1
|
Jen WY, Sasaki K, Loghavi S, Wang SA, Qiao W, Borthakur G, Ravandi F, Kadia TM, Issa GC, Short NJ, Yilmaz M, Daver NG, DiNardo CD. Characteristics and outcomes of acute myeloid leukaemia patients with baseline CD7 expression. Br J Haematol 2024; 204:2259-2263. [PMID: 38603594 DOI: 10.1111/bjh.19446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
Targeted therapy development for acute myeloid leukaemia (AML) requires an understanding of specific expression profiles. We collected flow cytometry data on 901 AML patients and recorded aberrant CD7 expression on leukaemic blasts. 263 (29.2%) had blasts positive for CD7. CD7+ AML was more likely to be adverse risk (64.6% vs. 55.6%, p = 0.0074) and less likely to be favourable risk (15.2% vs. 24.1%, p = 0.0074) by European LeukemiaNet 2022 criteria. Overall survival was inferior (11.9 [95% CI, 9.7-15.9] vs. 19.0 months [95% CI, 16.1-23.0], p = 0.0174). At relapse, 30.4% lost and 19.0% gained CD7, suggesting moderate instability over time.
Collapse
Affiliation(s)
- Wei-Ying Jen
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sa A Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wei Qiao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tapan M Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ghayas C Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Musa Yilmaz
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naval G Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
2
|
Sheng B, Zhang K, Tian S, Ma R, Li Z, Wu H, Wang T, Jiang L, You F, An G, Meng H, Yang L, Liu X. CD7 protein plays a crucial role in T cell infiltration in tumors. Heliyon 2023; 9:e16961. [PMID: 37416646 PMCID: PMC10320036 DOI: 10.1016/j.heliyon.2023.e16961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 04/23/2023] [Accepted: 06/02/2023] [Indexed: 07/08/2023] Open
Abstract
CD7 protein as a target is being used to treat CD7+ lymphoma; however, the role of CD7 in the hematopoietic system remains largely unknown. Therefore, we evaluated the effects of CD7 KO in mice. The differentiation of the hematopoietic system in the bone marrow and the number of various cell types in the thymus and spleen did not differ between CD7 KO and WT mice. After subcutaneous inoculation of B16-F10 melanoma cells, tumors from CD7 KO mice grew more rapidly, and the proportion of CD8+ T cells in the spleen and tumors decreased. In vitro, the infiltration and adhesion of CD8+ T cells from the spleen of CD7 KO mice were weakened. Blocking CD7 in normal T cells did not alter the migration and infiltration, but in Jurkat, CCRF-CEM, and KG-1a tumor cell lines, migration and invasion were significantly reduced after blocking CD7. Therefore, CD7 does not affect hematopoietic system development but plays a crucial role in T cell infiltration into tumors.
Collapse
Affiliation(s)
- Binjie Sheng
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
- PersonGen BioTherapeutics (Suzhou) Co., Ltd., PR China
| | - Kailu Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Shuaiyu Tian
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Renyuxue Ma
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Zixuan Li
- Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu, 214000, China
| | - Hai Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
- PersonGen BioTherapeutics (Suzhou) Co., Ltd., PR China
| | - Tian Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
- PersonGen BioTherapeutics (Suzhou) Co., Ltd., PR China
| | - Licui Jiang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
- PersonGen BioTherapeutics (Suzhou) Co., Ltd., PR China
| | - Fengtao You
- PersonGen BioTherapeutics (Suzhou) Co., Ltd., PR China
| | - Gangli An
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Huimin Meng
- PersonGen BioTherapeutics (Suzhou) Co., Ltd., PR China
| | - Lin Yang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
- PersonGen BioTherapeutics (Suzhou) Co., Ltd., PR China
| | - Xin Liu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| |
Collapse
|
3
|
An antibody-drug conjugate with intracellular drug release properties showing specific cytotoxicity against CD7-positive cells. Leuk Res 2021; 108:106626. [PMID: 34062328 PMCID: PMC8443841 DOI: 10.1016/j.leukres.2021.106626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023]
Abstract
The CD7 surface protein is highly expressed on T cell acute leukaemias. CD7 bound by antibody is rapidly processed and internalised into cells. The novel antibody-drug conjugate kills CD7 expressing leukaemias. The ADC linker is only cleaved in cells. CD7 ADCs are a treatment option for CD7-expressing cancers.
Refractory T cell acute leukaemias that no longer respond to treatment would benefit from new modalities that target T cell-specific surface proteins. T cell associated surface proteins (the surfaceome) offer possible therapy targets to reduce tumour burden but also target the leukaemia-initiating cells from which tumours recur. Recent studies of the T cell leukaemia surfaceome confirmed that CD7 is highly expressed in overt disease. We have used an anti-CD7 antibody drug conjugate (ADC) to show that the binding of antibody to surface CD7 protein results in rapid internalization of the antigen together with the ADC. As a consequence, cell killing was observed via induction of apoptosis and was dependent on cell surface CD7. The in vitro cytotoxic activity (EC50) of the anti-CD7 ADC on T cell acute leukaemia (T-ALL) cells Jurkat and KOPT-K1 was found to be in the range of 5−8 ng/mL. In a pre-clinical xenograft model of human tumour growth expressing CD7 antigen, growth was curtailed by a single dose of ADC. The data indicate that CD7 targeting ADCs may be developed into an important second stage therapy for T cell acute leukaemia, for refractory CD7-positive leukaemias and for subsets of acute myeloid leukaemia (AML) expressing CD7.
Collapse
|
4
|
Rogers AM, Brammer JE. Hematopoietic Cell Transplantation and Adoptive Cell Therapy in Peripheral T Cell Lymphoma. Curr Hematol Malig Rep 2020; 15:316-332. [PMID: 32529515 DOI: 10.1007/s11899-020-00590-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Peripheral T cell lymphomas (PTCLs) are a heterogeneous group of diseases and represent approximately 10-15% of all non-Hodgkin lymphomas. Multiagent chemotherapy with a CHOP (cyclophosphamide, adriamycin, vincristine, prednisone)-like regimen is the current standard of care in the frontline setting, but outcomes for PTCL patients generally remain poor. Strategies used to improve survival and reduce the risk of relapse in PTCL patients include autologous hematopoietic cell transplant (autoHCT) and allogeneic HCT (alloHCT). Due to the relative rarity of these diseases, the evidence supporting the use of autoHCT and alloHCT is based on retrospective and single-arm prospective studies. Novel targeted therapies are now being incorporated into the treatment of PTCL, and they may play important roles in improving upon current standards of care. Herein, we summarize the evidence supporting HCT for the treatment of the most common PTCL histologic subtypes and highlight novel treatment strategies aimed at improving outcomes for these patients, including cutting-edge approaches using chimeric antigen receptor T cells (CAR-T). RECENT FINDINGS Given recent improvements in OS and PFS in CD30+ PTCL using the drug-antibody conjugate brentuximab vedotin (BV), new questions arise regarding the impact of BV on consolidative autoHCT, and its role as a maintenance therapy. Multiple histone deacetylase inhibitors (HDACis) have been approved for the treatment of relapsed/refractory PTCL, and these agents are being incorporated into HCT approaches, both in the frontline and maintenance settings. Early data incorporating these agents into novel conditioning regimens have been reported, and emerging evidence from recent trials suggests that CART cell therapies may prove effective in relapsed/refractory PTCL. The recommended treatment strategy in non-ALK+ PTCL remains induction with a CHOP-like regimen followed by consolidative autoHCT in first remission. In the relapsed/refractory setting, salvage chemotherapy followed by HCT (autoHCT or alloHCT depending on histologic subtype and HCT history) offers the only potential for cure or long-term remission. Ample room for improvement remains in the treatment of patients with PTCL, and novel treatment strategies incorporating targeted agents and CAR-T therapy may help to address the unmet needs of this patient population.
Collapse
Affiliation(s)
- Andrew M Rogers
- Department of Internal Medicine, Division of Hematology, James Comprehensive Cancer Center, The Ohio State University, 320 West Tenth Avenue, Columbus, OH, 43210, USA
| | - Jonathan E Brammer
- Department of Internal Medicine, Division of Hematology, James Comprehensive Cancer Center, The Ohio State University, 320 West Tenth Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
5
|
CD7-edited T cells expressing a CD7-specific CAR for the therapy of T-cell malignancies. Blood 2017; 130:285-296. [PMID: 28539325 DOI: 10.1182/blood-2017-01-761320] [Citation(s) in RCA: 301] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/21/2017] [Indexed: 12/15/2022] Open
Abstract
Extending the success of chimeric antigen receptor (CAR) T cells to T-cell malignancies is problematic because most target antigens are shared between normal and malignant cells, leading to CAR T-cell fratricide. CD7 is a transmembrane protein highly expressed in acute T-cell leukemia (T-ALL) and in a subset of peripheral T-cell lymphomas. Normal expression of CD7 is largely confined to T cells and natural killer (NK) cells, reducing the risk of off-target-organ toxicity. Here, we show that the expression of a CD7-specific CAR impaired expansion of transduced T cells because of residual CD7 expression and the ensuing fratricide. We demonstrate that targeted genomic disruption of the CD7 gene prevented this fratricide and enabled expansion of CD7 CAR T cells without compromising their cytotoxic function. CD7 CAR T cells produced robust cytotoxicity against malignant T-cell lines and primary tumors and were protective in a mouse xenograft model of T-ALL. Although CD7 CAR T cells were also toxic against unedited (CD7+) T and NK lymphocytes, we show that the CD7-edited T cells themselves can respond to viral peptides and therefore could be protective against pathogens. Hence, genomic disruption of a target antigen overcomes fratricide of CAR T cells and establishes the feasibility of using CD7 CAR T cells for the targeted therapy of T-cell malignancies.
Collapse
|
6
|
Lee JY, Bae J, Choi I, Park CG, Chun T. Molecular cloning and expression analysis of pig CD7. Vet Res Commun 2014; 38:257-63. [PMID: 24792331 DOI: 10.1007/s11259-014-9603-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2014] [Indexed: 11/27/2022]
Abstract
CD7 is an integral membrane protein which mediates an important signal to mediate the differentiation, activation, and regulation of some T cells and NK cells. However, only human and mouse CD7 have been identified and studied among mammalian species. In this study, we cloned pig CD7 cDNA and determined its complete cDNA sequence. Pig CD7 cDNA contained an open reading frame (627 bp) encoding 208 amino acids with well conserved motifs involved in signal transduction within cytoplasmic tail among mammalian species. Pig CD7 mRNA was detected by RT-PCR in mainly lymphoid tissues, indicating the conserved functions of CD7 in pigs. Moreover, we generated soluble pig CD7 fusion immunoglobulin (pig CD7Ig) containing extracellular domain of pig CD7 to test whether pig CD7 binds to pig galectin-3. Flow cytometry and immunohistochemistry analyses indicated that soluble pig CD7Ig can bind to galectin-3 expressed in macrophages and epithelial cells of small intestine. These results help to analyze the structural relationship between CD7 and its ligand transferring signal transduction among mammalian species.
Collapse
Affiliation(s)
- Ju Yeon Lee
- Division of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul, 136-701, Republic of Korea
| | | | | | | | | |
Collapse
|
7
|
Bade-Döding C, Göttmann W, Baigger A, Farren M, Lee KP, Blasczyk R, Huyton T. Autocrine GM-CSF transcription in the leukemic progenitor cell line KG1a is mediated by the transcription factor ETS1 and is negatively regulated through SECTM1 mediated ligation of CD7. Biochim Biophys Acta Gen Subj 2013; 1840:1004-13. [PMID: 24211252 DOI: 10.1016/j.bbagen.2013.10.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 09/17/2013] [Accepted: 10/27/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND CD7 expression is found on ~30% of acute myeloblastic leukemias (AML). The leukemic progenitor cell line KG1a (CD7+) constitutively expresses GM-CSF while the parental KG1 (CD7-) cell line does not. This study focuses on the molecular basis of CD7 mediated GM-CSF regulation. METHODS KG1a cells were treated with recombinant SECTM1-Fc protein, the PI3K kinase inhibitors wortmannin, LY292004, or PI4K activator spermine. Stable KG1-CD7+, KG1a-shCD7, KG1a-shETS1 as well as KG1a-GFP, KG1a-PKCβII-GFP cell lines were generated and the levels of CD7, GM-CSF and ETS-1 mRNA and protein were compared by real-time-PCR, western blotting, flow cytometry and ELISA. RESULTS SECTM1 is expressed in Human Bone Marrow Endothelial Cells (HBMEC) and its expression can be upregulated by both IFN-γ. KG1a cells demonstrated high expression levels of CD7 and ETS-1 allowing a constitutative signaling through the PI3K/Atk pathway to promote GM-CSF expression, while KG1 cells with low expression of CD7 and ETS-1 showed low GM-CSF expression. On KG1a cells GM-CSF expression could be negatively regulated by PI3K inhibitors or by recombinant SECTM1-Fc. Overexpression of CD7 in KG1 cells was insufficient to promote GM-CSF expression, while silencing of CD7 or ETS-1 resulted in reduced GM-CSF expression levels. Differentiation capable KG1a cells overexpressing PKCβII illustrated complete loss of CD7, but maintained normal levels of both ETS-1 and GM-CSF expression. CONCLUSION These findings add an additional layer to the previously described autocrine/paracrine signaling between leukemic progenitor cells and the bone marrow microenvironment and highlight a role for SECTM1 in both normal and malignant hematopoiesis. GENERAL SIGNIFICANCE This work shows that SECTM1 secreted from bone marrow stromal cells may interact with CD7 to influence GM-CSF expression in leukemic cells.
Collapse
Affiliation(s)
- Christina Bade-Döding
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Wiebke Göttmann
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Anja Baigger
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Matthew Farren
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14226, USA
| | - Kelvin P Lee
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14226, USA
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Trevor Huyton
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| |
Collapse
|
8
|
Wang T, Ge Y, Xiao M, Lopez-Coral A, Li L, Roesch A, Huang C, Alexander P, Vogt T, Xu X, Hwang WT, Lieu M, Belser E, Liu R, Somasundaram R, Herlyn M, Kaufman RE. SECTM1 produced by tumor cells attracts human monocytes via CD7-mediated activation of the PI3K pathway. J Invest Dermatol 2013; 134:1108-1118. [PMID: 24157461 PMCID: PMC3961532 DOI: 10.1038/jid.2013.437] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/31/2013] [Accepted: 09/11/2013] [Indexed: 01/05/2023]
Abstract
Tumor-associated macrophages (TAMs) play essential roles in tumor progression and metastasis. Tumor cells recruit myeloid progenitors and monocytes to the tumor site, where they differentiate into TAMs; however, this process is not well studied in humans. Here we show that human CD7, a T cell and NK cell receptor, is highly expressed by monocytes and macrophages. Expression of CD7 decreases in M-CSF differentiated macrophages and in Melanoma-conditioned Medium Induced Macrophages (MCMI/Mϕ) in comparison to monocytes. A ligand for CD7, SECTM1 (Secreted and transmembrane protein 1), is highly expressed in many tumors, including melanoma cells. We show that SECTM1 binds to CD7 and significantly increases monocyte migration by activation of the PI3K pathway. In human melanoma tissues, tumor-infiltrating macrophages expressing CD7 are present. These melanomas, with CD7-positive inflammatory cell infiltrations, frequently highly express SECTM1, including an N-terminal, soluble form, which can be detected in the sera of metastatic melanoma patients but not in normal sera. Taken together, our data demonstrate that CD7 is present on monocytes and tumor macrophages, and that its ligand, SECTM1, is frequently expressed in corresponding melanoma tissues, possibly acting as a chemoattractant for monocytes to modulate the melanoma microenvironment.
Collapse
Affiliation(s)
- Tao Wang
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Yingbin Ge
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Min Xiao
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | - Ling Li
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Alexander Roesch
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA; Department of Dermatology, The Saarland University Hospital, Homburg/Saar, Germany; Department of Dermatology, Regensburg University Medical Center, Regensburg, Germany
| | - Catherine Huang
- Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Peter Alexander
- Department of Cancer Biology, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Thomas Vogt
- Department of Dermatology, The Saarland University Hospital, Homburg/Saar, Germany; Department of Dermatology, Regensburg University Medical Center, Regensburg, Germany
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, USA
| | - Wei-Ting Hwang
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Melissa Lieu
- Undergraduate Program, University of the Sciences, Philadelphia, Pennsylvania, USA
| | - Eric Belser
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Rui Liu
- Undergraduate Program, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Russel E Kaufman
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Aandahl EM, Sandberg JK, Beckerman KP, Taskén K, Moretto WJ, Nixon DF. CD7 is a differentiation marker that identifies multiple CD8 T cell effector subsets. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:2349-55. [PMID: 12594257 DOI: 10.4049/jimmunol.170.5.2349] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The adaptive immune response of human CD8 T cells to invading pathogens involves the differentiation of naive cells into memory and effector cells. However, the lineage relationship between memory and effector cells and the differentiation of CD8 T cells into distinct subsets of effector cell subpopulations are subjects of considerable debate. CD7 identifies three populations of CD8 T cells: CD7 high (CD7(high)), low (CD7(low)), and negative (CD7(neg)) that translate into subsets with distinct functional properties. The CD7(high) subset contains naive and memory cells and the CD7(low) and CD7(neg) subsets contain effector cells. The effector cells can functionally be divided into cytokine-secreting effector CD8 T cells and lytic effector CD8 T cells. These data provide a model of human CD8 T cell differentiation in which specialized distinct subpopulations can be identified by expression of CD7.
Collapse
Affiliation(s)
- Einar M Aandahl
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA 94141, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Haeryfar SM, Hoskin DW. Selective pharmacological inhibitors reveal differences between Thy-1- and T cell receptor-mediated signal transduction in mouse T lymphocytes. Int Immunopharmacol 2001; 1:689-98. [PMID: 11357881 DOI: 10.1016/s1567-5769(01)00002-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A compelling body of evidence suggests a role for Thy-1 (CD90), a cell surface glycoprotein of mouse T lymphocytes, in signal transduction resulting in T cell activation. Despite more than 3 decades of investigation, intracellular biochemical events governing the Thy-1 signaling cascade are only vaguely understood. We have employed selective pharmacological inhibitors of signaling molecules to compare downstream elements participating in the Thy-1 signal transduction pathway with those involved in the T cell receptor (TCR)/CD3-associated signaling pathway. Mitogenic anti-Thy-1 or anti-CD3 monoclonal antibody (mAb) were used to cause T cells from C57BL/6 mice to proliferate in the presence or absence of different pharmacological inhibitors. Cyclosporine A, herbimycin A, LY294002, calphostin C and PD98059 all inhibited anti-Thy-1-induced T lymphocyte proliferation, indicating the involvement of calcineurin, protein tyrosine kinases, phosphatidylinositol 3-kinase, protein kinase C, and MEK1 (MAPK kinase 1), respectively, in Thy-1 signaling. Similar results were obtained when T cells were stimulated through the TCR with anti-CD3 monoclonal antibody in the presence or absence of the different inhibitors. Interestingly, the p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580 augmented anti-Thy-1-induced T cell proliferation, whereas anti-CD3-induced proliferative response was partially suppressed by the same inhibitor. The Thy-1 signal transduction pathway, therefore, shares a requirement for calcineurin and several major kinase families with the TCR signaling pathway. However, Thy-1 and TCR-associated signaling pathways are differentially regulated by p38 MAPK.
Collapse
Affiliation(s)
- S M Haeryfar
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
11
|
Simarro M, Calvo J, Vilà JM, Places L, Padilla O, Alberola-Ila J, Vives J, Lozano F. Signaling Through CD5 Involves Acidic Sphingomyelinase, Protein Kinase C-ζ, Mitogen-Activated Protein Kinase Kinase, and c-Jun NH2-Terminal Kinase. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.9.5149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The CD5 lymphocyte surface glycoprotein is a coreceptor involved in the modulation of Ag-specific receptor-mediated activation and differentiation signals. The molecular basis for its modulatory properties is not yet well understood. In the present study we describe early biochemical events triggered by CD5 stimulation, which include the phosphatidylcholine-specific phospholipase C (PC-PLC)-dependent activation of acidic sphingomyelinase (A-SMase) in normal and lymphoblastoid T and B cells. The functional coupling of PC-PLC and A-SMase is demonstrated by the abrogation of A-SMase activation by 1) xanthogenate tricyclodecan-9-yl (D609), a selective inhibitor of PC-PLC, and 2) replacement of several C-terminal serine residues (S458, S459, and S461) present in the cytoplasmic tail of CD5 that are known to be critical for PC-PLC activation. Additionally, we demonstrate that activation of protein kinase C-ζ (PKC-ζ) and members of the mitogen-activated protein kinase (MAPK) cascade (MAPK kinase and c-Jun NH2-terminal kinase), but not the NF-κB, are downstream events of the CD5 signaling pathway. A-SMase, PKC-ζ, and MAPK family members are key mediators of cell responses as diverse as proliferation, differentiation, and growth arrest and may contribute to CD5-mediated modulation of TCR or BCR signaling.
Collapse
Affiliation(s)
- María Simarro
- *Servei d’Immunologia, Institut D’Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, Barcelona, Spain; and
| | - Javier Calvo
- *Servei d’Immunologia, Institut D’Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, Barcelona, Spain; and
| | - Josep M. Vilà
- *Servei d’Immunologia, Institut D’Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, Barcelona, Spain; and
| | - Lourdes Places
- *Servei d’Immunologia, Institut D’Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, Barcelona, Spain; and
| | - Olga Padilla
- *Servei d’Immunologia, Institut D’Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, Barcelona, Spain; and
| | - José Alberola-Ila
- †Division of Biology, California Institute of Technology, Pasadena, CA 91125
| | - Jordi Vives
- *Servei d’Immunologia, Institut D’Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, Barcelona, Spain; and
| | - Francisco Lozano
- *Servei d’Immunologia, Institut D’Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, Barcelona, Spain; and
| |
Collapse
|
12
|
Calvo J, Vildà JM, Places L, Simarro M, Padilla O, Andreu D, Campbell KS, Aussel C, Lozano F. Human CD5 Signaling and Constitutive Phosphorylation of C-Terminal Serine Residues by Casein Kinase II. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.11.6022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
CD5 is a lymphocyte surface glycoprotein with a long cytoplasmic domain suitable for phosphorylation and signal transduction, which is involved in the modulation of Ag-specific receptor-mediated activation and differentiation signals. In this study, we use Jurkat T cell transfectants of CD5 cytoplasmic tail mutants to reveal phosphorylation sites relevant to signal transduction. Our results show that casein kinase II (CKII) is responsible for the constitutive phosphorylation of CD5 molecules at a cluster of three serine residues located at the extreme C terminus (S458, S459, and S461). Furthermore, the yeast two-hybrid system demonstrates the specific association between the C-terminal regions of the CD5 cytoplasmic tail and the regulatory β subunit of CKII. We demonstrate that CKII associates with and phosphorylates the C-terminal region of CD5, a conserved domain known to be relevant for the generation of second lipid messengers, and thereby enables at least one component of its signaling funcion.
Collapse
Affiliation(s)
- Javier Calvo
- *Servei d’Immunologia, Institut d’Investigacions Biomédiques August Pii Sunger, Hospital Clínic, Barcelona, Spain
| | - Josep M. Vildà
- *Servei d’Immunologia, Institut d’Investigacions Biomédiques August Pii Sunger, Hospital Clínic, Barcelona, Spain
| | - Lourdes Places
- *Servei d’Immunologia, Institut d’Investigacions Biomédiques August Pii Sunger, Hospital Clínic, Barcelona, Spain
| | - María Simarro
- *Servei d’Immunologia, Institut d’Investigacions Biomédiques August Pii Sunger, Hospital Clínic, Barcelona, Spain
| | - Olga Padilla
- *Servei d’Immunologia, Institut d’Investigacions Biomédiques August Pii Sunger, Hospital Clínic, Barcelona, Spain
| | - David Andreu
- †Department of Organic Chemistry, University of Barcelona, Barcelona, Spain
| | | | - Claude Aussel
- §Institut National de la Santé et de la Recherche Médicale, U343, Hôpital de l’Archet, Nice, France
| | - Francisco Lozano
- *Servei d’Immunologia, Institut d’Investigacions Biomédiques August Pii Sunger, Hospital Clínic, Barcelona, Spain
| |
Collapse
|
13
|
Lee DM, Staats HF, Sundy JS, Patel DD, Sempowski GD, Scearce RM, Jones DM, Haynes BF. Immunologic Characterization of CD7-Deficient Mice. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.12.5749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Human CD7 is an Ig superfamily molecule that is expressed on mature T and NK lymphocytes. Although in vitro studies have suggested a role for CD7 in lymphoid development and function, the exact function of CD7 in vivo has remained elusive. One patient has been reported with SCID syndrome attributed to CD7 deficiency. To study in vivo functions of CD7, we have generated CD7-deficient mice and assessed their lymphoid development and function. CD7-deficient mice were viable, had normal peripheral blood and spleen lymphocyte numbers, and had normal specific Ab responses with Ag-driven Ig isotype switching. Thymocyte numbers were normal in 4-wk-old, 6-mo-old, and 1-yr-old CD7-deficient mice, but in 3-mo-old CD7-deficient mice, total thymocyte numbers were significantly increased by 60% (p < 0.02) compared with normal age-matched +/+ littermates. CD7-deficient splenocytes proliferated normally in response to various mitogens, including PHA, anti-CD3, Con A, and LPS. While NK cell numbers and cytolytic activity to YAC targets were normal, CD7-deficient mice had lower Ag-induced MHC class I-restricted CTL activity against OVA-transfected target cells than did +/+ control mice. Thus, CD7-deficient mice did not have a SCID syndrome, but rather had transient increases in thymocyte numbers at age 3 mo and altered splenocyte Ag-specific CTL effecter cell activity. These data suggest a role for CD7 in regulating intrathymic T cell development and in mediating CTL effecter function.
Collapse
Affiliation(s)
- David M. Lee
- *Division of Rheumatology, Allergy and Clinical Immunology, Department of Medicine, and
| | - Herman F. Staats
- *Division of Rheumatology, Allergy and Clinical Immunology, Department of Medicine, and
- †Department of Immunology and the Duke University Arthritis Center, Duke University Medical Center, Durham, NC 27710
| | - John S. Sundy
- *Division of Rheumatology, Allergy and Clinical Immunology, Department of Medicine, and
| | - Dhavalkumar D. Patel
- *Division of Rheumatology, Allergy and Clinical Immunology, Department of Medicine, and
- †Department of Immunology and the Duke University Arthritis Center, Duke University Medical Center, Durham, NC 27710
| | - Gregory D. Sempowski
- *Division of Rheumatology, Allergy and Clinical Immunology, Department of Medicine, and
| | - Richard M. Scearce
- *Division of Rheumatology, Allergy and Clinical Immunology, Department of Medicine, and
| | - Dawn M. Jones
- *Division of Rheumatology, Allergy and Clinical Immunology, Department of Medicine, and
| | - Barton F. Haynes
- *Division of Rheumatology, Allergy and Clinical Immunology, Department of Medicine, and
- †Department of Immunology and the Duke University Arthritis Center, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
14
|
Shimizu Y, Hunt SW. Regulating integrin-mediated adhesion: one more function for PI 3-kinase? IMMUNOLOGY TODAY 1996; 17:565-73. [PMID: 8991288 DOI: 10.1016/s0167-5699(96)10061-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Y Shimizu
- Dept of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis 55455, USA.
| | | |
Collapse
|
15
|
Reinhold U, Liu L, Sesterhenn J, Abken H. CD7-negative T cells represent a separate differentiation pathway in a subset of post-thymic helper T cells. Immunology 1996; 89:391-6. [PMID: 8958052 PMCID: PMC1456566 DOI: 10.1046/j.1365-2567.1996.d01-744.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The absence of CD7 protein and the corresponding mRNA is a stable feature in a subset of normal circulating CD4+ memory T cells. It is still unresolved whether the CD7- subset represents a specific T-cell lineage. Here we show that repeated stimulation of highly purified CD4+ CD45RA+ CD45RO- naive T cells in vitro leads to the development of a distinct memory subset that is defined by the expression versus non-expression of the CD7 antigen. Comparing different T-cell activation pathways (TCR/CD3, CD2), we observed that alternative signals were critically involved in the development of CD4+ CD7- T cells. Peak mean numbers of CD7- memory cells occurred after 3-5 cycles of restimulation in vitro. Naive T cells that had undergone repeated stimulations were harvested and sorted into CD7+ and CD7- subsets. The vast majority (> 97%) of CD7+ T cells retained their expression, whereas the CD7- population did not re-express the antigen during further propagation of separated T-cell subsets. In CD7- cells no CD7 mRNA was monitored, indicating transcriptional regulation of CD7 expression. Certain differentiation-related antigens, including the cutaneous lymphocyte antigen CLA, were preferentially expressed on CD7- T cells. We suggest that absence of CD7 expression in a subset of CD4+ memory cells reflects a separate and stable differentiation state occurring late in the immune response. These T cells may represent the physiological counterpart of malignant T cells in certain forms of cutaneous T-cell lymphoma.
Collapse
Affiliation(s)
- U Reinhold
- Department of Dermatology, University of Bonn, Germany
| | | | | | | |
Collapse
|
16
|
Abstract
CD28 and the related molecule cytotoxic T lymphocyte-associated molecule-4 (CTLA-4), together with their natural ligands B7.1 and B7.2, have been implicated in the differential regulation of several immune responses. CD28 provides signals during T cell activation which are required for the production of interleukin 2 and other cytokines and chemokines, and it has also been implicated in the regulation of T cell anergy and programmed T cell death. The biochemical signals provided by CD28 are cyclosporin A-resistant and complement those provided by the T cell antigen receptor to allow full activation of T cells. Multiple signalling cascades which may be independent of, or dependent on, protein tyrosine kinase activation have been demonstrated to be activated by CD28, including activation of phospholipase C, p21ran, phosphoinositide 3-kinase, sphingomyelinase/ceramide and 5-lipoxygenase. The relative contributions of these cascades to overall CD28 signalling are still unknown, but probably depend on the state of activation of the T cell and the level of CD28 activation. The importance of these signalling cascades (in particular the phosphoinositide 3-kinase-mediated cascade) to functional indications of CD28 activation, such as interleukin 2 gene regulation, has been investigated using pharmacological and genetic manipulations. These approaches have demonstrated that CD28-activated signalling cascades regulate several transcription factors involved in interleukin 2 transcriptional activation. This review describes in detail the structure and expression of the CD28 and B7 families, the functional outcomes of CD28 ligation and the signalling events that are thought to mediate these functions.
Collapse
Affiliation(s)
- S G Ward
- Department of Pharmacology, School of Pharmacy and Pharmacology, University of Bath, U.K
| |
Collapse
|
17
|
Ward SG, June CH, Olive D. PI 3-kinase: a pivotal pathway in T-cell activation? IMMUNOLOGY TODAY 1996; 17:187-97. [PMID: 8871351 DOI: 10.1016/0167-5699(96)80618-9] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- S G Ward
- Dept. of Pharmacology, School of Pharmacy and Pharmacology, University of Bath, Claverton Down, UK.
| | | | | |
Collapse
|