1
|
Yi F, Frazzette N, Cruz AC, Klebanoff CA, Siegel RM. Beyond Cell Death: New Functions for TNF Family Cytokines in Autoimmunity and Tumor Immunotherapy. Trends Mol Med 2018; 24:642-653. [PMID: 29880309 DOI: 10.1016/j.molmed.2018.05.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 12/13/2022]
Abstract
Originally discovered as an inducer of apoptosis, the TNF-family receptor Fas (CD95, APO-1, TNFRSF6) has more recently been found to have functions beyond cell death, including T cell co-stimulation and promoting terminal differentiation of CD4+ and CD8+ T cells. Other TNF family members also discovered as apoptosis inducers, such as TRAIL (APO-2L, TNFSF10), can promote inflammation through caspase-8. Surprisingly, non-apoptotic signaling through Fas can protect from the autoimmunity seen in Fas deficiency independently from the cell death inducing functions of the receptor. Non-apoptotic Fas signaling can induce tumor cell growth and migration, and impair the efficacy of T cell adoptive immunotherapy. Blocking of non-apoptotic functions of these receptors may be a novel strategy to regulate autoimmunity and inflammation, and enhance antitumor immunity.
Collapse
Affiliation(s)
- Fei Yi
- Immunoregulation Section, Autoimmunity Branch, National Institutes of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas Frazzette
- Immunoregulation Section, Autoimmunity Branch, National Institutes of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anthony C Cruz
- Immunoregulation Section, Autoimmunity Branch, National Institutes of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher A Klebanoff
- Center for Cell Engineering and Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, 10065 USA; Parker Institute for Cancer Immunotherapy, MSKCC, New York, NY, 10065 USA; Weill Cornell Medical College, New York, NY 10065, USA
| | - Richard M Siegel
- Immunoregulation Section, Autoimmunity Branch, National Institutes of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Zheng L, Li J, Lenardo M. Restimulation-induced cell death: new medical and research perspectives. Immunol Rev 2018; 277:44-60. [PMID: 28462523 DOI: 10.1111/imr.12535] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the periphery, homeostasis of the immune system depends on the equilibrium of expanding and contracting T lymphocytes during immune response. An important mechanism of lymphocyte contraction is clonal depletion of activated T cells by cytokine withdrawal induced death (CWID) and TCR restimulation induced cell death (RICD). Deficiencies in signaling components for CWID and RICD leads to autoimmunune lymphoproliferative disorders in mouse and human. The most important feature of CWID and RICD is clonal specificity, which lends great appeal as a strategy for targeted tolerance induction and treatment of autoimmune diseases, allergic disorders, and graft rejection by depleting undesired disease-causing T cells while keeping the overall host immunity intact.
Collapse
Affiliation(s)
- Lixin Zheng
- Laboratory of Immunology and Clinical Genomics Program, Molecular Development of the Immune System Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jian Li
- Laboratory of Immunology and Clinical Genomics Program, Molecular Development of the Immune System Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Michael Lenardo
- Laboratory of Immunology and Clinical Genomics Program, Molecular Development of the Immune System Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Secinaro MA, Fortner KA, Dienz O, Logan A, Murphy MP, Anathy V, Boyson JE, Budd RC. Glycolysis promotes caspase-3 activation in lipid rafts in T cells. Cell Death Dis 2018; 9:62. [PMID: 29352186 PMCID: PMC5833351 DOI: 10.1038/s41419-017-0099-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/20/2017] [Accepted: 10/24/2017] [Indexed: 12/17/2022]
Abstract
Resting T cells undergo a rapid metabolic shift to glycolysis upon activation in the presence of interleukin (IL)-2, in contrast to oxidative mitochondrial respiration with IL-15. Paralleling these different metabolic states are striking differences in susceptibility to restimulation-induced cell death (RICD); glycolytic effector T cells are highly sensitive to RICD, whereas non-glycolytic T cells are resistant. It is unclear whether the metabolic state of a T cell is linked to its susceptibility to RICD. Our findings reveal that IL-2-driven glycolysis promotes caspase-3 activity and increases sensitivity to RICD. Neither caspase-7, caspase-8, nor caspase-9 activity is affected by these metabolic differences. Inhibition of glycolysis with 2-deoxyglucose reduces caspase-3 activity as well as sensitivity to RICD. By contrast, IL-15-driven oxidative phosphorylation actively inhibits caspase-3 activity through its glutathionylation. We further observe active caspase-3 in the lipid rafts of glycolytic but not non-glycolytic T cells, suggesting a proximity-induced model of self-activation. Finally, we observe that effector T cells during influenza infection manifest higher levels of active caspase-3 than naive T cells. Collectively, our findings demonstrate that glycolysis drives caspase-3 activity and susceptibility to cell death in effector T cells independently of upstream caspases. Linking metabolism, caspase-3 activity, and cell death provides an intrinsic mechanism for T cells to limit the duration of effector function.
Collapse
Affiliation(s)
- Michael A Secinaro
- Vermont Center for Immunology and Infectious Diseases, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Karen A Fortner
- Vermont Center for Immunology and Infectious Diseases, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Oliver Dienz
- Vermont Center for Immunology and Infectious Diseases, Larner College of Medicine, University of Vermont, Burlington, VT, USA.,Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Angela Logan
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Jonathan E Boyson
- Vermont Center for Immunology and Infectious Diseases, Larner College of Medicine, University of Vermont, Burlington, VT, USA.,Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Ralph C Budd
- Vermont Center for Immunology and Infectious Diseases, Larner College of Medicine, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
4
|
sHLA-G involved in the apoptosis of decidual natural killer cells following Toxoplasma gondii infection. Inflammation 2015; 37:1718-27. [PMID: 24854161 DOI: 10.1007/s10753-014-9900-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study aims to assess whether soluble HLA-G (sHLA-G) is involved in apoptosis of decidual natural killer (dNK) cells following Toxoplasma gondii infection. dNK cells or NK-92 cells were infected with T. gondii and co-cultured with trophoblast cells or BeWo cells. Infected co-cultured cells were treated without or with sHLA-G neutralizing antibody. Uninfected co-cultured cells were used as controls. Apoptosis of dNK cells were analyzed by flow cytometry and confocal microscope. Real-time PCR and Western blot were used to determine caspase 3 and caspase 8 expression. sHLA-G in supernatant were measured by enzyme-linked immunosorbent assay (ELISA). In infection groups, sHLA-G was increased, while dNK apoptosis proteins caspase 3 and caspase 8 were up-regulated, but significantly decreased in the presence of sHLA-G neutralizing antibody compared to controls. Under the situation of T. gondii-infected dNK cells co-cultured with trophoblast cells, the up-regulation of sHLA-G could induce dNK cells apoptosis which ultimately may contribute to the abnormal pregnancy outcomes with T. gondii infection.
Collapse
|
5
|
Breuer R, Becker MS, Brechmann M, Mock T, Arnold R, Krammer PH. The protein phosphatase 2A regulatory subunit B56γ mediates suppression of T cell receptor (TCR)-induced nuclear factor-κB (NF-κB) activity. J Biol Chem 2014; 289:14996-5004. [PMID: 24719332 DOI: 10.1074/jbc.m113.533547] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NF-κB is an important transcription factor in the immune system, and aberrant NF-κB activity contributes to malignant diseases and autoimmunity. In T cells, NF-κB is activated upon TCR stimulation, and signal transduction to NF-κB activation is triggered by a cascade of phosphorylation events. However, fine-tuning and termination of TCR signaling are only partially understood. Phosphatases oppose the role of kinases by removing phosphate moieties. The catalytic activity of the protein phosphatase PP2A has been implicated in the regulation of NF-κB. PP2A acts in trimeric complexes in which the catalytic subunit is promiscuous and the regulatory subunit confers substrate specificity. To understand and eventually target NF-κB-specific PP2A functions it is essential to define the regulatory PP2A subunit involved. So far, the regulatory PP2A subunit that mediates NF-κB suppression in T cells remained undefined. By performing a siRNA screen in Jurkat T cells harboring a NF-κB-responsive luciferase reporter, we identified the PP2A regulatory subunit B56γ as negative regulator of NF-κB in TCR signaling. B56γ was strongly up-regulated upon primary human T cell activation, and B56γ silencing induced increased IκB kinase (IKK) and IκBα phosphorylation upon TCR stimulation. B56γ silencing enhanced NF-κB activity, resulting in increased NF-κB target gene expression including the T cell cytokine IL-2. In addition, T cell proliferation was increased upon B56γ silencing. These data help to understand the physiology of PP2A function in T cells and the pathophysiology of diseases involving PP2A and NF-κB.
Collapse
Affiliation(s)
- Rebecca Breuer
- From the Division of Immunogenetics, German Cancer Research Center (Deutsches Krebsforschungszentrum), 69120 Heidelberg, Germany
| | - Michael S Becker
- From the Division of Immunogenetics, German Cancer Research Center (Deutsches Krebsforschungszentrum), 69120 Heidelberg, Germany
| | - Markus Brechmann
- From the Division of Immunogenetics, German Cancer Research Center (Deutsches Krebsforschungszentrum), 69120 Heidelberg, Germany
| | - Thomas Mock
- From the Division of Immunogenetics, German Cancer Research Center (Deutsches Krebsforschungszentrum), 69120 Heidelberg, Germany
| | - Rüdiger Arnold
- From the Division of Immunogenetics, German Cancer Research Center (Deutsches Krebsforschungszentrum), 69120 Heidelberg, Germany
| | - Peter H Krammer
- From the Division of Immunogenetics, German Cancer Research Center (Deutsches Krebsforschungszentrum), 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Su CC, Lin HC, Lin YP, Shan YS, Yang BC. Expression of Th17-related genes in PHA/IL-2-activated human T cells by Fas signaling via caspase-1- and Stat3-dependent pathway. Cell Immunol 2013; 281:101-10. [PMID: 23590971 DOI: 10.1016/j.cellimm.2013.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 11/19/2012] [Accepted: 03/19/2013] [Indexed: 01/06/2023]
Abstract
T helper 17 (Th17) cells, which produce interleukin 17 (IL-17), are involved in the pathogenesis of autoimmune diseases and inflammatory conditions. Th17 cells have been detected in many Fas ligand-positive tumors. This study investigates the expression of Th17-related genes in PHA/IL-2-activated human T cells upon Fas ligation. Activated T cells transiently express RORγt, IL-17A, and IL-17F. A subsequent Fas receptor stimulation or contact with FasL-expressing glioma cells significantly prolongs the induction of RORγt and Th17-related cytokines. Treatments with inhibitors of caspase-1 and Stat3 reduce the Fas-signal-associated induction of RORγt, IL-17A, and IL-17F, as well as the phosphorylation of Stat3. Although the ligation of Fas results in caspase-8 cleavage and ERK1/2 phosphorylation, inhibitors for caspase-8 and MEK have no effect on the expressions of RORγt, IL-17A, and IL-17F. The results suggest that the Fas signal favors the Th17-phenotypic features of human T cells through the caspase-1/Stat3 signaling pathway.
Collapse
Affiliation(s)
- Chung-Chen Su
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
7
|
Zheng L. Quantitating lymphocyte programmed cell death in vitro using simple kill assays. Methods Mol Biol 2013; 979:1-14. [PMID: 23397383 DOI: 10.1007/978-1-62703-290-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Programmed cell death is essential to maintaining lymphocyte homeostasis during the contraction phase of the immune response. Activated lymphocytes become susceptible to a variety of programmed cell death (PCD) stimuli over the course of a typical immune response. This chapter outlines two simple approaches for measuring programmed cell death of lymphocytes cultured in vitro, regardless of the stimulus provided. These techniques exploit changes in plasma membrane integrity and/or mitochondrial membrane potential that are characteristic of cells undergoing PCD. The detection methods discussed are generally applicable for assessing cell death in several contexts, expanded upon in further detail in subsequent chapters.
Collapse
Affiliation(s)
- Lixin Zheng
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Brechmann M, Mock T, Nickles D, Kiessling M, Weit N, Breuer R, Müller W, Wabnitz G, Frey F, Nicolay JP, Booken N, Samstag Y, Klemke CD, Herling M, Boutros M, Krammer PH, Arnold R. A PP4 holoenzyme balances physiological and oncogenic nuclear factor-kappa B signaling in T lymphocytes. Immunity 2012; 37:697-708. [PMID: 23084358 DOI: 10.1016/j.immuni.2012.07.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 07/09/2012] [Indexed: 11/24/2022]
Abstract
Signal transduction to nuclear factor-kappa B (NF-κB) involves multiple kinases and phosphorylated target proteins, but little is known about signal termination by dephosphorylation. By RNAi screening, we have identified protein phosphatase 4 regulatory subunit 1 (PP4R1) as a negative regulator of NF-κB activity in T lymphocytes. PP4R1 formed part of a distinct PP4 holoenzyme and bridged the inhibitor of NF-κB kinase (IKK) complex and the phosphatase PP4c, thereby directing PP4c activity to dephosphorylate and inactivate the IKK complex. PP4R1 expression was triggered upon activation and proliferation of primary human T lymphocytes and deficiency for PP4R1 caused sustained and increased IKK activity, T cell hyperactivation, and aberrant NF-κB signaling in NF-κB-addicted T cell lymphomas. Collectively, our results unravel PP4R1 as a previously unknown activation-associated negative regulator of IKK activity in lymphocytes whose downregulation promotes oncogenic NF-κB signaling in a subgroup of T cell lymphomas.
Collapse
Affiliation(s)
- Markus Brechmann
- Division of Immunogenetics, Tumor Immunology Program, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Proper regulation of T cell death is of vital importance for the function of the immune system. Positive and negative selection of developing T cells in the thymus ensures the survival of only those T cells that can recognize peptides presented by self-MHC molecules and at the same time not respond to self-antigens, and thus, T cell death within the thymus is instrumental in shaping the mature T cell repertoire. The death of activated peripheral T cells is crucial for processes such as down-modulation of immune responses after clearance of infectious agents, peripheral tolerance, and maintenance of immune-privileged sites. These processes are largely proceeding due to the enhanced susceptibility of activated T cells to spontaneous, activation-, and Fas-induced apoptosis. The active metabolite of the immune regulator vitamin A, retinoic acid, has been reported to influence various types of apoptotic processes in both thymocytes and activated peripheral T cells. This chapter gives an overview of, and discusses the reported effects of vitamin A on spontaneous and activation-induced cell death of thymocytes and mature T cells, as well as on Fas-induced T cell death.
Collapse
|
10
|
Loeder S, Drensek A, Jeremias I, Debatin KM, Fulda S. Small molecule XIAP inhibitors sensitize childhood acute leukemia cells for CD95-induced apoptosis. Int J Cancer 2010; 126:2216-28. [PMID: 19676052 DOI: 10.1002/ijc.24816] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Escape of apoptosis may contribute to treatment failure in childhood acute lymphoblastic leukemia (ALL) calling for new approaches to overcome apoptosis resistance. Here, we provide for the first time evidence that small molecule inhibitors that target the anti-apoptotic protein X-linked inhibitor of apoptosis (XIAP) sensitize ALL cells for CD95-induced apoptosis. XIAP inhibitors at subtoxic concentrations, but not a structurally related control compound, act synergistically with agonistic anti-CD95 antibodies or MegaFasL, a hexameric form of CD95 ligand, to induce apoptosis in ALL cells. Further, XIAP inhibitors co-operate with MegaFasL to reduce clonogenic survival of ALL cells demonstrating their effect also on long-term survival. In contrast, XIAP inhibitors show little effect on MegaFasL-mediated apoptosis in normal peripheral blood lymphocytes (PBLs), pointing to some tumor selectivity. Molecular studies reveal that XIAP inhibitors enhance CD95-induced activation of caspases, loss of mitochondrial membrane potential and cytochrome c release in a caspase-dependent manner. Importantly, XIAP inhibitors sensitize primary leukemic blasts from children with ALL for MegaFasL-induced apoptosis. Thus, small molecule XIAP inhibitors present a promising novel approach to enhance CD95-induced apoptosis in childhood acute leukemia.
Collapse
Affiliation(s)
- Sandra Loeder
- University Children's Hospital, University of Ulm, Ulm, Germany
| | | | | | | | | |
Collapse
|
11
|
Phosphorylation of CARMA1 by HPK1 is critical for NF-kappaB activation in T cells. Proc Natl Acad Sci U S A 2009; 106:14508-13. [PMID: 19706536 DOI: 10.1073/pnas.0900457106] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Activation of the NF-kappaB pathway in T cells is required for induction of an adaptive immune response. Hematopoietic progenitor kinase (HPK1) is an important proximal mediator of T-cell receptor (TCR)-induced NF-kappaB activation. Knock-down of HPK1 abrogates TCR-induced IKKbeta and NF-kappaB activation, whereas active HPK1 leads to increased IKKbeta activity in T cells. Yet, the precise molecular mechanism of this process remains elusive. Here, we show that HPK1-mediated NF-kappaB activation is dependent on the adaptor protein CARMA1. HPK1 interacts with CARMA1 in a TCR stimulation-dependent manner and phosphorylates the linker region of CARMA1. Interestingly, the putative HPK1 phosphorylation sites in CARMA1 are different from known PKC consensus sites. Mutations of residues S549, S551, and S552 in CARMA1 abrogated phosphorylation of a CARMA1-linker construct by HPK1 in vitro. In addition, CARMA1 S551A or S5549A/S551A point mutants failed to restore HPK1-mediated and TCR-mediated NF-kappaB activation and IL-2 expression in CARMA1-deficient T cells. Thus, we identify HPK1 as a kinase specific for CARMA1 and suggest HPK1-mediated phosphorylation of CARMA1 as an additional regulatory mechanism tuning the NF-kappaB response upon TCR stimulation.
Collapse
|
12
|
Histone deacetylase inhibitors cooperate with IFN-gamma to restore caspase-8 expression and overcome TRAIL resistance in cancers with silencing of caspase-8. Oncogene 2009; 28:3097-110. [PMID: 19597472 DOI: 10.1038/onc.2009.161] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Evasion of apoptosis can be caused by epigenetic silencing of caspase-8, a key component of the extrinsic apoptosis pathway. Loss of caspase-8 correlates with poor prognosis in medulloblastoma, which highlights the relevance of strategies to upregulate caspase-8 to break apoptosis resistance. Here, we develop a new combinatorial approach, that is treatment using histone deacetylase inhibitors (HDACI) together with interferon (IFN)-gamma, to restore caspase-8 expression and to overcome resistance to the death-receptor ligand TNF-related apoptosis-inducing ligand (TRAIL) in medulloblastoma in vitro and in vivo. HDACI, for example, valproic acid (VA), suberoylanilide hydroxamic acid (SAHA) and MS-275, cooperate with IFN-gamma to upregulate caspase-8 in cancer cells lacking caspase-8, thereby restoring sensitivity to TRAIL-induced apoptosis. Molecular studies show that VA promotes histone acetylation and acts in concert with IFN-gamma to stimulate caspase-8 promoter activity. The resulting increase in caspase-8 mRNA and protein expression leads to enhanced TRAIL-induced activation of caspase-8 at the death-inducing signaling complex, mitochondrial outer-membrane permeabilization and caspase-dependent cell death. Intriguingly, pharmacological or genetic inhibition of caspase-8 also abolishes the VA/IFN-gamma-mediated sensitization for TRAIL-induced apoptosis. It is important to note that VA and IFN-gamma restore caspase-8 expression and sensitivity to TRAIL in primary medulloblastoma samples and significantly potentiate TRAIL-mediated suppression of medulloblastoma growth in vivo. These findings provide the rationale for further (pre)clinical evaluation of VA and IFN-gamma to restore caspase-8 expression and apoptosis sensitivity in cancers with caspase-8 silencing and open new perspectives to overcome TRAIL resistance.
Collapse
|
13
|
Inhibition of methionine adenosyltransferase II induces FasL expression, Fas-DISC formation and caspase-8-dependent apoptotic death in T leukemic cells. Cell Res 2009; 19:358-69. [PMID: 19048023 DOI: 10.1038/cr.2008.314] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Methionine adenosyltransferase II (MAT II) is a key enzyme in cellular metabolism and catalyzes the formation of S-adenosylmethionine (SAMe) from L-methionine and ATP. Normal resting T lymphocytes have minimal MAT II activity, whereas activated proliferating T lymphocytes and transformed T leukemic cells show significantly enhanced MAT II activity. This work was carried out to examine the role of MAT II activity and SAMe biosynthesis in the survival of leukemic T cells. Inhibition of MAT II and the resultant decrease in SAMe levels enhanced expression of FasL mRNA and protein, and induced DISC (Death Inducing Signaling Complex) formation with FADD (Fas-associated Death Domain) and procaspase-8 recruitment, as well as concomitant increase in caspase-8 activation and decrease in c-FLIP(s) levels. Fas-initiated signaling induced by MAT II inhibition was observed to link to the mitochondrial pathway via Bid cleavage and to ultimately lead to increased caspase-3 activation and DNA fragmentation in these cells. Furthermore, blocking MAT 2A mRNA expression, which encodes the catalytic subunits of MAT II, using a small-interfering RNA approach enhanced FasL expression and cell death, validating the essential nature of MAT II activity in the survival of T leukemic cells.
Collapse
|
14
|
Ramaswamy M, Cleland SY, Cruz AC, Siegel RM. Many checkpoints on the road to cell death: regulation of Fas-FasL interactions and Fas signaling in peripheral immune responses. Results Probl Cell Differ 2009; 49:17-47. [PMID: 19132321 DOI: 10.1007/400_2008_24] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Interactions between the TNF-family receptor Fas (CD95) and Fas Ligand (FasL, CD178) can efficiently induce apoptosis and are critical for the maintenance of immunological self-tolerance. FasL is kept under strict control by transcriptional and posttranslational regulation. Surface FasL can be cleaved by metalloproteases, resulting in shed extracellular domains, and FasL can also traffic to secretory lysosomes. Each form of FasL has distinct biological functions. Fas is more ubiquitously expressed, but its apoptosis-inducing function is regulated by a number of mechanisms including submembrane localization, efficiency of receptor signaling complex assembly and activation, and bcl-2 family members in some circumstances. When apoptosis is not induced, Fas-FasL interactions can also trigger a number of activating and proinflammatory signals. Harnessing the apoptosis-inducing potential of Fas for therapy of cancer and autoimmune disease has been actively pursued, and despite a number of unexpected side-effects that result from manipulating Fas-FasL interactions, this remains a worthy goal.
Collapse
Affiliation(s)
- Madhu Ramaswamy
- Immunoregulation Unit, Autoimmunity Branch, NIAMS, National Institutes of Health, Bethesda MD 20892, USA
| | | | | | | |
Collapse
|
15
|
Meier P. FOXP3+ regulatory T-cells in chronic kidney disease: molecular pathways and clinical implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 665:163-70. [PMID: 20429423 DOI: 10.1007/978-1-4419-1599-3_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CD4+/FOXP3+ regulatory T-cells (Tregs) are essential for the maintenance of self-tolerance and Tregs deficiency results in spontaneous autoimmunity in both mice and humans. The forkhead box P3 (FOXP3) expression is required for both survival of Tregs precursors as well as their function. This suggests that Tregs may use multiple mechanisms to limit autoimmunity and may reflect functional heterogeneity among Tregs subsets that localize to distinct tissue environments. Both cell contact- and cytokine-based immunosuppressive mechanisms would require that Tregs be in close proximity to their targets. The fundamental regulatory activity that can be consistently demonstrated by Tregs in vivo and in vitro has stimulated great interest in developing novel strategies for treating ongoing inflammatory conditions. Patients with end-stage kidney disease (ESKD) are known to display a cellular immune dysfunction. Uremic solutes that accumulate during ESKD may be involved in these processes. In these patients, oxidative stress induced by oxLDL may increase Tregs sensitivity to Fas-mediated apoptosis in part as a consequence of 26S proteasome activation. The 26S proteasome, an ATP-dependent multisubunit protease complex found in the cytoplasm and in the nucleus of all eukaryotic cells, constitutes the central proteolytic machinery of the ubiquitin/proteasome system. Considering the effect of uremia and oxLDL, Tregs from patients with ESKD exhibit early cell-cycle arrest and become apoptotic. These phenomena are the consequence of the oxLDL inhibited proteasome proteolytic activity of p27(Kipl) and Bax proteins in Tregs. This may be one mechanistic explanation of the cellular immune dysfunction in patients with ESKD and may have important implications in clinics, since this response could contribute to the micro-inflammation and atherogenesis encountered in this population.
Collapse
Affiliation(s)
- Pascal Meier
- Department of Internal Medicine, CHCVs ñ Hôpital de Sion, Switzerland.
| |
Collapse
|
16
|
Engedal N, Auberger P, Blomhoff HK. Retinoic acid regulates Fas-induced apoptosis in Jurkat T cells: reversal of mitogen-mediated repression of Fas DISC assembly. J Leukoc Biol 2008; 85:469-80. [DOI: 10.1189/jlb.1107790] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
17
|
Small molecule XIAP inhibitors cooperate with TRAIL to induce apoptosis in childhood acute leukemia cells and overcome Bcl-2-mediated resistance. Blood 2008; 113:1710-22. [PMID: 19036706 DOI: 10.1182/blood-2007-09-114314] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Defects in apoptosis contribute to poor outcome in pediatric acute lymphoblastic leukemia (ALL), calling for novel strategies that counter apoptosis resistance. Here, we demonstrate for the first time that small molecule inhibitors of the antiapoptotic protein XIAP cooperate with TRAIL to induce apoptosis in childhood acute leukemia cells. XIAP inhibitors at subtoxic concentrations, but not a structurally related control compound, synergize with TRAIL to trigger apoptosis and to inhibit clonogenic survival of acute leukemia cells, whereas they do not affect viability of normal peripheral blood lymphocytes, suggesting some tumor selectivity. Analysis of signaling pathways reveals that XIAP inhibitors enhance TRAIL-induced activation of caspases, loss of mitochondrial membrane potential, and cytochrome c release in a caspase-dependent manner, indicating that they promote a caspase-dependent feedback mitochondrial amplification loop. Of note, XIAP inhibitors even overcome Bcl-2-mediated resistance to TRAIL by enhancing Bcl-2 cleavage and Bak conformational change. Importantly, XIAP inhibitors kill leukemic blasts from children with ALL ex vivo and cooperate with TRAIL to induce apoptosis. In vivo, they significantly reduce leukemic burden in a mouse model of pediatric ALL engrafted in non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice. Thus, XIAP inhibitors present a promising novel approach for apoptosis-based therapy of childhood ALL.
Collapse
|
18
|
Meier P, Meier R, Blanc E. Influence of CD4+/CD25+ regulatory T cells on atherogenesis in patients with end-stage kidney disease. Expert Rev Cardiovasc Ther 2008; 6:987-97. [PMID: 18666849 DOI: 10.1586/14779072.6.7.987] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Atherosclerosis, which is influenced by both traditional and nontraditional cardiovascular risk factors and has been characterized as an inflammatory process, is considered to be the main cause of the elevated cardiovascular risk associated with chronic kidney disease. The inflammatory component of atherosclerosis can be separated into an innate immune response involving monocytes and macrophages that respond to the excessive uptake of lipoproteins and an adaptive immune response that involves antigen-specific T cells. Concurrent with the influx of immune cells to the site of atherosclerotic lesion, the role of the adaptive immune response gradually increases. One of those cells are represented by the CD4+/CD25+ Tregs, which play indispensable roles in the maintenance of natural self-tolerance and negative control of pathological, as well as physiological, immune responses. Altered self-antigens such as oxidized LDLs may induce the development of CD4+/CD25+ Tregs with atheroprotective properties. However, atherosclerosis may be promoted by an imbalance between regulatory and pathogenic immunity that may be represented by the low expression of the forkhead box transcription factor (Foxp3) in CD4+/CD25+ Tregs. Such a defect may break immunologic tolerance and alter both specific and bystander immune suppression, leading to exacerbation of plaque development. Patients with end-stage kidney disease (ESKD) display a cellular immune dysfunction and accelerated atherosclerosis. Uremic solutes that accumulate during ESKD may be involved in these processes. In patients with ESKD and especially in those that are chronically hemodialyzed, oxidative stress induced by oxidized LDLs may increase CD4+/CD25+ Treg sensitivity to Fas-mediated apoptosis as a consequence of specific dysregulation of IL-2 expression. This review will focus on the current state of knowledge regarding the influence of CD4+/CD25+ Tregs on atherogenesis in patients with ESKD, and the potential effect of statins on the circulating number and the functional properties of these cells.
Collapse
Affiliation(s)
- Pascal Meier
- Service of Nephrology, CHCVs Hôpital de Sion, Grand Champsec 80, 1950 Sion, Switzerland.
| | | | | |
Collapse
|
19
|
Concepts of activated T cell death. Crit Rev Oncol Hematol 2008; 66:52-64. [DOI: 10.1016/j.critrevonc.2008.01.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 01/03/2008] [Accepted: 01/16/2008] [Indexed: 11/23/2022] Open
|
20
|
Petrovas C, Mueller YM, Yang G, Altork SR, Jacobson JM, Pitsakis PG, Mounzer KC, Altman JD, Katsikis PD. Actin integrity is indispensable for CD95/Fas-induced apoptosis of HIV-specific CD8+ T cells. Apoptosis 2008; 12:2175-86. [PMID: 17891455 DOI: 10.1007/s10495-007-0128-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We have recently provided data suggesting a potential role for mitochondria and Bcl-2-family molecules in apoptosis sensitivity of HIV-specific CD8+ T cells. Here, we report on the role of filamentous (F) actin in this process. Disruption of actin by cytochalasin D (cytD) or lantrunculin A remarkably reduced CD95/Fas-induced apoptosis of HIV-specific CD8+ T cells while their spontaneous apoptosis was unaffected. This inhibition cannot be attributed to changes of CD95/Fas distribution or levels in these cells. Furthermore, cytD treatment reduced CD95/Fas-induced apoptosis of CD8+ T cells from HIV+ patients independently of their differentiation status. CD95/Fas-induced apoptosis of both CD38+ and CD38- HIV-specific CD8+ T cells was inhibited by cytD treatment indicating that actin mediates this apoptotic process independently of the activation level of these cells. CytD was found to reduce the activation of caspase-8 induced by short treatment of purified CD8+ T cells from HIV+ patients with anti-CD95/Fas. Our data reveal actin as a critical mediator of HIV-specific CD8+ T cell apoptosis; further analysis of the molecular mechanisms governing this process may potentially contribute to design new therapies targeting the enhancement of the immune system in HIV infection.
Collapse
Affiliation(s)
- Constantinos Petrovas
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Drexel University, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ouyang S, Qiao F, Zhang Q. Relationship between expression of hepatocyte grow factor and apoptosis of trophoblasts in hypertensive disorder complicating pregnancy. FRONTIERS OF MEDICINE IN CHINA 2007; 1:386-389. [PMID: 24573931 DOI: 10.1007/s11684-007-0075-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The aim of this study was to investigate the expression of hepatocyte growth factor (HGF) and Fas in placentas of uncomplicated pregnant women and those with hypertensive disorder complicating pregnancy (HDCP), and elucidate the possible relationship between HGF and apoptosis of trophoblasts. Reverse transcription-polymerase chain reaction (RT-PCR) was undertaken to examine the concentration of HGF mRNA and Fas mRNA obtained from 34 cases of HDCP and 30 cases of uncomplicated pregnancy. The expression of HGF mRNA in mild preeclampsia, severe preeclampsia and eclampsia cases was significantly lower than that in the uncomplicated cases (0.43 ± 0.12, 0.38 ± 0.09, 0.19 ± 0.17 versus 0.67 ± 0.19, P < 0.05), while the expression of Fas mRNA in mild preeclampsia, severe preeclampsia and eclampisa cases was significantly higher than that in the uncomplicated cases (1.58 ± 0.26, 2.96 ± 0.14, 5.98 ± 1.17 versus 1.01 ± 0.36, P < 0.05). For HGF mRNA and Fas mRNA, there was no difference between gestational hypertension cases and control cases. Decreased HGF mRNA or increased Fas mRNA was found along with the progress of HDCP. Negative correlation was found between the expressions of HGF and Fas. These results indicate that HGF inhibits the apoptosis mediated by Fas, and the reduced expression of HGF in HDCP may be responsible for the apoptosis of trophoblasts.
Collapse
Affiliation(s)
- Shan Ouyang
- Department of Gynecology and Obstetrics, Central Hospital of Wuhan, Wuhan, 430014, China,
| | | | | |
Collapse
|
22
|
Brenner D, Golks A, Becker M, Müller W, Frey CR, Novak R, Melamed D, Kiefer F, Krammer PH, Arnold R. Caspase-cleaved HPK1 induces CD95L-independent activation-induced cell death in T and B lymphocytes. Blood 2007; 110:3968-77. [PMID: 17712048 DOI: 10.1182/blood-2007-01-071167] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Life and death of peripheral lymphocytes is strictly controlled to maintain physiologic levels of T and B cells. Activation-induced cell death (AICD) is one mechanism to delete superfluous lymphocytes by restimulation of their immunoreceptors and it depends partially on the CD95/CD95L system. Recently, we have shown that hematopoietic progenitor kinase 1 (HPK1) determines T-cell fate. While full-length HPK1 is essential for NF-kappaB activation in T cells, the C-terminal fragment of HPK1, HPK1-C, suppresses NF-kappaB and sensitizes toward AICD by a yet undefined cell death pathway. Here we show that upon IL-2-driven expansion of primary T cells, HPK1 is converted to HPK1-C by a caspase-3 activity below the threshold of apoptosis induction. HPK1-C selectively blocks induction of NF-kappaB-dependent antiapoptotic Bcl-2 family members but not of the proapoptotic Bcl-2 family member Bim. Interestingly, T and B lymphocytes from HPK1-C transgenic mice undergo AICD independently of the CD95/CD95L system but involving caspase-9. Knock down of HPK1/HPK1-C or Bim by small interfering RNA shows that CD95L-dependent and HPK1/HPK1-C-dependent cell death pathways complement each other in AICD of primary T cells. Our results define HPK1-C as a suppressor of antiapoptotic Bcl-2 proteins and provide a molecular basis for our understanding of CD95L-independent AICD of lymphocytes.
Collapse
Affiliation(s)
- Dirk Brenner
- Tumor Immunology Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Meinander A, Söderström TS, Kaunisto A, Poukkula M, Sistonen L, Eriksson JE. Fever-like hyperthermia controls T Lymphocyte persistence by inducing degradation of cellular FLIPshort. THE JOURNAL OF IMMUNOLOGY 2007; 178:3944-53. [PMID: 17339495 DOI: 10.4049/jimmunol.178.6.3944] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fever has a major impact on immune responses by modulating survival, proliferation, and endurance of lymphocytes. Lymphocyte persistence in turn is determined by the equilibrium between death and survival-promoting factors that regulate death receptor signaling in these cells. A potential integrator of death receptor signaling is the caspase-8 inhibitor c-FLIP, the expression of which is dynamically regulated, either rapidly induced or down-regulated. In this study, we show in activated primary human T lymphocytes that hyperthermia corresponding to fever triggered down-regulation of both c-FLIP-splicing variants, c-FLIPshort (c-FLIP(S)) and c-FLIPlong, with consequent sensitization to apoptosis mediated by CD95 (Fas/APO-1). The c-FLIP down-regulation and subsequent sensitization was specific for hyperthermic stress. Additionally, we show that the hyperthermia-mediated down-regulation was due to increased ubiquitination and proteasomal degradation of c-FLIP(S), the stability of which we have shown to be regulated by its C-terminal splicing tail. Furthermore, the induced sensitivity to CD95 ligation was independent of heat shock protein 70, as thermotolerant cells, expressing substantially elevated levels of heat shock protein 70, were not rescued from the effect of hyperthermia-mediated c-FLIP down-regulation. Our findings indicate that fever significantly influences the rate of lymphocyte elimination through depletion of c-FLIP(S). Such a general regulatory mechanism for lymphocyte removal has broad ramifications for fever-mediated regulation of immune responses.
Collapse
Affiliation(s)
- Annika Meinander
- Turku Centre for Biotechnology, Abo Akademi University and University of Turku, FI-20521 Turku, Finland
| | | | | | | | | | | |
Collapse
|
24
|
Chan FKM. Three is better than one: pre-ligand receptor assembly in the regulation of TNF receptor signaling. Cytokine 2007; 37:101-7. [PMID: 17449269 PMCID: PMC1965282 DOI: 10.1016/j.cyto.2007.03.005] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 03/14/2007] [Indexed: 11/28/2022]
Abstract
The tumor necrosis factor (TNF) family of cytokines and their receptors regulates many areas of metazoan biology. Specifically, this cytokine-receptor family plays crucial roles in regulating myriad aspects of immune development and functions. Disruption of ligand-receptor interaction or downstream signal transduction components in the TNF family often leads to pathological conditions. Historically, members of the TNF receptor family (TNFRs) were thought to exist as monomeric receptor chains prior to stimulation. Binding of the trimeric ligand then induces the trimerization of the receptors and activation of downstream signaling. However, recent evidence indicates that many TNFRs exist as pre-assembled oligomers on the cell surface. Pre-ligand assembly of TNFR oligomers is mediated by the pre-ligand assembly domain (PLAD), which resides within the membrane distal cysteine-rich domain of the receptors. Growing evidence indicates that PLAD-mediated receptor association regulates cellular responses to TNF-like cytokines, especially in cells of the immune system. Thus, targeting pre-ligand assembly may offer new possibilities for therapeutic intervention in different pathological conditions involving TNF-like cytokines.
Collapse
Affiliation(s)
- Francis Ka-Ming Chan
- Immunology and Virology Program, Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
25
|
Meier P, Spertini F, Blanc E, Burnier M. Oxidized Low-Density Lipoproteins Activate CD4+T Cell Apoptosis in Patients with End-Stage Renal Disease through Fas Engagement. J Am Soc Nephrol 2006; 18:331-42. [PMID: 17182885 DOI: 10.1681/asn.2006050514] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Oxidized LDL (oxLDL) are cytotoxic to vascular cells, but their possible toxic action on T cells from patients with ESRD has not been evaluated. oxLDL concentrations were measured and compared in patients who were on long-term hemodialysis (HD), in patients who had ESRD and were on continuous ambulatory peritoneal dialysis, in nondialyzed patients with chronic kidney disease, and in age- and gender-matched control subjects. In parallel, the proliferative capacity of CD69+/CD4+ T cells and their rate of apoptosis, IL-2 expression, and intracellular expression of Bcl-2 and Bax were determined in vitro. The oxLDL concentrations were significantly higher in HD patients (all P = 0.001). Upon phytohemagglutinin stimulation, CD69+/CD4+ T cells from HD patients proliferated significantly less than those from the other patients' group (both P < 0.001). oxLDL but not the native LDL were led to CD69+/CD4+ T cells' program cell death in a dosage- and time-dependent manner through Fas pathway (P = 0.001). Cell surface Fas expression was followed by DNA fragmentation when CD69+/CD4+ T cells from HD patients or control subjects were cultured with oxLDL (200 microg/ml; 31 +/- 3 versus 25 +/- 3%; P = 0.001). In the presence of oxLDL, CD69+/CD4+ T cells from HD patients expressed significantly lower IL-2 levels, which strongly correlated with a decrease in the antiapoptotic Bcl-2 and conversely with an increase in the proapoptotic Bax expression. In conclusion, these data suggest that, in HD patients, exposure of activated CD4+ T cells to oxLDL leads to Fas-mediated apoptosis in association with inhibition of IL-2 expression. Subsequently, this may favor activation of mitochondria-dependent apoptotic pathways, leading to activated CD4+ T cell dysfunction.
Collapse
MESH Headings
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Apoptosis/drug effects
- Apoptosis/physiology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/pathology
- Case-Control Studies
- Cell Proliferation
- Cell Survival
- Female
- Humans
- In Vitro Techniques
- Interleukin-2/metabolism
- Kidney Failure, Chronic/immunology
- Kidney Failure, Chronic/metabolism
- Kidney Failure, Chronic/pathology
- Lectins, C-Type
- Lipids/blood
- Lipoproteins, LDL/blood
- Lipoproteins, LDL/metabolism
- Lipoproteins, LDL/pharmacology
- Male
- Middle Aged
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Receptors, Interleukin-2/metabolism
- bcl-2-Associated X Protein/metabolism
- fas Receptor/metabolism
Collapse
Affiliation(s)
- Pascal Meier
- Service of Nephrology, Centre Hospitalier Universitaire Vaudois (CHUV), 17 rue du Bugnon, 1011 Lausanne, Suisse.
| | | | | | | |
Collapse
|
26
|
Leal-Sanchez J, Couzinet A, Rossin A, Abdel-Sater F, Chakrabandhu K, Luci C, Anjuere F, Stebe E, Hancock D, Hueber AO. Requirement for Daxx in mature T-cell proliferation and activation. Cell Death Differ 2006; 14:795-806. [PMID: 17082815 DOI: 10.1038/sj.cdd.4402056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The protein Daxx promotes Fas-mediated cell death through activation of apoptosis signal-regulating kinase 1, leading to the activation of the MAPKs JNK and p38. Owing to the in utero lethality of daxx-deficient mice, the in vivo role of Daxx has been so far difficult to analyze. We have generated transgenic mice expressing a dominant-negative form of Daxx (Daxx-DN) in the T-cell lineage. We show that Daxx is recruited to the Fas receptor upon FasL engagement and that Daxx-DN expression protects activated T cells from Fas-induced cell death, by preventing the death-inducing signal complex to be properly formed. Normal lymphocyte development and homeostasis are nevertheless observed. Interestingly, we report that both in vitro and in vivo stimulation of Daxx-DN T-lymphocytes leads to increased proliferative T-cell responses. This increased proliferation is associated with a marked increase in tyrosine phosphorylation of LAT and ZAP70 as Daxx-DN favor their recruitment to the T-cell receptor (TCR) complex. These findings identify Daxx as a critical regulator of T-lymphocyte homeostasis by decreasing TCR-induced cell proliferation and by promoting Fas-mediated cell death.
Collapse
Affiliation(s)
- J Leal-Sanchez
- Equipe Labellisée par La Ligue Nationale Centre le Cancer Institute of Signalling, Developmental Biology and Cancer Research, CNRS UMR 6543, Nice, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Fas SC, Baumann S, Krueger A, Frey CR, Schulze-Bergkamen H, Brenner D, Stumpf C, Kappes K, Krammer PH. In vitro generated human memory-like T cells are CD95 type II cells and resistant towards CD95-mediated apoptosis. Eur J Immunol 2006; 36:2894-903. [PMID: 17048269 DOI: 10.1002/eji.200635925] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An adaptive immune response implies expansion of activated T cells and subsequent elimination to maintain homeostasis in a process called activation-induced cell death. Some cells, however, differentiate into memory cells and ensure a strong secondary immune response. To analyze the apoptosis phenotype of memory T cells on a cellular and molecular level, we have established an in vitro model of T cell activation and generation of cells phenotypically and functionally similar to memory cells. These long-term cultured T cells show a CD95-resistant phenotype, although they are still sensitive towards TCR/CD3-mediated apoptosis. Biochemical analysis revealed that these cells shift from CD95 type I (direct signaling from the receptor) during the effector phase to CD95 type II cells (dependent on the mitochondrial amplification loop). Moreover, their mitochondria are protected, probably due to high expression levels of Bcl-x(L) and Bcl-2. Thus, our data suggest a mechanism how memory T cells acquire resistance towards bystander cell death via the CD95 system.
Collapse
Affiliation(s)
- Stefanie C Fas
- Tumor Immunology Program, Division of Immunogenetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bosque A, Aguiló JI, Alava MA, Paz-Artal E, Naval J, Allende LM, Anel A. The induction of Bim expression in human T-cell blasts is dependent on nonapoptotic Fas/CD95 signaling. Blood 2006; 109:1627-35. [PMID: 17062728 DOI: 10.1182/blood-2006-05-022319] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The BH3-only protein Bim is required for maintaining the homeostasis of the immune system, since Bim regulates the down-modulation of T-cell responses, mainly through cytokine deprivation. Using T-cell blasts from healthy donors and also from patients with autoimmune lymphoproliferative syndromes (ALPSs) due to homozygous loss-of-function mutation of FasL (ALPS-Ic) or heterozygous mutation in the Fas/CD95 death domain (ALPS-Ia), it is shown that the induction of Bim expression during the process of human T-cell blast generation is strictly dependent on FasL/Fas-mediated signaling. The main pathway by which Fas signaling regulates the levels of Bim expression in human T-cell blasts is the death-domain- and caspase-independent generation of discrete levels of H2O2, which results in the net increase of Foxo3a levels. The present results connect the 2 main pathways described until the moment for the control of T-cell responses: death receptor-mediated activation-induced cell death and apoptosis by cytokine deprivation.
Collapse
Affiliation(s)
- Alberto Bosque
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, and Servicio de Inmunología, Hospital 12 de Octubre, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
29
|
Martínez-Lorenzo MJ, Anel A, Saez-Gutierrez B, Royo-Cañas M, Bosque A, Alava MA, Piñeiro A, Lasierra P, Asín-Ungría J, Larrad L. Rheumatoid synovial fluid T cells are sensitive to APO2L/TRAIL. Clin Immunol 2006; 122:28-40. [PMID: 16982214 DOI: 10.1016/j.clim.2006.07.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 07/13/2006] [Accepted: 07/20/2006] [Indexed: 01/10/2023]
Abstract
The infiltration and accumulation of T cells in the rheumatoid arthritis (RA) synovial fluid (SF) are hallmarks of disease. We aimed to assess the functional relevance of FasL and of APO2L/TRAIL in the persistence of T cells in the rheumatoid SF. We have analyzed the expression of the activation markers HLA-DR and CD69 and also of the death receptor Fas/CD95 and death ligands FasL or APO2L/TRAIL in CD3+ lymphocytes from SF of 62 RA patients, together with their sensitivity to anti-Fas mAb or to rAPO2L/TRAIL, using as controls T lymphocytes present in SF of 20 patients with traumatic arthritis. T lymphocytes infiltrated in SF of RA patients have a chronically activated phenotype, but they are resistant to Fas-induced toxicity. However, they are more susceptible to rAPO2L/TRAIL than T cells in the SF of traumatic arthritis patients. In addition, we found very low amounts of bioactive FasL and APO2L/TRAIL associated with exosomes in SF from RA patients as compared with SF from traumatic arthritis patients. The observation on the sensitivity of RA SF T cells to rAPO2L could have therapeutic implications because bioactive APO2L/TRAIL could be beneficial as a RA treatment.
Collapse
Affiliation(s)
- María José Martínez-Lorenzo
- Instituto Aragonés de Ciencias de la Salud and Servicio de Inmunología, Hospital Clínico Universitario Lozano Blesa. Zaragoza, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Brenner D, Golks A, Kiefer F, Krammer PH, Arnold R. Activation or suppression of NFkappaB by HPK1 determines sensitivity to activation-induced cell death. EMBO J 2005; 24:4279-90. [PMID: 16341093 PMCID: PMC1356335 DOI: 10.1038/sj.emboj.7600894] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Accepted: 11/09/2005] [Indexed: 12/16/2022] Open
Abstract
Restimulation of the T-cell receptor (TCR) in activated T cells induces CD95 (Fas/Apo-1)-mediated activation-induced cell death (AICD). The TCR-proximal mechanisms leading to AICD are elusive. Here we characterize hematopoietic progenitor kinase 1 (HPK1) as a differentially regulated TCR-proximal signaling protein involved in AICD of primary T cells. We show that HPK1 is a functional component of the endogenous IkappaB kinase (IKK) complex and is crucial for TCR-mediated NFkappaB activation. While full-length HPK1 enhances IKKbeta phosphorylation, siRNA-mediated knockdown of HPK1 blunts TCR-mediated NFkappaB activation and increases cell death. We also demonstrate proteolytic processing of HPK1 into HPK1-C, specifically in AICD-sensitive primary T cells. The cleavage product HPK1-C sequesters the inactive IKK complex and suppresses NFkappaB upon TCR restimulation by binding to IKKalpha and IKKbeta. T cells of HPK1-C transgenic mice are sensitized towards TCR-mediated AICD. Consequently, preventing HPK1-C generation in primary T cells by siRNA-mediated knockdown results in decreased AICD. Thus, these results show a novel mechanism of sensitization of T lymphocytes towards AICD by suppression of NFkappaB, and propose that HPK1 is a life/death switch in T lymphocytes.
Collapse
Affiliation(s)
- Dirk Brenner
- Tumor Immunology Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander Golks
- Tumor Immunology Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Peter H Krammer
- Tumor Immunology Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rüdiger Arnold
- Tumor Immunology Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69112 Heidelberg, Germany. Tel.: +49 6221 423769; Fax: +49 6221 411715; E-mail:
| |
Collapse
|
31
|
Legembre P, Barnhart BC, Zheng L, Vijayan S, Straus SE, Puck J, Dale JK, Lenardo M, Peter ME. Induction of apoptosis and activation of NF-kappaB by CD95 require different signalling thresholds. EMBO Rep 2005; 5:1084-9. [PMID: 15514680 PMCID: PMC1299175 DOI: 10.1038/sj.embor.7400280] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Revised: 09/23/2004] [Accepted: 09/23/2004] [Indexed: 01/28/2023] Open
Abstract
Mutations in the death domain of the death receptor CD95 (APO-1/Fas) cause lymphoproliferation and autoimmune disease in both lpr(cg) mice and in patients with autoimmune lymphoproliferative syndrome (ALPS) type Ia. By testing lymphocytes from ALPS type Ia patients, comparing heterozygous with homozygous lpr(cg) mice and coexpressing wild-type and mutant CD95 receptors, we demonstrate that induction of apoptosis requires two wild-type alleles of CD95. By contrast, nuclear factor-kappaB (NF-kappaB) can be fully activated in cells expressing both a mutant and a wild-type CD95 allele, suggesting different thresholds to activate the two signalling pathways. This was confirmed by testing lymphocytes from heterozygous lpr mice, which showed reduced sensitivity to CD95-mediated apoptosis but normal activation of NF-kappaB when compared with wild-type mice. Mutations in CD95 may eliminate the tumour-suppressive function of CD95, at the same time allowing induction of survival or proliferative pathways, which could contribute to the increased risk for lymphoma seen in ALPS type Ia patients.
Collapse
Affiliation(s)
- Patrick Legembre
- The Ben May Institute for Cancer Research, University of Chicago, 924 E 57th Street, Chicago, Illinois 60637, USA
| | - Bryan C Barnhart
- The Ben May Institute for Cancer Research, University of Chicago, 924 E 57th Street, Chicago, Illinois 60637, USA
| | - Lixin Zheng
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Shrijay Vijayan
- The Ben May Institute for Cancer Research, University of Chicago, 924 E 57th Street, Chicago, Illinois 60637, USA
| | - Stephen E Straus
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jennifer Puck
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Janet K Dale
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Michael Lenardo
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Marcus E Peter
- The Ben May Institute for Cancer Research, University of Chicago, 924 E 57th Street, Chicago, Illinois 60637, USA
- Tel: +1 773 702 4728; Fax: +1 773 702 3701; E-mail:
| |
Collapse
|
32
|
Amtmann E, Zöller M. Stimulation of CD95-induced apoptosis in T-cells by a subtype specific neutral sphingomyelinase inhibitor. Biochem Pharmacol 2005; 69:1141-8. [PMID: 15794934 DOI: 10.1016/j.bcp.2004.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2003] [Accepted: 12/28/2004] [Indexed: 02/02/2023]
Abstract
Neutral sphingomyelinase (nSMase) has been supposed to be involved in the activation of anti-apoptotic genes and, thus, could well sustain autoimmune reactions by preventing activation induced death of autoreactive T-cells. When screening cellular extracts for SMase activity in the range between pH 6.5 and 8.5 various murine tissue samples as well as cell lines of murine and human origin displayed peaks of activity, both, at pH 7.0 and 8.0. In contrast, T-cells (human T-cell lymphoma and PHA stimulated murine lymph node cells) and monocytic leukemia cells were lacking SMase activity at pH 8.0. Only one peak of activity was found at pH 7.0. Recently we described an inhibitory compound, C11AG which selectively suppresses nSMase activity. In dose-response assays using cellular extracts the pH 7.0 nSMase turned out to be almost 100-fold more sensitive to the inhibitor than the pH 8.0 nSMase. In Jurkat T-cell lymphoma cells lacking the pH 8.0 nSMase, treatment with C11AG enhanced sensitivity to apoptosis: the concentration of CD95-specific antibody anti-APO1 could be lowered by six-fold in order to induce cell death. Concomitantly the expression of the anti-apoptotic protein A1 was found to be down-regulated. In the joints of arthritic mice, apoptosis of T-cells was stimulated after application of C11AG. Accordingly, C11AG displayed curative effects on experimental arthritis: swelling and inflammation were found to be significantly alleviated.
Collapse
Affiliation(s)
- Eberhard Amtmann
- German Cancer Research Center, Abteilung Immunregulation und Tumorabwehr, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
33
|
Mezzanzanica D, Balladore E, Turatti F, Luison E, Alberti P, Bagnoli M, Figini M, Mazzoni A, Raspagliesi F, Oggionni M, Pilotti S, Canevari S. CD95-mediated apoptosis is impaired at receptor level by cellular FLICE-inhibitory protein (long form) in wild-type p53 human ovarian carcinoma. Clin Cancer Res 2005; 10:5202-14. [PMID: 15297424 DOI: 10.1158/1078-0432.ccr-03-0537] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Ovarian carcinoma is a highly lethal malignancy that often becomes resistant to chemotherapy. Alterations in apoptotic signals and p53 status contribute to drug resistance, and CD95-mediated apoptosis is also deficient in resistant cells. We analyzed the mechanism of resistance to CD95-mediated apoptosis in ovarian carcinoma cell lines differing in p53 status. EXPERIMENTAL DESIGN CD95-mediated apoptosis was induced by agonistic anti-CD95 antibody, and the apoptotic cascade was monitored with biochemical and functional assays. RESULTS CD95-mediated apoptosis was blocked in human ovarian cancer cells. In cell lines with wild-type p53, treatment with the protein synthesis inhibitor cycloheximide (CHX) together with anti-CD95 overcame the resistance, suggesting the presence of a labile inhibiting protein. Indeed, the labile protein cellular FLICE-inhibitory protein long form (c-FLIP(L)) was found to block caspase-8 recruitment to the death-inducing signaling complex (DISC), and sensitization of cells by CHX was due to c-FLIP(L) down-modulation at the DISC level. Down-regulation of c-FLIP(L) with antisense oligonucleotides increased CD95-mediated apoptosis as in cells sensitized by CHX, demonstrating the direct involvement of c-FLIP(L) in apoptosis resistance. Removal of c-FLIP(L) block at DISC level allowed full activation of the mitochondrial pathway and, eventually, apoptosis in wild-type p53 cells, whereas in cells with mutated p53, c-FLIP(L) involvement in CD95-mediated apoptosis resistance appeared to be irrelevant. Immunohistochemical analysis of an ovarian tumor tissue array revealed c-FLIP(L) expression in samples with no p53 accumulation (P = 0.034), and a significant (P = 0.037) inverse relationship between c-FLIP(L) and p53 expression levels was also observed in 27 epithelial ovarian cancer specimens with known p53 status. CONCLUSION The inhibitory protein c-FLIP(L) is involved in resistance to CD95-mediated apoptosis in ovarian carcinoma cells with wild-type p53.
Collapse
Affiliation(s)
- Delia Mezzanzanica
- Unit of Molecular Therapies, Department of Experimental Oncology, Istituto Nazionale Tumori, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bosque A, Pardo J, Martínez-Lorenzo MJ, Iturralde M, Marzo I, Piñeiro A, Alava MA, Naval J, Anel A. Down-regulation of normal human T cell blast activation: roles of APO2L/TRAIL, FasL, and c- FLIP, Bim, or Bcl-x isoform expression. J Leukoc Biol 2005; 77:568-78. [PMID: 15653751 DOI: 10.1189/jlb.0904514] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A systematic study was undertaken to characterize the role of APO 2 ligand/tumor necrosis factor-related apoptosis-inducing ligand (APO2L/TRAIL) and Fas ligand (FasL) together with the expression of several anti- or proapoptotic proteins in the down-regulation of normal human T cell responses. We have observed for the first time that the higher sensitivity of normal human T cell blasts to apoptosis and activation-induced cell death (AICD) as compared with naive T cells correlates with the increased expression of Bcl-x short (Bcl-xS) and Bim. T cell blasts die in the absence of interleukin 2 (IL-2) with no additional effect of death receptor ligation. In the presence of IL-2, recombinant APO2L/TRAIL or cytotoxic anti-Fas monoclonal antibodies induce rather inhibition of IL-2-dependent growth and not cell death on normal human T cell blasts. This observation is of physiological relevance, as supernatants from T cell blasts, pulse-stimulated with phytohemagglutinin (PHA) or through CD3 or CD59 ligation and containing bioactive APO2L/TRAIL and/or FasL expressed on microvesicles or direct CD3 or CD59 ligation, had the same effect. Cell death was only observed in the presence of cycloheximide or after a pulse through CD3 or CD59, correlating with a net reduction in cellular Fas-associated death domain-like IL-1beta-converting enzyme-inhibitory protein long (c-FLIPL) and c-FLIPS expression. We also show that death receptor and free radical generation contribute, at least partially, to AICD induced by PHA and also to the inhibition of IL-2-dependent cell growth by CD3 or CD59 ligation. Finally, we have also shown that T cell blasts surviving PHA-induced AICD are memory CD44high cells with increased c-FLIPS and Bcl-xL expression.
Collapse
Affiliation(s)
- Alberto Bosque
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, E-50009, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Todaro M, Zerilli M, Triolo G, Iovino F, Patti M, Accardo-Palumbo A, di Gaudio F, Turco MC, Petrella A, de Maria R, Stassi G. NF-κB protects Behçet's disease T cells against CD95-induced apoptosis up-regulating antiapoptotic proteins. ACTA ACUST UNITED AC 2005; 52:2179-91. [PMID: 15986355 DOI: 10.1002/art.21145] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To determine whether prolongation of the inflammatory reaction in patients with Behçet's disease (BD) is related to apoptosis resistance and is associated with the up-regulation of antiapoptotic factors. METHODS The percentage of cell death was evaluated by flow cytometry in peripheral blood mononuclear cells from 35 patients with BD and 30 healthy volunteers. The expression levels of antiapoptotic factors and NF-kappaB regulatory proteins were measured using Western blotting and immunohistochemical analyses. To down-regulate NF-kappaB nuclear translocation, BD T lymphocytes were exposed in vitro to thalidomide and subjected to transfection with NF-kappaB small interfering RNA. RESULTS Although CD95 is highly expressed in BD T cells, the absence of sensitivity to CD95-induced apoptosis observed may be attributable to the inhibitory action of antiapoptotic genes. Immunoblot analysis for major antiapoptotic proteins showed considerable up-regulation of the short form of cellular FLIP (cFLIP) and Bcl-x(L) in BD activated T cells, while levels of Bcl-2, caspase 3, and caspase 8 in activated T cells from patients with BD were comparable with those in activated T cells from normal donors. Moreover, expression of IKK and IkappaB was up-regulated, whereas NF-kappaB translocated to the nucleus in BD T cells, suggesting that NF-kappaB activation may modulate the expression of antiapoptotic genes. Interestingly, thalidomide and NF-kappaB small interfering RNA down-regulated cFLIP and Bcl-x(L) expression levels and sensitized BD activated T cells to CD95-induced apoptosis. CONCLUSION Taken together, these results indicate that NF-kappaB contributes to the regulation of the apoptosis-related factors and death receptors leading to apoptosis resistance in BD T cell subsets. Our results suggest that NF-kappaB plays a crucial role in the pathogenesis of BD, and that its pharmacologic control could represent a key strategy in modulating specific immune-mediated disease.
Collapse
|
36
|
Oh HM, Choi SC, Lee HS, Chun CH, Seo GS, Choi EY, Lee HJ, Lee MS, Yeom JJ, Choi SJ, Han WC, Oh JM, Chung YT, Chun JS, Lee KM, Jun CD. Combined action of extracellular signal-regulated kinase and p38 kinase rescues Molt4 T cells from nitric oxide-induced apoptotic and necrotic cell death. Free Radic Biol Med 2004; 37:463-79. [PMID: 15256218 DOI: 10.1016/j.freeradbiomed.2004.04.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Revised: 04/05/2004] [Accepted: 04/28/2004] [Indexed: 11/20/2022]
Abstract
The mechanisms that regulate nitric oxide (NO)-induced apoptosis, especially in T cell apoptosis, are largely uncharacterized. Here, we report that protection from NO-induced cell death by phorbol 12-myristate 13-acetate (PMA) is dependent on both p38 and extracellular signal-regulated kinase (ERK) activation. Exposure of Molt4 cells to NO donor S-nitroso-N-acetyl-DL-penicillamine (SNAP) induced both apoptotic and necrotic modes of cell death along with a sustained increase in p38 kinase phosphorylation. However, the p38 inhibitor SB202190 only slightly protected Molt4 cells from NO toxicity. In contrast, PMA rapidly phosphorylated both p38 kinase and ERK, and the phosphorylation statuses were not altered in the presence of SNAP. Interestingly, although each mitogen-activated protein kinase (MAPK) inhibitor by itself had only a modest effect, the combination of inhibitors for both MAPKs almost completely abolished the protective effect of PMA. Furthermore, dominant negative or catalytically inactive variants that modulate p38 and ERK mimicked the effects of MAPK inhibitors. We located the action of p38 and ERK upstream of the p53/mitochondrial membrane potential loss and caspases cascade. Together, these findings suggest that the PMA-induced activations of ERK and p38 kinase are parallel events that are both required for inhibition of NO-induced death of Molt4 cells.
Collapse
Affiliation(s)
- Hyun-Mee Oh
- Department of Microbiology and Immunology, Wonkwang University School of Medicine, Iksan, Chonbuk 570-749, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Schmitz I, Weyd H, Krueger A, Baumann S, Fas SC, Krammer PH, Kirchhoff S. Resistance of short term activated T cells to CD95-mediated apoptosis correlates with de novo protein synthesis of c-FLIPshort. THE JOURNAL OF IMMUNOLOGY 2004; 172:2194-200. [PMID: 14764686 DOI: 10.4049/jimmunol.172.4.2194] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the early phase of an immune response, T cells are activated and acquire effector functions. Whereas these short term activated T cells are resistant to CD95-mediated apoptosis, activated T cells in prolonged culture are readily sensitive, leading to activation-induced cell death and termination of the immune response. The translation inhibitor, cycloheximide, partially overcomes the apoptosis resistance of short term activated primary human T cells. Using this model we show in this study that sensitization of T cells to apoptosis occurs upstream of mitochondria. Neither death-inducing signaling complex formation nor expression of Bcl-2 proteins is altered in sensitized T cells. Although the caspase-8 inhibitor c-FLIP(long) was only slightly down-regulated in sensitized T cells, c-FLIP(short) became almost undetectable. This correlated with caspase-8 activation and apoptosis. These data suggest that c-FLIP(short), rather than c-FLIP(long), confers resistance of T cells to CD95-mediated apoptosis in the context of immune responses.
Collapse
Affiliation(s)
- Ingo Schmitz
- Tumor Immunology Program, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Kirkin V, Joos S, Zörnig M. The role of Bcl-2 family members in tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1644:229-49. [PMID: 14996506 DOI: 10.1016/j.bbamcr.2003.08.009] [Citation(s) in RCA: 398] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2003] [Accepted: 08/18/2003] [Indexed: 02/07/2023]
Abstract
The Bcl-2 family consists of about 20 homologues of important pro- and anti-apoptotic regulators of programmed cell death. The established mode of function of the individual members is to either preserve or disturb mitochondrial integrity, thereby inducing or preventing release of apoptogenic factors like Cytochrome c (Cyt c) from mitochondria. Recent findings also indicate further Bcl-2-controlled mitochondria-independent apoptosis pathways. Bcl-2 represents the founding member of the new and growing class of cell death inhibiting oncoproteins. In this review, we try to briefly summarize current models of Bcl-2 family function and to outline the work demonstrating the influence of deregulated Bcl-2 family member expression on tumorigenesis and cancer therapy. Since several Bcl-2 homologues, in addition to influencing apoptotic behaviour, also impinge on cell cycle progression, we discuss possible implications of this additional role for the expression of Bcl-2 family members in tumor cells.
Collapse
Affiliation(s)
- Vladimir Kirkin
- Georg-Speyer-Haus, Paul-Ehrlich-Strasse 42-44, D-60596 Frankfurt, Germany
| | | | | |
Collapse
|
39
|
Abstract
In recent years, it has become clear that self-nonself discrimination by the immune system is driven not so much by the specificities of the antigen receptors themselves, but by ligand-receptor systems that sense the presence of foreign pathogens (toll-like receptors) and those that regulate the balance between cellular proliferation and programmed cell death (tumor necrosis factor [TNF] family ligands and receptors). Interestingly, these two receptor families share a number of common signaling pathways, mediated by the cytoplasmic proteins containing death domains and TRAF domains, which trigger the complementary processes of programmed cell death and inflammation. Both humans and mice with genetic defects in the TNF-receptor family member Fas accumulate abnormal lymphocytes and develop systemic autoimmunity. These findings highlighted the importance of this TNF-receptor family member in the homeostasis of the immune system. In particular, the Fas receptor has been shown to be important in immunoreceptor-mediated apoptosis of activated T and B lymphocytes. Six members of the TNF-receptor superfamily share a common signaling domain with Fas, termed the death domain, that directly links these receptors to the apoptotic machinery of the cell, and, collectively, these receptors have been designated as "death receptors."We are currently investigating a number of important unresolved issues in this field, including: (1). how susceptibility to apoptosis through death receptors is regulated, (2). how Fas and related death receptors function in the maintenance of self-tolerance and homeostasis in the major cell types of the immune system, and (3). recently described nonapoptotic lymphocyte activation signals that use components of death receptor signaling.
Collapse
Affiliation(s)
- Richard M Siegel
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
40
|
Gendron S, Couture J, Aoudjit F. Integrin alpha2beta1 inhibits Fas-mediated apoptosis in T lymphocytes by protein phosphatase 2A-dependent activation of the MAPK/ERK pathway. J Biol Chem 2003; 278:48633-43. [PMID: 13679375 DOI: 10.1074/jbc.m305169200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanisms by which T lymphocytes escape apoptosis during their activation are still poorly defined. In this study, we elucidated the intracellular signaling pathways through which beta1 integrins modulate Fas-mediated apoptosis in T lymphocytes. In experiments done in Jurkat T cells and activated peripheral blood T lymphocytes, engagement of alpha2beta1 integrin with collagen type I (Coll I) was found to significantly reduce Fas-induced apoptosis and caspase-8 activation; Annexin V binding and DNA fragmentation were reduced by approximately 42 and 38%, respectively. We demonstrated that the protective action of Coll I does not require new protein synthesis but was dependent on the activation of the MAPK/Erk pathway. Furthermore, we found that activation of protein phosphatase 2A (PP2A) by Coll I was required for both Coll I-mediated activation of Erk, and inhibition of Fas-induced caspase-8 activation and apoptosis. Other ligands of beta1 integrins, fibronectin (Fbn), and laminin (Lam), did not sustain significant Erk activation and had no effect on Fas-induced apoptosis. Taken together, these results provide the first evidence of a PP2A-dependent activation of the MAPK/Erk pathway downstream of alpha2beta1 integrin, which has a functional role in regulating Fas-mediated apoptosis in T lymphocytes. As such, this study emphasizes the potential importance that Coll I interactions may have on the control of T lymphocyte homeostasis and their persistence in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Steve Gendron
- Centre de Recherche en Immunologie et Rhumatologie, Centre Hospitalier Universitaire de Québec, Pavillon CHUL and Faculté de Médecine, Université Laval, Québec G1V 4G2, Canada
| | | | | |
Collapse
|
41
|
Schmitz I, Krueger A, Baumann S, Schulze-Bergkamen H, Krammer PH, Kirchhoff S. An IL-2-dependent switch between CD95 signaling pathways sensitizes primary human T cells toward CD95-mediated activation-induced cell death. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:2930-6. [PMID: 12960316 DOI: 10.4049/jimmunol.171.6.2930] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The CD95 (APO-1/Fas) system plays a critical role in activation-induced cell death (AICD) of T cells. We previously described two distinct CD95 (APO-1/Fas) signaling pathways: 1) type I cells show strong death-inducing signaling complex (DISC) formation and mitochondria-independent apoptosis and 2) DISC formation is reduced in type II cells, leading to mitochondria-dependent apoptosis. To investigate the relevance of these pathways, we set up an in vitro model that mimics the initiation and the down phase of an immune response, respectively. Freshly activated human T cells (initiation) are resistant toward CD95-mediated AICD despite high expression of CD95. We previously reported that these T cells show reduced DISC formation. In this study, we show that freshly activated T cells are CD95-type II cells that show high expression levels of Bcl-x(L) and display a block in the mitochondrial apoptosis pathway. Furthermore, we show that, upon prolonged culture (down phase), human T cells undergo a switch from type II to type I cells that renders T cells sensitive to CD95-mediated AICD. Finally, we demonstrate that this switch is dependent on the presence of IL-2. Our observations reveal for the first time that the existence of coexisting CD95 signaling pathways is of physiological relevance.
Collapse
Affiliation(s)
- Ingo Schmitz
- Tumor Immunology Program, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Storey NM, Gómez-Angelats M, Bortner CD, Armstrong DL, Cidlowski JA. Stimulation of Kv1.3 potassium channels by death receptors during apoptosis in Jurkat T lymphocytes. J Biol Chem 2003; 278:33319-26. [PMID: 12807917 DOI: 10.1074/jbc.m300443200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The loss of intracellular potassium is a pivotal step in the induction of apoptosis but the mechanisms underlying this response are poorly understood. Here we report caspase-dependent stimulation of potassium channels by the Fas receptor in a human Jurkat T cell line. Receptor activation with Fas ligand for 30 min increased the amplitude of voltage-activated potassium currents 2-fold on average. This produces a sustained outward current, approximately 10 pA, at physiological membrane potentials during Fas ligand-induced apoptosis. Both basal and Fas ligand-induced currents were blocked completely by toxins that selectively inhibit Kv1.3 potassium channels. Kv1.3 stimulation required the expression of Fas-associated death domain protein and activation of caspase 8, but did not require activation of caspase 3 or protein synthesis. Furthermore, Kv1.3 stimulation by Fas ligand was prevented by chronic stimulation of protein kinase C with 20 nm phorbol 12-myristate 13-acetate during Fas ligand treatment, which also blocks apoptosis. Thus, Fas ligand increases Kv1.3 channel activity through the same canonical apoptotic signaling cascade that is required for potassium efflux, cell shrinkage, and apoptosis.
Collapse
Affiliation(s)
- Nina M Storey
- Membrane Signaling Group, Laboratory of Signal Transduction, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
43
|
Krueger A, Fas SC, Baumann S, Krammer PH. The role of CD95 in the regulation of peripheral T-cell apoptosis. Immunol Rev 2003; 193:58-69. [PMID: 12752671 DOI: 10.1034/j.1600-065x.2003.00047.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Apoptosis of activated peripheral T cells during the termination phase of an immune response is critical to maintain T-cell homeostasis. Activated T cells can be removed by two mechanisms: activation-induced cell death (AICD) and death by neglect. AICD is triggered by death receptors, whereas death by neglect is induced by cytokine withdrawal. CD95 (APO-1/Fas) belongs to the subfamily of death receptors and plays a major role in AICD. In this review, we focus on the molecular mechanisms of AICD, in particular those involving the CD95 system. Moreover, we discuss the relative contribution of AICD and death by neglect to terminate a T-cell immune response. In order to become fully activated, T cells require a second signal provided by antigen-presenting cells. We discuss how these costimulatory signals counteract pro-apoptotic signals and, finally, which signals might protect T cells from death to generate a pool of memory T cells.
Collapse
Affiliation(s)
- Andreas Krueger
- Tumorimmunology Program,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | |
Collapse
|
44
|
Bauernhofer T, Kuss I, Friebe-Hoffmann U, Baum AS, Dworacki G, Vonderhaar BK, Whiteside TL. Role of prolactin receptor and CD25 in protection of circulating T lymphocytes from apoptosis in patients with breast cancer. Br J Cancer 2003; 88:1301-9. [PMID: 12698200 PMCID: PMC2747567 DOI: 10.1038/sj.bjc.6600860] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Prolactin (PRL) has been reported to inhibit apoptosis in various cell types and to serve as a cofactor in the upregulation of CD25 on T cells during activation. We investigated a possible relation between prolactin receptor (PRL-R) or IL-2 receptor alpha (IL-2Ralpha, CD25) expression on circulating T lymphocytes and their apoptosis in patients with breast cancer. Peripheral blood mononuclear cells obtained from 25 patients, 25 normal controls (NC) and three cord blood samples were evaluated for Annexin V binding and expression of CD95, CD25, and PRL-R on CD3(+) T cells by multicolour flow cytometry. Plasma levels of PRL, sCD95L, and sIL-2R were determined in patients and controls and related to T-cell apoptosis. The ability of PRL to protect T cells from apoptosis induced by various agents was also studied. Expression of PRL-R on the surface of T cells was comparable in patients with breast cancer and NC, but PRL plasma levels in patients were significantly lower (P<0.05). In patients, 18+/-11% (mean+/-s.d.) of CD3(+) cells bound Annexin V, compared to 9+/-6% in NC (P<0.0004). Percentages of CD3(+)Fas(+) and CD3(+)CD25(+) cells were higher in the peripheral circulation of patients than NC (P<0.0001 and <0.04, respectively). Levels of sFasL were lowest in plasma of the patients with the highest proportions of CD3(+)Fas(+) T cells. Most T cells undergoing apoptosis were CD3(+)CD25(-) in patients, and the proportion of CD3(+)CD25(-) Annexin V(+) cells was significantly increased in patients compared to NC (P<0.006). Ex vivo PRL protected T cells from starvation-induced or anti-CD3Ab-induced but not from Fas/FasL-dependent apoptosis. These results indicate that expression of CD25 but not of PRL-R on the surface of activated T lymphocytes appears to be involved in modulating Fas/Fas - ligand interactions, which are, in part, responsible for apoptosis of T lymphocytes and excessive turnover of immune cells in the circulation of patients with breast cancer.
Collapse
Affiliation(s)
- T Bauernhofer
- University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213-1863, USA
| | - I Kuss
- University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213-1863, USA
| | - U Friebe-Hoffmann
- University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213-1863, USA
| | - A S Baum
- University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213-1863, USA
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213-1863, USA
| | - G Dworacki
- University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213-1863, USA
| | - B K Vonderhaar
- Basic Research Laboratory, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - T L Whiteside
- University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213-1863, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213-1863, USA
- University of Pittsburgh Cancer Institute, Research Pavilion at the Hillman Cancer Center, Suite 1.27, 5117 Centre Avenue, Pittsburgh, PA 15213-1863, USA. E-mail:
| |
Collapse
|
45
|
Ng CP, Bonavida B. A new challenge for successful immunotherapy by tumors that are resistant to apoptosis: two complementary signals to overcome cross-resistance. Adv Cancer Res 2003; 85:145-74. [PMID: 12374285 DOI: 10.1016/s0065-230x(02)85005-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tumor resistance to conventional therapies is a major problem in cancer treatment. While tumors initially respond to radiation or chemotherapies, subsequent treatments with these conventional modalities are ineffective against relapsed tumors. The problem of tumor resistance to chemotherapy and radiation has led to the development of immunotherapy and gene-based therapies. These alternative therapeutic approaches are intensely explored because they are supposed to be more tumor specific and better tolerated than the conventional therapies. Recent advances in apoptosis have revealed that resistance to apoptosis is one of the major mechanisms of tumor resistance to conventional therapies. Resistance to apoptosis is a naturally acquired characteristic during oncogenesis and is selected for after successive rounds of conventional therapies. Resistance to apoptosis involves dysregulation and/or mutation of apoptotic signaling molecules that render tumor cells unresponsive to apoptotic stimuli. Since both immunotherapy and chemotherapy kill tumors by apoptosis and the killings are signaled through a central core apoptotic program, dysregulation of this central program and development of resistance to apoptosis in chemoresistant cells could render them cross-resistant to immunotherapy. Therefore, in order to establish an effective antitumor response and to complement immunotherapy and gene-based therapies, cross-resistance due to resistance to apoptosis must be overcome. In this review, based on prior findings and recent evidence, we put forth a model, verified experimentally, in which chemoresistant tumor cells can be sensitized to immune-mediated killing by subtoxic concentrations of chemotherapeutic drugs/factors. The model involves two complementary signals. The first signal is a sensitizing signal that regulates pro/antiapoptotic targets, thus facilitating the apoptotic signal. The second apoptotic signal initiates a partial activation of the apoptotic signaling pathway, and activation is completed by complementation with signal one. Thus, effective killing of immunoresistant cells is achieved by both signals. The two-signal approach provides a new strategy to overcome cancer cross-resistance to immunotherapy and opens new avenues for the development of more effective and selective immunosensitizing agents.
Collapse
Affiliation(s)
- Chuen-Pei Ng
- Department of Microbiology, Immunology, and Molecular Genetics, Jonsson Comprehensive Cancer Center, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | |
Collapse
|
46
|
Engedal N, Blomhoff HK. Combined action of ERK and NF kappa B mediates the protective effect of phorbol ester on Fas-induced apoptosis in Jurkat cells. J Biol Chem 2003; 278:10934-41. [PMID: 12551910 DOI: 10.1074/jbc.m211556200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanisms whereby phorbol esters antagonize Fas-induced apoptosis in Jurkat T cells are poorly defined. In the present study, we report that protection from Fas-induced apoptosis by 12-O-tetradecanoylphorbol 13-acetate (TPA) is dependent on both ERK and NF kappa B activation. First, we showed that two specific mitogen-activated protein kinase/ERK kinase-inhibitors, PD98059 and U0126, both counteracted TPA-mediated suppression of Fas-induced apoptosis. Moreover, the dose-dependence of U0126-mediated inhibition of ERK phosphorylation correlated with that of reversion of the anti-apoptotic effect of TPA. Second, we observed an excellent correlation between repression of TPA-induced NF kappa B activation by an irreversible inhibitor of I kappa B alpha phosphorylation, BAY11-7082, and its ability to abrogate TPA-induced suppression of Fas-mediated apoptosis. Furthermore, we located the anti-apoptotic effect of both ERK and NF kappa B to lie upstream of the mitochondrial membrane potential depolarization event. Finally, although each inhibitor at optimal, non-toxic concentration by itself only partly reversed TPA-mediated repression of apoptosis, the combination of U0126 and BAY11-7082 completely abolished the anti-apoptotic effect of TPA. Together these findings suggest that TPA-induced activation of ERK and NF kappa B are parallel events that are both required for maximal inhibition of Fas-induced apoptosis in Jurkat T cells.
Collapse
Affiliation(s)
- Nikolai Engedal
- Institute of Medical Biochemistry, University of Oslo, P. O. Box 1112, Blindern, N-0317 Oslo, Norway
| | | |
Collapse
|
47
|
Denis GV, Yu Q, Ma P, Deeds L, Faller DV, Chen CY. Bcl-2, via its BH4 domain, blocks apoptotic signaling mediated by mitochondrial Ras. J Biol Chem 2003; 278:5775-85. [PMID: 12477721 PMCID: PMC11093621 DOI: 10.1074/jbc.m210202200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bcl-2 protects cells against Ras-mediated apoptosis; this protection coincides with its binding to Ras. However, the protection mechanism has remained enigmatic. Here, we demonstrate that, upon apoptotic stimulation, newly synthesized Bcl-2 redistributes to mitochondria, interacts there with activated Ras, and blocks Ras-mediated apoptotic signaling. We also show, by employing bcl-2 mutants, that the BH4 domain of Bcl-2 binds to Ras and regulates its anti-apoptotic activity. Experiments with a C-terminal-truncated Ras or a farnesyltransferase inhibitor demonstrate that the CAAX motif of Ras is essential for apoptotic signaling and Bcl-2 association. The results indicate a potential mechanism by which Bcl-2 protects cells against Ras-mediated apoptotic signaling.
Collapse
Affiliation(s)
| | | | - Peihong Ma
- Cancer Research Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Linda Deeds
- Cancer Research Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Douglas V. Faller
- Cancer Research Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Chang-Yan Chen
- Cancer Research Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| |
Collapse
|
48
|
Scheel-Toellner D, Wang K, Singh R, Majeed S, Raza K, Curnow SJ, Salmon M, Lord JM. The death-inducing signalling complex is recruited to lipid rafts in Fas-induced apoptosis. Biochem Biophys Res Commun 2002; 297:876-9. [PMID: 12359234 DOI: 10.1016/s0006-291x(02)02311-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Membrane microdomains known as lipid rafts have been shown recently to be involved in Fas signalling and apoptosis in T and B cell lines. Here, we have investigated further the role of lipid rafts in Fas-induced apoptosis in non-transformed human CD4 T cells. We show that Fas-induced apoptosis in CD4 T cells was inhibited by the lipid raft disrupter methyl-beta-cyclodextrin. When lipid rafts were isolated from control and Fas ligand treated cells, we found that a small proportion of Fas was present in the raft fraction in untreated cells and that this was greatly increased upon Fas ligation. The other components of the Death Inducing Signalling Complex (DISC), FADD, and procaspase 8, were also present at higher levels in the raft fraction isolated from Fas ligand treated cells. We conclude that formation of the DISC occurs in lipid rafts and that these membrane microdomains are required for efficient Fas signalling and apoptosis.
Collapse
Affiliation(s)
- D Scheel-Toellner
- MRC Centre for Immune Regulation, Birmingham University Medical School, Birmingham B15 2TT, UK
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Jones RG, Elford AR, Parsons MJ, Wu L, Krawczyk CM, Yeh WC, Hakem R, Rottapel R, Woodgett JR, Ohashi PS. CD28-dependent activation of protein kinase B/Akt blocks Fas-mediated apoptosis by preventing death-inducing signaling complex assembly. J Exp Med 2002; 196:335-48. [PMID: 12163562 PMCID: PMC2193932 DOI: 10.1084/jem.20020307] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The T cell costimulatory molecule CD28 is important for T cell survival, yet both the signaling pathways downstream of CD28 and the apoptotic pathways they antagonize remain poorly understood. Here we demonstrate that CD4(+) T cells from CD28-deficient mice show increased susceptibility to Fas-mediated apoptosis via a phosphatidylinositol 3-kinase (PI3K)-dependent pathway. Protein kinase B (PKBalpha/Akt1) is an important serine/threonine kinase that promotes survival downstream of PI3K signals. To understand how PI3K-mediated signals downstream of CD28 contribute to T cell survival, we examined Fas-mediated apoptosis in T cells expressing an active form of PKBalpha. Our data demonstrate that T cells expressing active PKB are resistant to Fas-mediated apoptosis in vivo and in vitro. PKB transgenic T cells show reduced activation of caspase-8, BID, and caspase-3 due to impaired recruitment of procaspase-8 to the death-inducing signaling complex (DISC). Similar alterations are seen in T cells from mice which are haploinsufficient for PTEN, a lipid phosphatase that regulates phosphatidylinositol-3,4,5-trisphosphate (PIP(3)) and influences PKBalpha activity. These findings provide a novel link between CD28 and an important apoptosis pathway in vivo, and demonstrate that PI3K/PKB signaling prevents apoptosis by inhibiting DISC assembly.
Collapse
Affiliation(s)
- Russell G Jones
- Department of Medical Biophysics, Ontario Cancer Institute, University of Toronto, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Matsuki Y, Li L, Hsu HC, Yang PA, Zheng R, Edwards CK, Chaudry IH, Zhang HG, Mountz JD. Soluble Fas gene therapy protects against Fas-mediated apoptosis of hepatocytes but not the lethal effects of Fas-induced TNF-alpha production by Kupffer cells. Cell Death Differ 2002; 9:626-35. [PMID: 12032671 DOI: 10.1038/sj.cdd.4401016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2001] [Revised: 11/06/2001] [Accepted: 12/06/2001] [Indexed: 02/01/2023] Open
Abstract
The elevation of soluble Fas (sFas) in the sera of patients with liver disease suggests a role for sFas in the disease process; whether it is protective or not is controversial. To determine the effects of sFas on Fas-induced liver apoptosis, we manipulated mice to produce sFas by transfecting them in vivo with different amounts of an adenovirus that produces mouse sFas driven by the CMV promoter (AdsFas). Fas-mediated apoptosis was induced by administration of anti-mouse Fas (Jo2; 10 microg/mouse) one week later. The administration of AdsFas (10(3), 10(7), or 10(9) pfu/mouse), which was associated with only minimal side-effects, resulted in a significant reduction in the liver transaminase levels and mortality of the mice on challenge with Jo2, as compared to control mice treated with AdLacZ. However, the protective effect of AdsFas was not complete. The possibility that Jo2-induction of TNF-alpha in the Kupffer cells of the liver contributes to the pathology was therefore tested. Although administration of soluble TNF receptor (sTNFRI) alone did not protect the mice from the lethal effects of Jo2, administration of sTNFRI (200 microg/mouse) after infection with AdsFas (10(9) pfu/mouse) resulted in 100% survival of the mice on challenge with Jo2. To confirm that the production of TNF-alpha by Kupffer cells produce the lethal effects of Jo2 that remained after treatment with AdsFas, these cells were selectively ablated by treatment of the mice with gadolinium chloride prior to challenge with Jo2. This treatment greatly reduced early mortality and hepatocellular damage as well as TNF-alpha production 6 h after injection of Jo2. These results indicate that: (1) AdsFas prevents Jo2-induced apoptosis of hepatocytes; (2) In addition to mediating Fas-mediated apoptosis of hepatocytes, Jo2 can separately induce TNF-alpha production by Kupffer cells resulting in early mortality, and (3) Optimal protection from Jo2-induced mortality can be achieved by protection of liver cells by pretreatment with both AdsFas and sTNFRI.
Collapse
Affiliation(s)
- Y Matsuki
- Division of Clinical Immunology and Rheumatology, Department of Medicine, The University of Alabama at Birmingham, 35294-0007, USA
| | | | | | | | | | | | | | | | | |
Collapse
|