1
|
Avery EG, Bartolomaeus H, Rauch A, Chen CY, N'Diaye G, Löber U, Bartolomaeus TUP, Fritsche-Guenther R, Rodrigues AF, Yarritu A, Zhong C, Fei L, Tsvetkov D, Todiras M, Park JK, Markó L, Maifeld A, Patzak A, Bader M, Kempa S, Kirwan JA, Forslund SK, Müller DN, Wilck N. Quantifying the impact of gut microbiota on inflammation and hypertensive organ damage. Cardiovasc Res 2022:6651675. [PMID: 35904261 DOI: 10.1093/cvr/cvac121] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 11/12/2022] Open
Abstract
AIMS Hypertension (HTN) can lead to heart and kidney damage. The gut microbiota has been linked to HTN, although it is difficult to estimate its significance due to the variety of other features known to influence HTN. In the present study, we used germ-free (GF) and colonized (COL) littermate mice to quantify the impact of microbial colonization on organ damage in HTN. METHODS AND RESULTS Four-week-old male GF C57BL/6J littermates were randomized to remain GF or receive microbial colonization. HTN was induced by subcutaneous infusion with angiotensin (Ang) II (1.44 mg/kg/d) and 1% NaCl in the drinking water; sham-treated mice served as control. Renal damage was exacerbated in GF mice, whereas cardiac damage was more comparable between COL and GF, suggesting that the kidney is more sensitive to microbial influence. Multivariate analysis revealed a larger effect of HTN in GF mice. Serum metabolomics demonstrated that the colonization status influences circulating metabolites relevant to HTN. Importantly, GF mice were deficient in anti-inflammatory fecal short-chain fatty acids (SCFA). Flow cytometry showed that the microbiome has an impact on the induction of anti-hypertensive myeloid-derived suppressor cells and pro-inflammatory Th17 cells in HTN. In vitro inducibility of Th17 cells was significantly higher for cells isolated from GF than conventionally raised mice. CONCLUSIONS Microbial colonization status of mice had potent effects on their phenotypic response to a hypertensive stimulus, and the kidney is a highly microbiota-susceptible target organ in HTN. The magnitude of the pathogenic response in GF mice underscores the role of the microbiome in mediating inflammation in HTN. TRANSLATION PERSPECTIVE To assess the potential of microbiota-targeted interventions to prevent organ damage in hypertension, an accurate quantification of microbial influence is necessary. We provide evidence that the development of hypertensive organ damage is dependent on colonization status and suggest that a healthy microbiota provides anti-hypertensive immune and metabolic signals to the host. In the absence of normal symbiotic host-microbiome interactions, hypertensive damage to the kidney in particular is exacerbated. We suggest that hypertensive patients experiencing perturbations to the microbiota, which are common in CVD, may be at a greater risk for target-organ damage than those with a healthy microbiome.
Collapse
Affiliation(s)
- Ellen G Avery
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Hendrik Bartolomaeus
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Internal Intensive Care Medicine, Berlin, Germany
| | - Ariana Rauch
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Internal Intensive Care Medicine, Berlin, Germany
| | - Chia-Yu Chen
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gabriele N'Diaye
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrike Löber
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Theda U P Bartolomaeus
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Raphaela Fritsche-Guenther
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Metabolomics Platform, Berlin, Germany
| | - André F Rodrigues
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Alex Yarritu
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Internal Intensive Care Medicine, Berlin, Germany
| | - Cheng Zhong
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Lingyan Fei
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Dmitry Tsvetkov
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Geriatrics, University of Greifswald, University District Hospital Wolgast, Greifswald, Germany
| | - Mihail Todiras
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Nicolae Testemianu State University of Medicine and Pharmacy, Chisinau, Moldova
| | | | - Lajos Markó
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - András Maifeld
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Patzak
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Kempa
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Integrative Proteomics and Metabolomics Platform, Berlin Institute for Medical Systems Biology BIMSB, Berlin, Germany
| | - Jennifer A Kirwan
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Metabolomics Platform, Berlin, Germany
| | - Sofia K Forslund
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dominik N Müller
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nicola Wilck
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Internal Intensive Care Medicine, Berlin, Germany
| |
Collapse
|
2
|
Zhou H, Sun L, Zhang S, Zhao X, Gang X, Wang G. Evaluating the Causal Role of Gut Microbiota in Type 1 Diabetes and Its Possible Pathogenic Mechanisms. Front Endocrinol (Lausanne) 2020; 11:125. [PMID: 32265832 PMCID: PMC7105744 DOI: 10.3389/fendo.2020.00125] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) is a multifactorial autoimmune disease mediated by genetic, epigenetic, and environmental factors. In recent years, the emergence of high-throughput sequencing has allowed us to investigate the role of gut microbiota in the development of T1D. Significant changes in the composition of gut microbiome, also termed dysbiosis, have been found in subjects with clinical or preclinical T1D. However, whether the dysbiosis is a cause or an effect of the disease remains unclear. Currently, increasing evidence has supported a causal link between intestine microflora and T1D development. The current review will focus on recent research regarding the associations between intestine microbiome and T1D progression with an intention to evaluate the causality. We will also discuss the possible mechanisms by which imbalanced gut microbiota leads to the development of T1D.
Collapse
|
3
|
Abstract
There are now a number of different mouse models for type 1 diabetes. The best known is the nonobese diabetic (NOD) mouse which has a genetic susceptibility to autoimmune diabetes with some features that are similar to human type 1 diabetes. The mice also have a propensity to other autoimmune diatheses, including autoimmune thyroid disease and sialadenitis. In addition, it is well known that environmental factors affect the incidence of disease in these mice. While there are other rodent models, including numerous transgenic and knockout models, as well as those that express human proteins, none of these develop spontaneous diabetes over a period of time, when the natural history can be studied. We focus here on the unmanipulated NOD mouse and discuss features of the husbandry and investigation of the mice that allow for use of these long-studied mice in the pathogenesis of an autoimmune type of diabetes.
Collapse
|
4
|
Doonan J, Thomas D, Wong MH, Ramage HJ, Al-Riyami L, Lumb FE, Bell KS, Fairlie-Clarke KJ, Suckling CJ, Michelsen KS, Jiang HR, Cooke A, Harnett MM, Harnett W. Failure of the Anti-Inflammatory Parasitic Worm Product ES-62 to Provide Protection in Mouse Models of Type I Diabetes, Multiple Sclerosis, and Inflammatory Bowel Disease. Molecules 2018; 23:E2669. [PMID: 30336585 PMCID: PMC6222842 DOI: 10.3390/molecules23102669] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/24/2018] [Accepted: 10/10/2018] [Indexed: 02/02/2023] Open
Abstract
Parasitic helminths and their isolated secreted products show promise as novel treatments for allergic and autoimmune conditions in humans. Foremost amongst the secreted products is ES-62, a glycoprotein derived from Acanthocheilonema viteae, a filarial nematode parasite of gerbils, which is anti-inflammatory by virtue of covalently-attached phosphorylcholine (PC) moieties. ES-62 has been found to protect against disease in mouse models of rheumatoid arthritis, systemic lupus erythematosus, and airway hyper-responsiveness. Furthermore, novel PC-based synthetic small molecule analogues (SMAs) of ES-62 have recently been demonstrated to show similar anti-inflammatory properties to the parent molecule. In spite of these successes, we now show that ES-62 and its SMAs are unable to provide protection in mouse models of certain autoimmune conditions where other helminth species or their secreted products can prevent disease development, namely type I diabetes, multiple sclerosis and inflammatory bowel disease. We speculate on the reasons underlying ES-62's failures in these conditions and how the negative data generated may help us to further understand ES-62's mechanism of action.
Collapse
Affiliation(s)
- James Doonan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | - David Thomas
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK.
| | - Michelle H Wong
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Hazel J Ramage
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | - Lamyaa Al-Riyami
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | - Felicity E Lumb
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | - Kara S Bell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | - Karen J Fairlie-Clarke
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | - Colin J Suckling
- Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, UK.
| | - Kathrin S Michelsen
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Hui-Rong Jiang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | - Anne Cooke
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK.
| | - Margaret M Harnett
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| |
Collapse
|
5
|
Pearson JA, Agriantonis A, Wong FS, Wen L. Modulation of the immune system by the gut microbiota in the development of type 1 diabetes. Hum Vaccin Immunother 2018; 14:2580-2596. [PMID: 30156993 PMCID: PMC6314421 DOI: 10.1080/21645515.2018.1514354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/29/2018] [Accepted: 08/17/2018] [Indexed: 02/08/2023] Open
Abstract
T1D is an autoimmune disease characterized by T cell-mediated destruction of insulin-producing β-cells in the pancreatic islets of Langerhans, resulting in hyperglycemia, with patients requiring lifelong insulin treatment. Many studies have shown that genetics alone are not sufficient for the increase in T1D incidence and thus other factors have been suggested to modify the disease risk. T1D incidence has sharply increased in the developed world, especially amongst youth. In Europe, T1D incidence is increasing at an annual rate of 3-4%. Increasing evidence shows that gut microbiota, as one of the environmental factors influencing diabetes development, play an important role in development of T1D. Here, we summarize the current knowledge about the relationship between the microbiota and T1D. We also discuss the possibility of T1D prevention by changing the composition of gut microbiota.
Collapse
Affiliation(s)
- James A. Pearson
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT, USA
| | - Andrew Agriantonis
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT, USA
| | - F. Susan Wong
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Li Wen
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
6
|
De Riva A, Wållberg M, Ronchi F, Coulson R, Sage A, Thorne L, Goodfellow I, McCoy KD, Azuma M, Cooke A, Busch R. Regulation of type 1 diabetes development and B-cell activation in nonobese diabetic mice by early life exposure to a diabetogenic environment. PLoS One 2017; 12:e0181964. [PMID: 28771521 PMCID: PMC5542673 DOI: 10.1371/journal.pone.0181964] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 07/10/2017] [Indexed: 12/12/2022] Open
Abstract
Microbes, including viruses, influence type 1 diabetes (T1D) development, but many such influences remain undefined. Previous work on underlying immune mechanisms has focussed on cytokines and T cells. Here, we compared two nonobese diabetic (NOD) mouse colonies, NODlow and NODhigh, differing markedly in their cumulative T1D incidence (22% vs. 90% by 30 weeks in females). NODhigh mice harbored more complex intestinal microbiota, including several pathobionts; both colonies harbored segmented filamentous bacteria (SFB), thought to suppress T1D. Young NODhigh females had increased B-cell activation in their mesenteric lymph nodes. These phenotypes were transmissible. Co-housing of NODlow with NODhigh mice after weaning did not change T1D development, but T1D incidence was increased in female offspring of co-housed NODlow mice, which were exposed to the NODhigh environment both before and after weaning. These offspring also acquired microbiota and B-cell activation approaching those of NODhigh mice. In NODlow females, the low rate of T1D was unaffected by cyclophosphamide but increased by PD-L1 blockade. Thus, environmental exposures that are innocuous later in life may promote T1D progression if acquired early during immune development, possibly by altering B-cell activation and/or PD-L1 function. Moreover, T1D suppression in NOD mice by SFB may depend on the presence of other microbial influences. The complexity of microbial immune regulation revealed in this murine model may also be relevant to the environmental regulation of human T1D.
Collapse
Affiliation(s)
- Alessandra De Riva
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Maja Wållberg
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Francesca Ronchi
- Maurice Müller Laboratories (DKF), Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | - Richard Coulson
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Andrew Sage
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Lucy Thorne
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Ian Goodfellow
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Kathy D. McCoy
- Maurice Müller Laboratories (DKF), Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | - Miyuki Azuma
- Department of Molecular Immunology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Anne Cooke
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Robert Busch
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Life Sciences, University of Roehampton, London, United Kingdom
| |
Collapse
|
7
|
Microbiota in T-cell homeostasis and inflammatory diseases. Exp Mol Med 2017; 49:e340. [PMID: 28546563 PMCID: PMC5454441 DOI: 10.1038/emm.2017.36] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/02/2017] [Indexed: 12/11/2022] Open
Abstract
The etiology of disease pathogenesis can be largely explained by genetic variations and several types of environmental factors. In genetically disease-susceptible individuals, subsequent environmental triggers may induce disease development. The human body is colonized by complex commensal microbes that have co-evolved with the host immune system. With the adaptation to modern lifestyles, its composition has changed depending on host genetics, changes in diet, overuse of antibiotics against infection and elimination of natural enemies through the strengthening of sanitation. In particular, commensal microbiota is necessary in the development, induction and function of T cells to maintain host immune homeostasis. Alterations in the compositional diversity and abundance levels of microbiota, known as dysbiosis, can trigger several types of autoimmune and inflammatory diseases through the imbalance of T-cell subpopulations, such as Th1, Th2, Th17 and Treg cells. Recently, emerging evidence has identified that dysbiosis is involved in the progression of rheumatoid arthritis, type 1 and 2 diabetic mellitus, and asthma, together with dysregulated T-cell subpopulations. In this review, we will focus on understanding the complicated microbiota-T-cell axis between homeostatic and pathogenic conditions and elucidate important insights for the development of novel targets for disease therapy.
Collapse
|
8
|
Pearson JA, Wong FS, Wen L. The importance of the Non Obese Diabetic (NOD) mouse model in autoimmune diabetes. J Autoimmun 2015; 66:76-88. [PMID: 26403950 DOI: 10.1016/j.jaut.2015.08.019] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 08/26/2015] [Indexed: 02/06/2023]
Abstract
Type 1 Diabetes (T1D) is an autoimmune disease characterized by the pancreatic infiltration of immune cells resulting in T cell-mediated destruction of the insulin-producing beta cells. The successes of the Non-Obese Diabetic (NOD) mouse model have come in multiple forms including identifying key genetic and environmental risk factors e.g. Idd loci and effects of microorganisms including the gut microbiota, respectively, and how they may contribute to disease susceptibility and pathogenesis. Furthermore, the NOD model also provides insights into the roles of the innate immune cells as well as the B cells in contributing to the T cell-mediated disease. Unlike many autoimmune disease models, the NOD mouse develops spontaneous disease and has many similarities to human T1D. Through exploiting these similarities many targets have been identified for immune-intervention strategies. Although many of these immunotherapies did not have a significant impact on human T1D, they have been shown to be effective in the NOD mouse in early stage disease, which is not equivalent to trials in newly-diagnosed patients with diabetes. However, the continued development of humanized NOD mice would enable further clinical developments, bringing T1D research to a new translational level. Therefore, it is the aim of this review to discuss the importance of the NOD model in identifying the roles of the innate immune system and the interaction with the gut microbiota in modifying diabetes susceptibility. In addition, the role of the B cells will also be discussed with new insights gained through B cell depletion experiments and the impact on translational developments. Finally, this review will also discuss the future of the NOD mouse and the development of humanized NOD mice, providing novel insights into human T1D.
Collapse
Affiliation(s)
- James A Pearson
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT, USA
| | - F Susan Wong
- Diabetes Research Group, Institute of Molecular & Experimental Medicine, School of Medicine, Cardiff University, Wales, UK
| | - Li Wen
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
9
|
Secretory Products of Trichinella spiralis Muscle Larvae and Immunomodulation: Implication for Autoimmune Diseases, Allergies, and Malignancies. J Immunol Res 2015; 2015:523875. [PMID: 26114122 PMCID: PMC4465845 DOI: 10.1155/2015/523875] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/18/2015] [Indexed: 12/12/2022] Open
Abstract
Trichinella spiralis has the unique ability to make itself "at home" by creating and hiding in a new type of cell in the host body that is the nurse cell. From this immunologically privileged place, the parasite orchestrates a long-lasting molecular cross talk with the host through muscle larvae excretory-secretory products (ES L1). Those products can successfully modulate parasite-specific immune responses as well as responses to unrelated antigens (either self or nonself in origin), providing an anti-inflammatory milieu and maintaining homeostasis. It is clear, based on the findings from animal model studies, that T. spiralis and its products induce an immunomodulatory network (which encompasses Th2- and Treg-type responses) that may allow the host to deal with various hyperimmune-associated disorders as well as tumor growth, although the latter still remains unclear. This review focuses on studies of the molecules released by T. spiralis, their interaction with pattern recognition receptors on antigen presenting cells, and subsequently provoked responses. This paper also addresses the immunomodulatory properties of ES L1 molecules and how the induced immunomodulation influences the course of different experimental inflammatory and malignant diseases.
Collapse
|
10
|
Immune evasion, immunopathology and the regulation of the immune system. Pathogens 2013; 2:71-91. [PMID: 25436882 PMCID: PMC4235712 DOI: 10.3390/pathogens2010071] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 12/26/2022] Open
Abstract
Costs and benefits of the immune response have attracted considerable attention in the last years among evolutionary biologists. Given the cost of parasitism, natural selection should favor individuals with the most effective immune defenses. Nevertheless, there exists huge variation in the expression of immune effectors among individuals. To explain this apparent paradox, it has been suggested that an over-reactive immune system might be too costly, both in terms of metabolic resources and risks of immune-mediated diseases, setting a limit to the investment into immune defenses. Here, we argue that this view neglects one important aspect of the interaction: the role played by evolving pathogens. We suggest that taking into account the co-evolutionary interactions between the host immune system and the parasitic strategies to overcome the immune response might provide a better picture of the selective pressures that shape the evolution of immune functioning. Integrating parasitic strategies of host exploitation can also contribute to understand the seemingly contradictory results that infection can enhance, but also protect from, autoimmune diseases. In the last decades, the incidence of autoimmune disorders has dramatically increased in wealthy countries of the northern hemisphere with a concomitant decrease of most parasitic infections. Experimental work on model organisms has shown that this pattern may be due to the protective role of certain parasites (i.e., helminths) that rely on the immunosuppression of hosts for their persistence. Interestingly, although parasite-induced immunosuppression can protect against autoimmunity, it can obviously favor the spread of other infections. Therefore, we need to think about the evolution of the immune system using a multidimensional trade-off involving immunoprotection, immunopathology and the parasitic strategies to escape the immune response.
Collapse
|
11
|
Zaccone P, Cooke A. Helminth mediated modulation of Type 1 diabetes (T1D). Int J Parasitol 2013; 43:311-8. [PMID: 23291464 DOI: 10.1016/j.ijpara.2012.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/05/2012] [Accepted: 12/07/2012] [Indexed: 01/11/2023]
Abstract
Type 1 diabetes is increasing dramatically in incidence in the developed world. While there may be several reasons for this, improved sanitation and public health measures have altered our interactions with certain infectious agents such as helminths. There is increasing interest in the use of helminths or their products to alleviate inflammatory or allergic conditions. Using rodent models of diabetes, it has been possible to explore the therapeutic potential of both live infections as well as helminth-derived products on the development of autoimmunity. This review provides an overview of the findings from animal models and additionally explores the potential for translation to the clinic.
Collapse
Affiliation(s)
- Paola Zaccone
- Department of Pathology, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QP, UK
| | | |
Collapse
|
12
|
Abstract
The increasing incidence of type 1 diabetes (T1D) and autoimmune diseases in industrialized countries cannot be exclusively explained by genetic factors. Human epidemiological studies and animal experimental data provide accumulating evidence for the role of environmental factors, such as infections, in the regulation of allergy and autoimmune diseases. The hygiene hypothesis has formally provided a rationale for these observations, suggesting that our co-evolution with pathogens has contributed to the shaping of the present-day human immune system. Therefore, improved sanitation, together with infection control, has removed immunoregulatory mechanisms on which our immune system may depend. Helminths are multicellular organisms that have developed a wide range of strategies to manipulate the host immune system to survive and complete their reproductive cycles successfully. Immunity to helminths involves profound changes in both the innate and adaptive immune compartments, which can have a protective effect in inflammation and autoimmunity. Recently, helminth-derived antigens and molecules have been tested in vitro and in vivo to explore possible applications in the treatment of inflammatory and autoimmune diseases, including T1D. This exciting approach presents numerous challenges that will need to be addressed before it can reach safe clinical application. This review outlines basic insight into the ability of helminths to modulate the onset and progression of T1D, and frames some of the challenges that helminth-derived therapies may face in the context of clinical translation.
Collapse
Affiliation(s)
- Paola Zaccone
- Department of Pathology, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QP, UK
| | | |
Collapse
|
13
|
|
14
|
Newland SA, Phillips JM, Mastroeni P, Azuma M, Zaccone P, Cooke A. PD-L1 blockade overrides Salmonella typhimurium-mediated diabetes prevention in NOD mice: no role for Tregs. Eur J Immunol 2011; 41:2966-76. [PMID: 21792877 DOI: 10.1002/eji.201141544] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/31/2011] [Accepted: 07/12/2011] [Indexed: 12/25/2022]
Abstract
Increasingly, evidence suggests that there is a strong environmental component to the development of the autoimmune disease type 1 diabetes. Our previous data showed that NOD mice are protected from developing diabetes after infection with Salmonella typhimurium and there is some evidence that changes within the DC compartment play a crucial role in this protective effect. This paper further characterises this Salmonella-modulated protective phenotype. We find that, contrary to other infection-mediated models of type 1 diabetes protection, there was no expansion of Foxp3(+) Tregs. Furthermore, transcriptome analysis of DCs identified a distinct Salmonella-induced signature in which the inhibitory receptor PD-L1 was up-regulated. This was confirmed by flow cytometry. In vivo blockade of the PD1/PD-L1 interaction was found to ablate the protective function of Salmonella infection. These data provide evidence for a novel regulatory DC phenotype proficient at controlling autoreactive T cells for an extended duration in the NOD mouse model of diabetes.
Collapse
|
15
|
Hall SW, Cooke A. Autoimmunity and inflammation: murine models and translational studies. Mamm Genome 2011; 22:377-89. [PMID: 21688192 DOI: 10.1007/s00335-011-9338-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/26/2011] [Indexed: 12/26/2022]
Abstract
Autoimmune and inflammatory diseases, including type 1 diabetes, multiple sclerosis, inflammatory bowel disease, and rheumatoid arthritis, constitute an important and growing public health burden. However, in many cases our understanding of disease biology is limited and available therapies vary greatly in their efficacy and safety. Animal models of autoimmune and inflammatory diseases have provided valuable tools to researchers investigating their aetiology, pathology, and novel therapeutic strategies. Although such models vary in the degree to which they reflect human autoimmune and inflammatory diseases and caution is required in the extrapolation of animal data to the clinical setting, therapeutic approaches first evaluated in established animal models, including collagen-induced arthritis, experimental autoimmune encephalomyelitis, and the nonobese diabetic mouse, have successfully progressed to clinical investigation and practice. Similarly, these models have proven useful in providing support for basic hypotheses regarding the underlying causes and pathology of autoimmune and inflammatory diseases. Here we review selected murine models of autoimmunity and inflammation and efforts to translate findings from these models into both basic insights into disease biology and novel therapeutic strategies.
Collapse
Affiliation(s)
- Samuel W Hall
- Department of Pathology, University of Cambridge, UK.
| | | |
Collapse
|
16
|
OdDHL inhibits T cell subset differentiation and delays diabetes onset in NOD mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1213-20. [PMID: 21653742 DOI: 10.1128/cvi.00032-11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Some infectious diseases have been shown to halt the onset of autoimmune disease in animal models and have been suggested to also influence autoimmune pathology in humans. The isolation and study of small molecules and proteins from the infectious agents responsible for the protective effect will enable a mechanistic understanding of how these components may prevent or delay the onset of autoimmunity. In this study we confirm that the quorum-sensing signal molecule OdDHL from Pseudomonas aeruginosa can delay the onset of type 1 diabetes in the NOD mouse model. Furthermore, using an antigen-presenting cell-free system, we find not only that OdDHL inhibits the proliferation of naïve T cells but also that it directly inhibits the differentiation of T cell subsets. OdDHL was shown to have no effect on the inhibition of primed and committed differentiated T cell responses, suggesting that that immune mechanism mediated by this molecule may be more restricted to initial stages of infection.
Collapse
|
17
|
|
18
|
Abstract
The development of type 1 diabetes involves a complex interaction between pancreatic beta-cells and cells of both the innate and adaptive immune systems. Analyses of the interactions between natural killer (NK) cells, NKT cells, different dendritic cell populations and T cells have highlighted how these different cell populations can influence the onset of autoimmunity. There is evidence that infection can have either a potentiating or inhibitory role in the development of type 1 diabetes. Interactions between pathogens and cells of the innate immune system, and how this can influence whether T cell activation or tolerance occurs, have been under close scrutiny in recent years. This Review focuses on the nature of this crosstalk between the innate and the adaptive immune responses and how pathogens influence the process.
Collapse
|
19
|
Aumeunier A, Grela F, Ramadan A, Pham Van L, Bardel E, Gomez Alcala A, Jeannin P, Akira S, Bach JF, Thieblemont N. Systemic Toll-like receptor stimulation suppresses experimental allergic asthma and autoimmune diabetes in NOD mice. PLoS One 2010; 5:e11484. [PMID: 20628601 PMCID: PMC2900205 DOI: 10.1371/journal.pone.0011484] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 06/11/2010] [Indexed: 01/07/2023] Open
Abstract
Background Infections may be associated with exacerbation of allergic and autoimmune diseases. Paradoxically, epidemiological and experimental data have shown that some microorganisms can also prevent these pathologies. This observation is at the origin of the hygiene hypothesis according to which the decline of infections in western countries is at the origin of the increased incidence of both Th1-mediated autoimmune diseases and Th2-mediated allergic diseases over the last decades. We have tested whether Toll-like receptor (TLR) stimulation can recapitulate the protective effect of infectious agents on allergy and autoimmunity. Methods and Findings Here, we performed a systematic study of the disease-modifying effects of a set of natural or synthetic TLR agonists using two experimental models, ovalbumin (OVA)-induced asthma and spontaneous autoimmune diabetes, presenting the same genetic background of the non obese diabetic mouse (NOD) that is highly susceptible to both pathologies. In the same models, we also investigated the effect of probiotics. Additionally, we examined the effect of the genetic invalidation of MyD88 on the development of allergic asthma and spontaneous diabetes. We demonstrate that multiple TLR agonists prevent from both allergy and autoimmunity when administered parenterally. Probiotics which stimulate TLRs also protect from these two diseases. The physiological relevance of these findings is further suggested by the major acceleration of OVA-induced asthma in MyD88 invalidated mice. Our results strongly indicate that the TLR-mediated effects involve immunoregulatory cytokines such as interleukin (IL)-10 and transforming growth factor (TGF)-β and different subsets of regulatory T cells, notably CD4+CD25+FoxP3+ T cells for TLR4 agonists and NKT cells for TLR3 agonists. Conclusions/Significance These observations demonstrate that systemic administration of TLR ligands can suppress both allergic and autoimmune responses. They provide a plausible explanation for the hygiene hypothesis. They also open new therapeutic perspectives for the prevention of these pathologies.
Collapse
Affiliation(s)
- Aude Aumeunier
- Université Paris Descartes, Paris, France
- CNRS, UMR8147, Paris, France
| | - Françoise Grela
- Université Paris Descartes, Paris, France
- CNRS, UMR8147, Paris, France
| | | | - Linh Pham Van
- Université Paris Descartes, Paris, France
- CNRS, UMR8147, Paris, France
| | - Emilie Bardel
- Université Paris Descartes, Paris, France
- CNRS, UMR8147, Paris, France
| | | | | | - Shizuo Akira
- Department of Host Defense, Osaka University, Osaka, Japan
| | | | | |
Collapse
|
20
|
Abstract
Selected bacteria, viruses, parasites and nonliving, immunologically active microbial substances prevent autoimmune diabetes in animal models. Such agents might also have a protective effect in humans by providing immune stimuli critical during childhood development. The 'hygiene hypothesis' proposes that reduced exposure to environmental stimuli, including microbes, underlies the rising incidence of childhood autoimmune diseases, including type 1 diabetes mellitus (T1DM). This hypothesis is supported by data that highlight the importance of infant exposure to environmental microbes for appropriate development of the immune system, which might explain the observation that administration of microbes or their components inhibits autoimmune disease in animals. This finding raises the possibility of using live, nonpathogenic microbes (for example, probiotics) or microbial components to modulate or 're-educate' the immune system and thereby vaccinate against T1DM. Progress has been assisted by the identification of receptors and pathways through which gut microbes influence development of the immune system. Such mechanistic data have moved a field that was once regarded as being on the scientific fringe to the mainstream, and support increased funding to advance this promising area of research in the hope that it might deliver the long awaited answer of how to safely prevent T1DM.
Collapse
Affiliation(s)
- Nikolai Petrovsky
- Department of Endocrinology, Flinders Medical Centre, Flinders Drive, Bedford Park, Adelaide, SA 5042, Australia.
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW It has often been suggested that autoimmune diseases are initiated by certain infectious agents that mimic self-antigens or polyclonally activated autoreactive lymphocytes. An alternative, and not necessarily mutually exclusive, hypothesis that some infections might inhibit the onset of some autoimmune conditions has more recently been explored. In this review, the evidence suggesting that the current rise in the incidence of some autoimmune diseases is attributable to a decrease in the incidence of exposure to certain infections will be discussed. RECENT FINDINGS Studies using animal models have shown that some infectious agents or products derived from them have the potential to inhibit the onset of autoimmunity. These studies have led to the suggestion that human autoimmune or allergic diseases might be alleviated by the use of microbial products. There are some data that would support such an observation. SUMMARY The incidence of some autoimmune diseases has increased dramatically in recent years in the developed world. Many autoimmune diseases are governed by both genetic and environmental factors. Our immune system has coevolved with infectious agents. There have been marked changes in the exposure to certain infectious agents over the last 70 years. It has been proposed that certain infections of historical importance might inhibit the development of autoimmune disorder. This review highlights studies addressing the ways in which infectious agents might inhibit onset of autoimmunity, and how this might lead to the development of novel therapeutic approaches.
Collapse
|
22
|
Goldberg E, Krause I. Infection and type 1 diabetes mellitus - a two edged sword? Autoimmun Rev 2009; 8:682-6. [PMID: 19393195 DOI: 10.1016/j.autrev.2009.02.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 02/09/2009] [Indexed: 11/30/2022]
Abstract
Infection by various viral and bacterial pathogens has long been proposed as one of the etiologies of autoimmune diabetes. Many theories, ranging from direct cytolysis of pancreatic islet cells to immunological processes such as antigen mimicry and polyclonal lymphocyte activation, tried to explain the epidemiological correlation between infections and diabetes, supported by information from human and animal studies. However, a direct correlation and exact mechanism continue to elude investigators due to scarce and conflicting data. Interestingly, there is also data to support an opposite role for infection in the development of type 1 diabetes, as several pathogens demonstrated a protective effect from this disease. This article reviews the current data available from clinical studies and animal models, while trying to explain the different mechanisms underlying these findings.
Collapse
Affiliation(s)
- Elad Goldberg
- Infectious Diseases Unit, Rabin Medical Center, Beilinson Hospital, Israel
| | | |
Collapse
|
23
|
Abstract
Toll-like receptors (TLRs) recognize molecular patterns relating to a variety of microbial infections. Stimulation through TLRs leads to activation of antigen-presenting cells, production of inflammatory cytokines creating inflammation, and production of type 1 interferons (IFNs) that include IFN-alpha and -beta, and exerts direct effects on regulatory cells. These effects can direct the immune response, dealing with the immediate problems of infection and activating more specific responses of the adaptive immune system. However, it has recently been recognized that these receptors may recognize endogenous ligands that include DNA, RNA, and proteins that arise from cellular stress. This may have an effect on autoimmune responses in a number of ways, both activating and inhibitory. The means by which infection or endogenous stimuli through TLRs may influence autoimmunity will be discussed.
Collapse
Affiliation(s)
- F Susan Wong
- Department of Cellular and Molecular Medicine, School of Medical Sciences, University of Bristol, Bristol, UK.
| | | |
Collapse
|
24
|
Abstract
The development of some autoimmune diseases is increasing in the developed world faster than can be accounted for by genetic change. The development of these autoimmune diseases, such as Type 1 diabetes, is known to be influenced by both genetic and environmental factors. Environmental factors which have been considered to play a role include infectious agents such as viruses or bacteria. The search for a common initiating infection in the aetiology of Type 1 diabetes as proved thus far inconclusive. An alternative way of considering a role for infection is that infection may have historically prevented the development of autoimmune disease. In the developing world changes have occurred such that many chronic infections have been eliminated and this may have led to the emergence of autoimmune pathology. Evidence in support of this hypothesis is considered here and factors governing the development of autoimmunity compared with those which might have influenced the development of childhood leukaemia.
Collapse
Affiliation(s)
- Anne Cooke
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, UK.
| |
Collapse
|
25
|
Holdener M, Hintermann E, Bayer M, Rhode A, Rodrigo E, Hintereder G, Johnson EF, Gonzalez FJ, Pfeilschifter J, Manns MP, Herrath MVG, Christen U. Breaking tolerance to the natural human liver autoantigen cytochrome P450 2D6 by virus infection. ACTA ACUST UNITED AC 2008; 205:1409-22. [PMID: 18474629 PMCID: PMC2413037 DOI: 10.1084/jem.20071859] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Autoimmune liver diseases, such as autoimmune hepatitis (AIH) and primary biliary cirrhosis, often have severe consequences for the patient. Because of a lack of appropriate animal models, not much is known about their potential viral etiology. Infection by liver-tropic viruses is one possibility for the breakdown of self-tolerance. Therefore, we infected mice with adenovirus Ad5 expressing human cytochrome P450 2D6 (Ad-2D6). Ad-2D6–infected mice developed persistent autoimmune liver disease, apparent by cellular infiltration, hepatic fibrosis, “fused” liver lobules, and necrosis. Similar to type 2 AIH patients, Ad-2D6–infected mice generated type 1 liver kidney microsomal–like antibodies recognizing the immunodominant epitope WDPAQPPRD of cytochrome P450 2D6 (CYP2D6). Interestingly, Ad-2D6–infected wild-type FVB/N mice displayed exacerbated liver damage when compared with transgenic mice expressing the identical human CYP2D6 protein in the liver, indicating the presence of a stronger immunological tolerance in CYP2D6 mice. We demonstrate for the first time that infection with a virus expressing a natural human autoantigen breaks tolerance, resulting in a chronic form of severe, autoimmune liver damage. Our novel model system should be instrumental for studying mechanisms involved in the initiation, propagation, and precipitation of virus-induced autoimmune liver diseases.
Collapse
Affiliation(s)
- Martin Holdener
- Pharmazentrum Frankfurt/Zentrum für Arzneimittelforschung, Entwicklung und Sicherheit, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Smith KA, Efstathiou S, Cooke A. Murine gammaherpesvirus-68 infection alters self-antigen presentation and type 1 diabetes onset in NOD mice. THE JOURNAL OF IMMUNOLOGY 2008; 179:7325-33. [PMID: 18025175 DOI: 10.4049/jimmunol.179.11.7325] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent research in line with the "hygiene hypothesis" has implicated virus infection in the delay or prevention of autoimmunity in murine models of type 1 diabetes such as the NOD mouse. We found that intraperitoneal or intranasal infection of NOD mice with the murine gammaherpesvirus-68 (MHV-68) significantly delayed diabetes onset in an age-dependent manner. The acute phase following intraperitoneal infection was associated with significantly reduced trafficking of autoreactive BDC2.5NOD CD4(+) T cells to the pancreas but not the pancreatic lymph node (PLN); this was not as a result of MHV-68 M3 pan-chemokine binding protein expression. Autoreactive BDC2.5NOD CD4(+) T cells within the PLN of MHV-68 infected mice were significantly more naive and proliferated to a lesser extent than those cells within the PLN of uninfected mice. These changes in autoreactive CD4(+) T cell activation were associated with reduced dendritic cell endocytosis and soluble Ag presentation but were not as a result of virally induced IL-10 or changes in Ag-specific regulatory T cell populations.
Collapse
|
27
|
Mellanby RJ, Thomas D, Phillips JM, Cooke A. Diabetes in non-obese diabetic mice is not associated with quantitative changes in CD4+ CD25+ Foxp3+ regulatory T cells. Immunology 2007; 121:15-28. [PMID: 17428252 PMCID: PMC2265922 DOI: 10.1111/j.1365-2567.2007.02546.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The role of regulatory T cells (Tregs) in maintaining self tolerance has been intensively researched and there is a growing consensus that a decline in Treg function is an important step towards the development of autoimmune diseases, including diabetes. Although we show here that CD25+ cells delay diabetes onset in non-obese diabetic (NOD) mice, we found, in contrast to previous reports, neither an age-related decline nor a decline following onset of diabetes in the frequency of CD4+ CD25+ Foxp3+ regulatory T cells. Furthermore, we demonstrate that CD4+ CD25+ cells from both the spleen and pancreatic draining lymph nodes of diabetic and non-diabetic NOD mice are able to suppress the proliferation of CD4+ CD25- cells to a similar extent in vitro. We also found that pretreatment of NOD mice with anti-CD25 antibody allowed T cells with a known reactivity to islet antigen to proliferate more in the pancreatic draining lymph nodes of NOD mice, regardless of age. In addition, we demonstrated that onset of diabetes in NOD.scid mice is faster when recipients are co-administered splenocytes from diabetic NOD donors and anti-CD25. Finally, we found that although diabetic CD4+ CD25+ T cells are not as suppressive in cotransfers with effectors into NOD.scid recipients, this may not indicate a decline in Treg function in diabetic mice because over 10% of CD4+ CD25+ T cells are non-Foxp3 and the phenotype of the CD25- contaminating population significantly differs in non-diabetic and diabetic mice. This work questions whether onset of diabetes in NOD mice is associated with a decline in Treg function.
Collapse
Affiliation(s)
- Richard J Mellanby
- Immunology Division, Department of Pathology, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
28
|
Gottenberg JE, Chiocchia G. Dendritic cells and interferon-mediated autoimmunity. Biochimie 2007; 89:856-71. [PMID: 17562353 DOI: 10.1016/j.biochi.2007.04.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Accepted: 04/23/2007] [Indexed: 02/02/2023]
Abstract
Dendritic cells (DCs) are central cells of the immune responses. They can be considered as the most influential antigen-presenting cells in the body because of their unique role in initiating immunity against most types of antigens. Recent studies have clearly established that the state of maturation of DC can be crucial for the ability of these antigen-presenting cells to inhibit or induce T-cell-mediated autoimmune diseases. Type I interferon has been shown to be produced at very high amounts by a specific type of DC (pDC). In recent years, the study of multiple autoimmune diseases has pointed to a central role for type I interferon (IFN-I) in disease pathogenesis, in particular through the IFN-molecular signature deciphered in some of these diseases. One hypothesis would be that IFN directly affects multiple actors of the immune reaction such as T cells and B cells and that it can induce the unabated activation of peripheral dendritic cells. On the other hand, type II IFN has been considered as pathogenic in multiple autoimmune diseases leading to the paradigm of TH-1 type autoimmune diseases. The discovery of the TH-17 type of cells and the protective role IFN-gamma can exert on particular phases of these diseases urge one to re-evaluate this assumption.
Collapse
Affiliation(s)
- Jacques-Eric Gottenberg
- Département d'Immunologie, Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France
| | | |
Collapse
|
29
|
Abstract
The debate on whether infection precipitates or prevents autoimmunity remains a contentious one. Recently the suggestion that some unknown microbe can be at the origin of some chronic inflammatory diseases has been countered by accumulating evidence that decreasing infection rates might have an important role to play in the rising prevalence of autoimmune disorders. The 'Hygiene Hypothesis' was initially postulated to explain the inverse correlation between the incidence of infections and the rise of allergic diseases, particularly in the developed world. Latterly, the Hygiene Hypothesis has been extended to also incorporate autoimmune diseases in general. Amongst the various infectious agents, a particular emphasis has been put on the interaction between parasitic worms and humans. Worm parasites have co-evolved with the mammalian immune system for many millions of years and during this time, they have developed extremely effective strategies to modulate and evade host defences and so maintain their evolutionary fitness. It is therefore reasonable to conclude that the human immune system has been shaped by its relationship with parasitic worms and this may be a necessary requirement for maintaining our immunological health. Fully understanding this relationship may lead to novel and effective treatments for a host of deleterious inflammatory reactions.
Collapse
Affiliation(s)
- P Zaccone
- Department of Pathology, Tennis Court Road, Cambridge, UK
| | | | | | | | | |
Collapse
|
30
|
Saunders KA, Raine T, Cooke A, Lawrence CE. Inhibition of autoimmune type 1 diabetes by gastrointestinal helminth infection. Infect Immun 2006; 75:397-407. [PMID: 17043101 PMCID: PMC1828378 DOI: 10.1128/iai.00664-06] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gastrointestinal nematode infections are prevalent worldwide and are potent inducers of T helper 2 responses with the capacity to modulate the immune response to heterologous antigens. Parasitic helminth infection has even been shown to modulate the immune response associated with autoimmune diseases. Nonobese diabetic (NOD) mice provide a model for studying human autoimmune diabetes; as in humans, the development of diabetes in NOD mice has been linked to the loss of self-tolerance to beta cell autoantigens. Previous studies with the NOD mouse have shown that helminth and bacterial infection appears to inhibit type 1 diabetes by disrupting the pathways leading to the Th1-mediated destruction of insulin-producing beta cells. The aim of our study was to examine whether infection with the gastrointestinal helminths Trichinella spiralis or Heligmosomoides polygyrus could inhibit the development of autoimmune diabetes in NOD mice and to analyze the mechanisms involved in protection and the role of Th2 responses. Protection from diabetes was afforded by helminth infection, appeared to inhibit autoimmune diabetes by disrupting pathways leading to the destruction of beta cells, and was mediated by seemingly independent mechanisms depending on the parasite but which may be to be related to the capacity of the host to mount a Th2 response.
Collapse
Affiliation(s)
- Karin A Saunders
- Department of Immunology, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, United Kingdom
| | | | | | | |
Collapse
|
31
|
Raine T, Zaccone P, Mastroeni P, Cooke A. Salmonella typhimurium infection in nonobese diabetic mice generates immunomodulatory dendritic cells able to prevent type 1 diabetes. THE JOURNAL OF IMMUNOLOGY 2006; 177:2224-33. [PMID: 16887982 DOI: 10.4049/jimmunol.177.4.2224] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Infection, commencing across a wide age range, with a live, attenuated strain of Salmonella typhimurium, will halt the development of type 1 diabetes in the NOD mouse. The protective mechanism appears to involve the regulation of autoreactive T cells in a manner associated with long lasting changes in the innate immune compartment of these mice. We show in this study that autoreactive T cell priming and trafficking are altered in mice that have been infected previously by S. typhimurium. These changes are associated with sustained alterations in patterns of chemokine expression. We find that small numbers of dendritic cells from mice that have been previously infected with, but cleared all trace of a S. typhimurium infection are able to prevent the development of diabetes in the highly synchronized and aggressive cyclophosphamide-induced model. The effects we observe on autoreactive T cell trafficking are recapitulated by the immunomodulatory dendritic cell transfers in the cyclophosphamide model.
Collapse
Affiliation(s)
- Tim Raine
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
32
|
Ola TO, Williams NA. Protection of non-obese diabetic mice from autoimmune diabetes by Escherichia coli heat-labile enterotoxin B subunit. Immunology 2006; 117:262-70. [PMID: 16423062 PMCID: PMC1782208 DOI: 10.1111/j.1365-2567.2005.02294.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Autoimmune diabetes in the non-obese diabetic (NOD) mouse is associated with development of inflammation around the islets at around 4-5 weeks of age, which may be prolonged until frank diabetes begins to occur around 12 weeks of age. Although many interventions can halt disease progression if administration coincides with the beginning of the anti-beta cell response, very few are able to prevent diabetes development once insulitis is established. Here we describe a strategy which blocks cellular infiltration of islets and prevents diabetes. Intranasal treatment with the B-subunit of Escherichia coli heat labile enterotoxin (EtxB), a protein that binds GM1 ganglioside (as well as GD1b, asialo-GM1 and lactosylceramide with lower affinities), protected NOD mice from developing diabetes in a receptor-binding dependent manner. Protection was associated with a significant reduction in the number of macrophages, CD4(+) T cells, B cells, major histocompatibility complex class II(+) cells infiltrating the islets. Despite this, treated mice showed increased number of interleukin-10(+) cells in the pancreas, and a decrease in both T helper 1 (Th1) and Th2 cytokine production in the pancreatic lymph node. Disease protection was also transferred with CD4(+) splenocytes from treated mice. Taken together, these results demonstrated that EtxB is a potent immune modulator capable of blocking diabetes.
Collapse
Affiliation(s)
- Thomas O Ola
- University of Bristol, Department of Pathology and Microbiology, School of Medical Sciences, University Walk, UK.
| | | |
Collapse
|
33
|
Christen U, von Herrath MG. Infections and autoimmunity--good or bad? THE JOURNAL OF IMMUNOLOGY 2005; 174:7481-6. [PMID: 15944245 DOI: 10.4049/jimmunol.174.12.7481] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The relationship between infections and autoimmunity is complex. Current evidence indicates that microbes can initiate, enhance, or, conversely, abrogate autoimmunity. In this paper, we will review experimental examples illustrating mechanisms involved in these three scenarios. Microbial infections can act as environmental triggers inducing or promoting autoimmunity resulting in clinical manifestations of autoimmune disease in genetically predisposed individuals. However, increasing evidence suggests the opposite outcome, which is the prevention or amelioration of autoimmune processes following microbial encounters. These latter observations support conceptually the "hygiene hypothesis," suggesting that cleaner living conditions will lead to enhanced incidence of autoimmune disorders, asthma, and allergies. Because proof of concept in humans is difficult to obtain, we will discuss relevant animal model data in context with likely or proven human associations. Knowledge of mechanisms that underlie either positive or negative effects of infections on autoimmunity will facilitate exploration of molecular details for prospective clinical studies in the future.
Collapse
Affiliation(s)
- Urs Christen
- Immune Regulation Laboratory, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121, USA.
| | | |
Collapse
|