1
|
Kazer SW, Match CM, Langan EM, Messou MA, LaSalle TJ, O'Leary E, Marbourg J, Naughton K, von Andrian UH, Ordovas-Montanes J. Primary nasal influenza infection rewires tissue-scale memory response dynamics. Immunity 2024; 57:1955-1974.e8. [PMID: 38964332 PMCID: PMC11324402 DOI: 10.1016/j.immuni.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 03/14/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024]
Abstract
The nasal mucosa is often the initial site of respiratory viral infection, replication, and transmission. Understanding how infection shapes tissue-scale primary and memory responses is critical for designing mucosal therapeutics and vaccines. We generated a single-cell RNA-sequencing atlas of the murine nasal mucosa, sampling three regions during primary influenza infection and rechallenge. Compositional analysis revealed restricted infection to the respiratory mucosa with stepwise changes in immune and epithelial cell subsets and states. We identified and characterized a rare subset of Krt13+ nasal immune-interacting floor epithelial (KNIIFE) cells, which concurrently increased with tissue-resident memory T (TRM)-like cells. Proportionality analysis, cell-cell communication inference, and microscopy underscored the CXCL16-CXCR6 axis between KNIIFE and TRM cells. Secondary influenza challenge induced accelerated and coordinated myeloid and lymphoid responses without epithelial proliferation. Together, this atlas serves as a reference for viral infection in the upper respiratory tract and highlights the efficacy of local coordinated memory responses.
Collapse
Affiliation(s)
- Samuel W Kazer
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Colette Matysiak Match
- Department of Immunology, Harvard Medical School, Boston, MA, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Erica M Langan
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marie-Angèle Messou
- Department of Immunology, Harvard Medical School, Boston, MA, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Thomas J LaSalle
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Program in Health Sciences and Technology, Harvard Medical School and Massachusetts Institute of Technology, Boston, MA, USA
| | - Elise O'Leary
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | | | | | - Ulrich H von Andrian
- Department of Immunology, Harvard Medical School, Boston, MA, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Jose Ordovas-Montanes
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
2
|
Kazer SW, Match CM, Langan EM, Messou MA, LaSalle TJ, O’Leary E, Marbourg J, Naughton K, von Andrian UH, Ordovas-Montanes J. Primary nasal viral infection rewires the tissue-scale memory response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.11.539887. [PMID: 38562902 PMCID: PMC10983857 DOI: 10.1101/2023.05.11.539887] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The nasal mucosa is frequently the initial site of respiratory viral infection, replication, and transmission. Recent work has started to clarify the independent responses of epithelial, myeloid, and lymphoid cells to viral infection in the nasal mucosa, but their spatiotemporal coordination and relative contributions remain unclear. Furthermore, understanding whether and how primary infection shapes tissue-scale memory responses to secondary challenge is critical for the rational design of nasal-targeting therapeutics and vaccines. Here, we generated a single-cell RNA-sequencing (scRNA-seq) atlas of the murine nasal mucosa sampling three distinct regions before and during primary and secondary influenza infection. Primary infection was largely restricted to respiratory mucosa and induced stepwise changes in cell type, subset, and state composition over time. Type I Interferon (IFN)-responsive neutrophils appeared 2 days post infection (dpi) and preceded transient IFN-responsive/cycling epithelial cell responses 5 dpi, which coincided with broader antiviral monocyte and NK cell accumulation. By 8 dpi, monocyte-derived macrophages (MDMs) expressing Cxcl9 and Cxcl16 arose alongside effector cytotoxic CD8 and Ifng-expressing CD4 T cells. Following viral clearance (14 dpi), rare, previously undescribed Krt13+ nasal immune-interacting floor epithelial (KNIIFE) cells expressing multiple genes with immune communication potential increased concurrently with tissue-resident memory T (TRM)-like cells and early IgG+/IgA+ plasmablasts. Proportionality analysis coupled with cell-cell communication inference, alongside validation by in situ microscopy, underscored the CXCL16-CXCR6 signaling axis between MDMs and effector CD8 T cells 8dpi and KNIIFE cells and TRM cells 14 dpi. Secondary influenza challenge with a homologous or heterologous strain administered 60 dpi induced an accelerated and coordinated myeloid and lymphoid response without epithelial proliferation, illustrating how tissue-scale memory to natural infection engages both myeloid and lymphoid cells to reduce epithelial regenerative burden. Together, this atlas serves as a reference for viral infection in the upper respiratory tract and highlights the efficacy of local coordinated memory responses upon rechallenge.
Collapse
Affiliation(s)
- Samuel W. Kazer
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Colette Matysiak Match
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Erica M. Langan
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marie-Angèle Messou
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Thomas J. LaSalle
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Health Sciences and Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA, USA
| | - Elise O’Leary
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | | | | | - Ulrich H. von Andrian
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Jose Ordovas-Montanes
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| |
Collapse
|
3
|
Regulatory macrophages as therapeutic targets and therapeutic agents in solid organ transplantation. Curr Opin Organ Transplant 2013; 17:332-42. [PMID: 22790067 DOI: 10.1097/mot.0b013e328355a979] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW This review aims to provide a basic introduction to human macrophage biology and an appreciation of the diverse roles played by macrophage subsets in allograft damage and repair. Current and future strategies for therapeutically manipulating macrophage behaviour are discussed. RECENT FINDINGS Macrophages are extremely versatile effector cells that exert both immunostimulatory and immunosuppressive effects. This adaptability cannot be explained by differentiation into committed sublineages, but instead reflects the ability of macrophages to rapidly transition between states of functional polarisation. Consequently, categorisation of macrophage subpopulations is not straightforward and this, in turn, creates difficulties in studying their pathophysiology. Nevertheless, particular macrophage subpopulations have been implicated in exacerbating or attenuating ischaemia-reperfusion injury, rejection reactions and allograft fibrosis. Three general strategies for therapeutically targeting macrophages can be envisaged, namely, depletional approaches, in-situ repolarisation towards a regulatory or tissue-reparative phenotype, and ex-vivo generation of regulatory macrophages (M reg) as a cell-based therapy. SUMMARY As critical determinants of the local and systemic immune response to solid organ allografts, macrophage subpopulations represent attractive therapeutic targets. Rapid progress is being made in the implementation of novel macrophage-targeted therapies, particularly in the use of ex-vivo-generated M regs as a cell-based medicinal product.
Collapse
|
4
|
Severin IC, Souza ALS, Davis JH, Musolino N, Mack M, Power CA, Proudfoot AEI. Properties of 7ND-CCL2 are modulated upon fusion to Fc. Protein Eng Des Sel 2012; 25:213-22. [PMID: 22388887 DOI: 10.1093/protein/gzs008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
7ND, a truncated version of the chemokine MCP-1/CCL2 lacking amino acids 2-8, is a potent antagonist of CCR2. In contrast to CCL2, 7ND is an obligate monomer. Similar to other chemokines, the in vivo half-life of 7ND is very short and its use as an antagonist in disease models is thus limited. We therefore constructed a 7ND-Fc fusion protein to extend the half-life of 7ND and overcome its limitations as a potential therapeutic antagonist. When we tested the properties of the fusion molecule in vitro, we found to our surprise that 7ND-Fc, in contrast to 7ND, produced a distinct, albeit small, chemotactic response in THP-1 cells, and a robust chemotactic response in L1.2 cells stably transfected with CCR2. To test whether this unexpected observation might be due to the bivalency of 7ND-Fc stemming from the dimeric nature of Fc fusions, we produced a heterodimeric Fc fusion which displays only one 7ND moiety, using a technology called strand exchange of engineered CH3 domains (SEED). The monovalent construct had properties equivalent to the parent 7ND. Furthermore, partial agonist activity appears to depend on receptor density as well as the signaling pathway examined. However, we were able to show that 7ND-Fc, but not 7ND alone, has antagonistic activity in experimental autoimmune encephalomyelitis, a murine model of multiple sclerosis.
Collapse
Affiliation(s)
- India C Severin
- Merck Serono Geneva Research Centre, 9, Chemin des Mines, 1202 Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
5
|
Johnson S, Burke S, Huang L, Gorlatov S, Li H, Wang W, Zhang W, Tuaillon N, Rainey J, Barat B, Yang Y, Jin L, Ciccarone V, Moore PA, Koenig S, Bonvini E. Effector cell recruitment with novel Fv-based dual-affinity re-targeting protein leads to potent tumor cytolysis and in vivo B-cell depletion. J Mol Biol 2010; 399:436-49. [PMID: 20382161 DOI: 10.1016/j.jmb.2010.04.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 03/29/2010] [Accepted: 04/01/2010] [Indexed: 11/16/2022]
Abstract
Bispecific antibodies capable of redirecting the lytic potential of immune effector cells to kill tumor targets have long been recognized as a potentially potent biological therapeutic intervention. Unfortunately, efforts to produce such molecules have been limited owing to inefficient production and poor stability properties. Here, we describe a novel Fv-derived strategy based on a covalently linked bispecific diabody structure that we term dual-affinity re-targeting (DART). As a model system, we linked an Fv specific for human CD16 (FcgammaRIII) on effector cells to an Fv specific for mouse or human CD32B (FcgammaRIIB), a normal B-cell and tumor target antigen. DART proteins were produced at high levels in mammalian cells, retained the binding activity of the respective parental Fv domains as well as bispecific binding, and showed extended storage and serum stability. Functionally, the DART molecules demonstrated extremely potent, dose-dependent cytotoxicity in retargeting human PBMC against B-lymphoma cell lines as well as in mediating autologous B-cell depletion in culture. In vivo studies in mice demonstrated effective B-cell depletion that was dependent on the transgenic expression of both CD16A on the effector cells and CD32B on the B-cell targets. Furthermore, DART proteins showed potent in vivo protective activity in a human Burkitt's lymphoma cell xenograft model. Thus, DART represents a biologically potent format that provides a versatile platform for generating bispecific antibody fragments for redirected killing and, with the selection of appropriate binding partners, applications outside of tumor cell cytotoxicity.
Collapse
Affiliation(s)
- Syd Johnson
- MacroGenics, Inc., 1500 East Gude Drive, Rockville, MD 20850, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Weisser NE, Hall JC. Applications of single-chain variable fragment antibodies in therapeutics and diagnostics. Biotechnol Adv 2009; 27:502-20. [PMID: 19374944 DOI: 10.1016/j.biotechadv.2009.04.004] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 03/03/2009] [Accepted: 04/04/2009] [Indexed: 11/18/2022]
Abstract
Antibodies (Abs) are some of the most powerful tools in therapy and diagnostics and are currently one of the fastest growing classes of therapeutic molecules. Recombinant antibody (rAb) fragments are becoming popular therapeutic alternatives to full length monoclonal Abs since they are smaller, possess different properties that are advantageous in certain medical applications, can be produced more economically and are easily amendable to genetic manipulation. Single-chain variable fragment (scFv) Abs are one of the most popular rAb format as they have been engineered into larger, multivalent, bi-specific and conjugated forms for many clinical applications. This review will show the tremendous versatility and importance of scFv fragments as they provide the basic antigen binding unit for a multitude of engineered Abs for use as human therapeutics and diagnostics.
Collapse
Affiliation(s)
- Nina E Weisser
- Department of Environmental Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | | |
Collapse
|