary D(H)-->J(H) rearrangement: 1) Accessibility at the D(H)J(H) cluster is controlled by a redundant cis-element in the absence of Emu. One candidate for this element lies 5' to D(Q52) (PD(Q52)) and exhibits promoter/enhancer activity in pre-B cells. 2) In contrast to endpoint B cells, D(H)-->J(H) recombination may be significantly impaired in pro-B cells from enhancer-deficient mice. To elucidate the roles of PD(Q52) and Emu in the regulation of IgH locus accessibility, we generated mice with targeted deletions of these elements. We report that the defined PD(Q52) promoter is dispensable for germline transcription and recombination of the D(H)J(H) cluster. In contrast, we demonstrate that Emu directly regulates accessibility of the D(H)J(H) region. These findings reveal a significant role for Emu in the control mechanisms that activate IgH gene assembly and suggest that impaired V(H)-->D(H)J(H) rearrangement in enhancer-deficient cells may be a downstream consequence of the primary block in D(H)-->J(H) recombination.
Collapse
Affiliation(s)
- Roshi Afshar
- Department of Microbiology/Immunology, Vanderbilt University Medical School, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- D G Hesslein
- Department of Cell Biology and Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8011, USA.
| | | |
Collapse
|
15
|
Nitschke L, Kestler J, Tallone T, Pelkonen S, Pelkonen J. Deletion of the DQ52 element within the Ig heavy chain locus leads to a selective reduction in VDJ recombination and altered D gene usage. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:2540-52. [PMID: 11160315 DOI: 10.4049/jimmunol.166.4.2540] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The process of V(D)J recombination that leads to the assembly of Ig gene segments is tightly controlled during B cell differentiation. Two germline transcripts, one of which (mu(0)) originates from the promoter region of DQ52, may control the accessibility of the heavy chain locus. Here, we present the analysis of a mouse line in which the DQ52 gene together with its regulatory sequences is deleted by a Cre/loxP-based strategy. In F(1) (DQ52(+/-)) mice, the use of the JH3 and JH4 elements in DJ or VDJ junctions of the DQ52(-) allele was strongly reduced in both the bone marrow pre-B and spleen cells, while the JH1 and JH2 elements were used with normal frequencies. In addition, IgM(+) B cells of bone marrow and spleen used the DQ52(-) allele less frequently. On DJ joints of the DQ52(-) allele, there was 2 times less processing of JH3 ends, which resulted in clearly increased addition of P nucleotides. Although the use of D elements in DJ joints was quite similar, an altered D repertoire was found in VDJ joints of the DQ52(-) allele. In splenic B cells of the DQ52(-/-) mouse the amino acid distribution of the CDR3 was skewed, probably to compensate for the altered processing of JH3 ends. Thus, we have shown an interesting selective effect of the DQ52 region on controlling accessibility to 3' JH elements on the Ig locus, which also seems to influence the processing of DJ joints. We propose a model in which the DQ52 promoter region enhances the induction of secondary DJ rearrangements.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Amino Acids/analysis
- Animals
- Antibody Diversity/genetics
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/pathology
- Base Sequence
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/metabolism
- DNA, Complementary/isolation & purification
- Gene Deletion
- Gene Rearrangement, B-Lymphocyte, Heavy Chain
- Gene Targeting
- Genes, Immunoglobulin
- Genetic Markers/immunology
- Immunoglobulin Heavy Chains/biosynthesis
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/metabolism
- Immunoglobulin Joining Region/biosynthesis
- Immunoglobulin Joining Region/genetics
- Immunoglobulin Joining Region/metabolism
- Immunoglobulin Variable Region/biosynthesis
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/metabolism
- Immunoglobulin mu-Chains/genetics
- Immunoglobulin mu-Chains/isolation & purification
- Lymphocyte Count
- Lymphopenia/genetics
- Lymphopenia/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Sequence Data
- Protein Processing, Post-Translational/genetics
- Protein Processing, Post-Translational/immunology
- Regulatory Sequences, Nucleic Acid/immunology
- Transcription, Genetic/immunology
Collapse
Affiliation(s)
- L Nitschke
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany.
| | | | | | | | | |
Collapse
|
16
|
Fukita Y, Jacobs H, Rajewsky K. Somatic hypermutation in the heavy chain locus correlates with transcription. Immunity 1998; 9:105-14. [PMID: 9697840 DOI: 10.1016/s1074-7613(00)80592-0] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Three mutant immunoglobulin heavy chain (IgH) insertion mice were generated in which a targeted nonfunctional IgH passenger transgene was either devoid of promoter (pdelta) or was placed under the transcriptional control of either its own RNA polymerase II-dependent IgH promoter (pII) or a RNA polymerase I-dependent promoter (pI). While the transgene mutation-frequency (0.85%) in memory B cells of pI mice was reduced compared to that in pII mice (1.4%), the distribution and the base exchange pattern of point mutations were comparable. In pdelta mice, the mutation frequency was drastically reduced (0.09%). The mutation frequencies correlated with the levels of transgene-specific pre-mRNA expressed in germinal center B cells isolated from the mutant mice.
Collapse
Affiliation(s)
- Y Fukita
- Institute for Genetics, University of Cologne, Germany
| | | | | |
Collapse
|
17
|
Rapid Molecular Cloning of Rearrangements of the IGHJ Locus Using Long-Distance Inverse Polymerase Chain Reaction. Blood 1997. [DOI: 10.1182/blood.v90.6.2456.2456_2456_2464] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Clonal rearrangements of the Ig heavy chain (IGH ) locus consisting of either intrachromosomal (VDJ ) rearrangements or interchromosomal translocations are a consistent feature of all B-cell malignancies and may be used both diagnostically and to monitor response to therapy. Many of these rearrangements are targeted to the IGHJ segments, but only some can be amplified with regular polymerase chain reaction (PCR) techniques. To permit PCR amplification of potentially all IGHJ rearrangements, we have devised a method incorporating self-ligation of restriction endonuclease-digested DNA fragments with long-distance PCR (long-distance, inverse PCR [LDI-PCR]). We show here, using only 4 nested oligonucleotide primers, the successful amplification and DNA sequencing of all IGHJ rearrangements up to 5.4 kb in length from a panel of 13 cases and cell lines of various types of B-cell malignancy. In all cases, both VDJ and DJ IGH rearrangements and translocation breakpoints were amplified. Six cases exhibited t(14; 18)(q32; q21). All translocation breakpoints were cloned and sequenced. Three cases exhibited a rearrangement to the BCL2 major breakpoint region (MBR). However, 2 other cases exhibited rearrangements between the MBR and the minor cluster region (mcr). These 2 cases broke within 44 bp of each other, confirming the presence of an additional 3′ BCL2 breakpoint cluster region. The final case fell immediately 3′ of the 3′ UTR of the BCL2 gene adjacent to an Alu repeat. No other BCL2 breakpoints within this region have been reported. Four cases exhibited t(11; 14)(q13; q32). All 3 cases with translocations targeted to the IGHJ segments were successfully amplified and sequenced, including 1 case in which the BCL1 translocation could not be detected by DNA blot using the currently available probes. All three translocation breakpoints fell outside the BCL1 major translocation cluster between 20 and 40 kb telomeric and showed no clustering. Two of the three fell within or adjacent to Alu repeat regions. LDI-PCR is a simple and robust technique that allows PCR amplification of nearly all IGHJ rearrangements.
Collapse
|
18
|
Rapid Molecular Cloning of Rearrangements of the IGHJ Locus Using Long-Distance Inverse Polymerase Chain Reaction. Blood 1997. [DOI: 10.1182/blood.v90.6.2456] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AbstractClonal rearrangements of the Ig heavy chain (IGH ) locus consisting of either intrachromosomal (VDJ ) rearrangements or interchromosomal translocations are a consistent feature of all B-cell malignancies and may be used both diagnostically and to monitor response to therapy. Many of these rearrangements are targeted to the IGHJ segments, but only some can be amplified with regular polymerase chain reaction (PCR) techniques. To permit PCR amplification of potentially all IGHJ rearrangements, we have devised a method incorporating self-ligation of restriction endonuclease-digested DNA fragments with long-distance PCR (long-distance, inverse PCR [LDI-PCR]). We show here, using only 4 nested oligonucleotide primers, the successful amplification and DNA sequencing of all IGHJ rearrangements up to 5.4 kb in length from a panel of 13 cases and cell lines of various types of B-cell malignancy. In all cases, both VDJ and DJ IGH rearrangements and translocation breakpoints were amplified. Six cases exhibited t(14; 18)(q32; q21). All translocation breakpoints were cloned and sequenced. Three cases exhibited a rearrangement to the BCL2 major breakpoint region (MBR). However, 2 other cases exhibited rearrangements between the MBR and the minor cluster region (mcr). These 2 cases broke within 44 bp of each other, confirming the presence of an additional 3′ BCL2 breakpoint cluster region. The final case fell immediately 3′ of the 3′ UTR of the BCL2 gene adjacent to an Alu repeat. No other BCL2 breakpoints within this region have been reported. Four cases exhibited t(11; 14)(q13; q32). All 3 cases with translocations targeted to the IGHJ segments were successfully amplified and sequenced, including 1 case in which the BCL1 translocation could not be detected by DNA blot using the currently available probes. All three translocation breakpoints fell outside the BCL1 major translocation cluster between 20 and 40 kb telomeric and showed no clustering. Two of the three fell within or adjacent to Alu repeat regions. LDI-PCR is a simple and robust technique that allows PCR amplification of nearly all IGHJ rearrangements.
Collapse
|
19
|
Meffre E, LeDeist F, de Saint-Basile G, Deville A, Fougereau M, Fischer A, Schiff C. A non-XLA primary deficiency causes the earliest known defect of B cell differentiation in humans: a comparison with an XLA case. Immunol Lett 1997; 57:93-9. [PMID: 9232432 DOI: 10.1016/s0165-2478(97)00052-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We report a detailed comparison of B cell defects in two patients, one XLA and one non-XLA. Both had severe agammaglobulinemia with a total absence of CD19+ cells in the periphery. In the non-XLA case, CD19 expression was also highly impaired in the bone marrow, resulting in the absence of both B and preB compartments. Early proB cells were present since CD34+CD10+ and some CD19+CD10+ mostly CD34+ were identified, although diminished. By contrast, in the XLA patient the CD34+CD19+ proB cells were increased whereas the CD34-CD19+ preB cell population was low. Semi-quantitative RT-PCR analysis performed on mononuclear bone marrow cells from the non-XLA patient indicated that lambda-like, VpreB, Rag-1, Rag-2 and TdT transcripts expressed during proB cell stages were found at normal levels whereas E2A, CD10, Syk, Pax-5, CD19, Ig alpha, Ig beta, VH-C mu and V kappa-C kappa transcripts characteristic of later stages were severely depressed. By contrast in the XLA patient most of these transcripts were observed in normal amounts. The phenotype of the non-XLA patient resembles that of Pax-5 or Ig beta knock-out mice, but since the coding sequence of both cDNAs were shown to be normal, the blockage might rather result from an altered regulation of one of these genes or from defect of other genes. All these data indicate that the non-XLA patient suffers from a new genetic defect that results in an arrest of differentiation within the proB cell compartment, before the onset of Ig gene rearrangements. From all agammaglobulinemias reported so far, including XLA cases and those resulting from C mu gene defects, the non-XLA patient exhibits the earliest blockage in the B cell differentiation pathway.
Collapse
Affiliation(s)
- E Meffre
- Centre d'Immunologie de Marseille-Luminy, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Meffre E, LeDeist F, de Saint-Basile G, Deville A, Fougereau M, Fischer A, Schiff C. A human non-XLA immunodeficiency disease characterized by blockage of B cell development at an early proB cell stage. J Clin Invest 1996; 98:1519-26. [PMID: 8833898 PMCID: PMC507582 DOI: 10.1172/jci118943] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We report a detailed analysis of a B cell defect affecting a patient girl born from first cousin parents, characterized by a severe non-X-linked agammaglobulinemia with a total absence of CD19- cells in the periphery. In the bone marrow, CD19 expression was also highly impaired, resulting in the absence of both B and preB compartments. By contrast, CD34+CD10+, CD34psiL+, and some CD19+CD10+ mostly CD34+ early proB cells were present, although diminished. Semiquantitative RT-PCR analysis performed on mononuclear bone marrow cells indicated that lambda-like, VpreB, Rag-1, Rag-2, and TdT transcripts expressed during proB cell stages were found at normal levels whereas E2A, CD10, Syk, Pax-5, CD19, Igalpha, Igbeta, VH-Cmu, and Vkappa-Ckappa transcripts characteristic of later stages were severely depressed. This phenotype resembles that of Pax-5 knock-out mice, but since the coding sequence of the patient Pax-5 cDNA was shown to be normal, the defect might rather result from an altered regulation of this gene. All these data indicate that the patient suffers from a new genetic defect that results in an arrest of differentiation within the proB cell compartment, i.e., earlier than X-linked agammaglobulinemia, before the onset of Ig gene rearrangements.
Collapse
Affiliation(s)
- E Meffre
- Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | | | | | | | | | | | | |
Collapse
|