1
|
Aisihaer X, Guo H, Liu C. Interchain disulfide engineering enables the efficient production of functional HLA-DQ-Fc fusion proteins. J Biol Chem 2024; 300:107652. [PMID: 39121997 PMCID: PMC11402769 DOI: 10.1016/j.jbc.2024.107652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/13/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
HLA-DQ molecules drive unwanted alloimmune responses after solid-organ transplants and several autoimmune diseases, including type 1 diabetes and celiac disease. Biologics with HLA molecules as part of the design are emerging therapeutic options for these allo- and autoimmune conditions. However, the soluble α and β chains of class II HLA molecules do not dimerize efficiently without their transmembrane domains, which hinders their production. In this study, we examined the feasibility of interchain disulfide engineering by introducing paired cysteines to juxtaposed positions in the α and β chains of HLA-DQ7, encoded by HLA-DQA1∗05:01 and HLA-DQB1∗03:01 respectively. We identified three variant peptide-HLA-DQ7-Fc fusion proteins (DQ7Fc) with increased expression and production yield, namely Y19C-D6C (YCDC), A83C-E5C (ACEC), and A84C-N33C (ACNC). The mutated residues were conserved across all HLA-DQ proteins and had limited solvent exposure. Further characterizations of the YCDC variant showed that the expression of the fusion protein is peptide-dependent; inclusion of a higher-affinity peptide correlated with increased protein expression. However, high-affinity peptide alone was insufficient for stabilizing the DQ7 complex without the engineered disulfide bond. Multiple DQ7Fc variants demonstrated expected binding characteristics with commercial anti-DQ antibodies in two immunoassays and by a cell-based assay. Lastly, DQ7Fc variants demonstrated dose-dependent killing of DQ7-specific B cell hybridomas in a flow cytometric, complement-dependent cytotoxicity assay. These data support inter-chain disulfide engineering as a novel approach to efficiently producing functional HLA-DQ molecules and potentially other class II HLA molecules as candidate therapeutic agents.
Collapse
Affiliation(s)
| | - Hongjie Guo
- Antiger Therapeutics Inc., St Louis, Missouri, USA.
| | - Chang Liu
- Antiger Therapeutics Inc., St Louis, Missouri, USA.
| |
Collapse
|
2
|
Ferrone S, Campoli M. A fresh look at an old story: revisiting HLA class II antigen expression by melanoma cells. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17469872.1.6.805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
3
|
Abstract
Secreted and intracellular proteins including antibodies, cytokines, major histocompatibility complex molecules, antigens, and enzymes can be redirected to and anchored on the surface of mammalian cells to reveal novel functions and properties such as reducing systemic toxicity, altering the in vivo distribution of drugs and extending the range of useful drugs, creating novel, specific signaling receptors and reshaping protein immunogenicity. The present review highlights progress in designing vectors to target and retain chimeric proteins on the surface of mammalian cells. Comparison of chimeric proteins indicates that selection of the proper cytoplasmic domain and introduction of oligiosaccharides near the cell surface can dramatically enhance surface expression, especially for single-chain antibodies. We also describe progress and limitations of employing surface-tethered proteins for preferential activation of prodrugs at cancer cells, imaging gene expression in living animals, performing high-throughput screening, selectively activating immune cells in tumors, producing new adhesion molecules, creating local immune privileged sites, limiting the distribution of soluble factors such as cytokines, and enhancing polypeptide immunogenicity. Surface-anchored chimeric proteins represent a rich source for developing new techniques and creating novel therapeutics.
Collapse
Affiliation(s)
- Tian-Lu Cheng
- Faculty of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | |
Collapse
|
4
|
Bronke C, Palmer NM, Westerlaken GHA, Toebes M, van Schijndel GMW, Purwaha V, van Meijgaarden KE, Schumacher TNM, van Baarle D, Tesselaar K, Geluk A. Direct ex vivo detection of HLA-DR3-restricted cytomegalovirus- and Mycobacterium tuberculosis-specific CD4+ T cells. Hum Immunol 2005; 66:950-61. [PMID: 16360834 DOI: 10.1016/j.humimm.2005.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 06/22/2005] [Accepted: 06/27/2005] [Indexed: 11/18/2022]
Abstract
In order to detect epitope-specific CD4+ T cells in mycobacterial or viral infections in the context of human class II major histocompatibility complex protein human leukocyte antigen (HLA)-DR3, two HLA-DR3 tetrameric molecules were successfully produced. One contained an immunodominant HLA-DR3-restricted T-cell epitope derived from the 65-kDa heat-shock protein of Mycobacterium tuberculosis, peptide 1-13. For the other tetramer, we used an HLA-DR3-restricted T-cell epitope derived from cytomegalovirus (CMV) pp65 lower matrix protein, peptide 510-522, which induced high levels of interferon (IFN)-gamma-producing CD4+ T cells in three of four HLA-DR3-positive CMV-seropositive individuals up to 0.84% of CD4+ T cells by intracellular cytokine staining. In peripheral blood mononuclear cells from M. tuberculosis-exposed, Mycobacterium bovis bacille Calmette-Guérin (BCG)-vaccinated, or CMV-seropositive individuals, we were able to directly detect with both tetramers epitope-specific T cells up to 0.62% and 0.45% of the CD4+ T-cell population reactive to M. tuberculosis and CMV, respectively. After a 6-day culture with peptide p510-522, the frequency of CMV-specific tetramer-binding T cells was expanded up to 9.90% tetramer+ CFSElow (5,6-carboxyfluorescein diacetate succinimidyl ester) cells within the CD4+ T-cell population, further confirming the specificity of the tetrameric molecules. Thus, HLA-DR3/peptide tetrameric molecules can be used to investigate HLA-DR3-restricted antigen-specific CD4+ T cells in clinical disease or after vaccination.
Collapse
Affiliation(s)
- Corine Bronke
- Department of Clinical Viro-Immunology, Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Chaves FA, Hou P, Wu S, Sant AJ. Replacement of the membrane proximal region of I-Ad MHC class II molecule with I-E-derived sequences promotes production of an active and stable soluble heterodimer without altering peptide-binding specificity. J Immunol Methods 2005; 300:74-92. [PMID: 15896797 DOI: 10.1016/j.jim.2005.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 02/28/2005] [Accepted: 02/28/2005] [Indexed: 11/24/2022]
Abstract
The MHC class II molecule I-A is the murine homologue of HLA-DQ in humans. The I-A and DQ heterodimers display considerable heterodimer instability compared with their I-E and HLA-DR counterparts. This isotype-specific behavior makes the production of soluble I-A and DQ molecules very difficult. We have developed a strategy for production of soluble I-A(d) molecules involving expression of I-A(d) as a glycosil phosphatidyl inositol (PI) anchored chimera in Chinese Hamster Ovary (CHO) cells. The regions comprising the membrane proximal segments of I-A(d) alpha and beta chains were substituted for the corresponding regions of I-E, and the derived constructs were expressed in CHO cells. Procedures for purification of the soluble class II molecules were optimized and the WT and chimeric molecule were compared for structure, biochemical stability and functionality. Our analysis revealed that the substitutions in the membrane proximal domains improved cell surface expression and thermal stability of I-A(d) without altering the peptide binding specificity of the class II molecule. The results suggest that similar strategies could be used to increase the stability of other unstable class II molecules for in vitro studies.
Collapse
Affiliation(s)
- Francisco A Chaves
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
6
|
Esteban O, Zhao H. Directed evolution of soluble single-chain human class II MHC molecules. J Mol Biol 2004; 340:81-95. [PMID: 15184024 DOI: 10.1016/j.jmb.2004.04.054] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 04/16/2004] [Accepted: 04/20/2004] [Indexed: 11/17/2022]
Abstract
Major histocompatibility complex (MHC) class II molecules are membrane-anchored heterodimers that present antigenic peptides to T cells. Expression of these molecules in soluble form has met limited success, presumably due to their large size, heterodimeric structure and the presence of multiple disulfide bonds. Here we have used directed evolution and yeast surface display to engineer soluble single-chain human lymphocyte antigen (HLA) class II MHC DR1 molecules without covalently attached peptides (scDR1alphabeta). Specifically, a library of mutant scDR1alphabeta molecules was generated by random mutagenesis and screened by fluorescence activated cell sorting (FACS) with DR-specific conformation-sensitive antibodies, yielding three well-expressed and properly folded scDR1alphabeta variants displayed on the yeast cell surface. Detailed analysis of these evolved variants and a few site-directed mutants generated de novo indicated three amino acid residues in the beta1 domain are important for the improved protein folding yield. Further, molecular modeling studies suggested these mutations might increase the protein folding efficiency by improving the packing of a hydrophobic core in the alpha1beta1 domain of DR1. The scDR1alphabeta mutants displayed on the yeast cell surface are remarkably stable and bind specifically to DR-specific peptide HA(306-318) with high sensitivity and rapid kinetics in flow cytometric assays. Moreover, since the expression, stability and peptide-binding properties of these mutants can be directly assayed on the yeast cell surface using immuno-fluorescence labeling and flow cytometry, time-consuming purification and refolding steps of recombinant DR1 molecules are eliminated. Therefore, these scDR1alphabeta molecules will provide a powerful technology platform for further design of DR1 molecules with improved peptide-binding specificity and affinity for therapeutic and diagnostic applications. The methods described here should be generally applicable to other class II MHC molecules and also class I MHC molecules for their functional expression, characterization and engineering.
Collapse
Affiliation(s)
- Olga Esteban
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL 61801, USA
| | | |
Collapse
|
7
|
Starwalt SE, Masteller EL, Bluestone JA, Kranz DM. Directed evolution of a single-chain class II MHC product by yeast display. Protein Eng Des Sel 2003; 16:147-56. [PMID: 12676983 DOI: 10.1093/proeng/gzg018] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Many autoimmune diseases have been linked to the class II region of the major histocompatibility complex (MHC). The linkage is thought to be a result of autoreactive T cells that recognize self-peptides bound to a product of this locus. For example, T cells from non-obese diabetic mice recognize specific 'diabetogenic' peptides bound to a class II MHC allele called I-A(g7). The I-A(g7) molecule is noted for being unstable and difficult to work with, especially in soluble form. In this work, yeast surface display combined with fluorescence-activated cell sorting was used as a means of directed evolution to engineer stabilized variants of a single-chain form of I-A(g7). A library containing mutations at two residues (positions 56 and 57 of the I-A(g7) beta-chain) that are important in the class II disease associations yielded stabilized mutants with preferences for a glutamic acid at residue 56 and a leucine at residue 57. Random mutation of I-A(g7) followed by selection with an anti-I-A(g7) antibody also yielded stabilized variants with mutations in other residues. The methods described here allow the discovery of novel MHC complexes that could facilitate structural studies and provide new opportunities in the development of diagnostics or antagonists of class II MHC-associated diseases.
Collapse
Affiliation(s)
- Scott E Starwalt
- Department of Biochemistry, University of Illinois, 600 S Matthews Avenue, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
8
|
Figueredo Dos Santos C, Tilkin-Mariame AF, De Préval C, Lakhdar-Ghazal F. Influence of histidine beta81 of HLA-DR101 on peptide binding and presentation to T-cell receptor. Hum Immunol 2002; 63:459-66. [PMID: 12039521 DOI: 10.1016/s0198-8859(02)00394-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
HA(306-318) is an immunodominant peptide of the hemagglutinin of influenza virus that binds to most human leukocyte antigen (HLA-DR) alleles, while p18(73-85) is a HIV peptide characterized as a DR101 binding peptide. Our results demonstrate that crystal relaxation leads to the loss of a hydrogen bond between the beta81 histidine and the HA(306-318) peptide. This histidine is also involved in the binding of superantigens like SEA via a coordination of a zinc atom. To monitor the interaction of these peptides with this histidine of HLA-DR molecules, chemical modification, peptide binding on HLA-DR101 wild type and mutated molecules, and proliferation experiments were conducted, together with molecular simulation of HLA-DR/peptide molecular complexes. Our data suggest a different binding peptide pattern, depending of whether the peptide is HLA-DR101 allele specific or a shared one. Furthermore, tyrosine substitution at position beta81 does not affect either peptide binding or HA(306-318) clone-specific T-cell proliferation. On the contrary, the alanine substitution at position HLA-DR101 beta81 abrogated both peptide binding and T-cell proliferation. These results suggest that the histidine 81 on the DRbeta chain plays an important role in the HLA-DR peptide binding, more likely by polar interactions of the amino acid side chain ring with the peptide.
Collapse
|
9
|
Reichstetter S, Ettinger RA, Liu AW, Gebe JA, Nepom GT, Kwok WW. Distinct T cell interactions with HLA class II tetramers characterize a spectrum of TCR affinities in the human antigen-specific T cell response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:6994-8. [PMID: 11120826 DOI: 10.4049/jimmunol.165.12.6994] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The polyclonal nature of T cells expanding in an ongoing immune response results in a range of disparate affinities and activation potential. Recently developed human class II tetramers provide a means to analyze this diversity by direct characterization of the trimolecular TCR-peptide-MHC interaction in live cells. Two HSV-2 VP16(369-379)-specific, DQA1*0102/DQB1*0602 (DQ0602)-restricted T cell clones were compared by means of T cell proliferation assay and HLA-DQ0602 tetramer staining. These two clones were obtained from the same subject, but show different TCR gene usage. Clone 48 was 10-fold more sensitive to VP16(369-379) peptide stimulation than clone 5 as assayed by proliferation assays, correlating with differences in MHC tetramer binding. Clone 48 gave positive staining with the DQ0602/VP16(369-379) tetramer at either 23 or 37 degrees C. Weak staining was also observed at 4 degrees C. Clone 5 showed weaker staining compared with clone 48 at 37 degrees C, and no staining was observed at 23 degrees C or on ice. Receptor internalization was not required for positive staining. Competitive binding indicates that the cell surface TCR of clone 48 has higher affinity for the DQ0602/VP16(369-379) complex than clone 5. The higher binding affinity of clone 48 for the peptide-MHC complex also correlates with a slower dissociation rate compared with clone 5.
Collapse
Affiliation(s)
- S Reichstetter
- Virginia Mason Research Center and University of Washington School of Medicine, Seattle, WA 98101, USA
| | | | | | | | | | | |
Collapse
|
10
|
Le Doussal J, Piqueras B, Dogan I, Debré P, Gorochov G. Phage display of peptide/major histocompatibility complex. J Immunol Methods 2000; 241:147-58. [PMID: 10915857 DOI: 10.1016/s0022-1759(00)00211-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To date, there is no direct way to determine the antigenic specificity of T-cells. While B-cell epitopes can be selected from phage-displayed libraries of peptides, the corresponding molecular tool for identifying T-cell epitopes does not yet exist. The natural ligands of the T-cell antigen-receptor (TCR) are essentially antigenic peptides (P) associated with the products of the major histocompatibility complex (MHC). Here, we report phages displaying P-MHC complexes. Single-chain P-MHC class I molecules, produced in E. coli periplasm, stimulate T-cells in a peptide-specific fashion. The same P-MHC, fused at the tip of filamentous phage, directed their binding to a recombinant TCR restricted to the displayed MHC haplotype (H-2K(d)). Importantly, the binding of P-K(d)-fd to a K(d)-restricted TCR, and also to K(d)-restricted T-cell hybridomas, was modulated by the displayed peptide. Therefore, we suggest phage display of P-MHC as a direct molecular tool for probing T-cell specificity, and for selecting TCR ligands from genetic libraries encoding randomized or natural peptides.
Collapse
Affiliation(s)
- J Le Doussal
- Laboratoire d'Immunologie Cellulaire et Tissulaire, UMR CNRS 7627, Hôpital Pitié-Salpetrière, 75013, Paris, France
| | | | | | | | | |
Collapse
|