1
|
Liu K, Cui JJ, Zhan Y, Ouyang QY, Lu QS, Yang DH, Li XP, Yin JY. Reprogramming the tumor microenvironment by genome editing for precision cancer therapy. Mol Cancer 2022; 21:98. [PMID: 35410257 PMCID: PMC8996591 DOI: 10.1186/s12943-022-01561-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is essential for immune escape by tumor cells. It plays essential roles in tumor development and metastasis. The clinical outcomes of tumors are often closely related to individual differences in the patient TME. Therefore, reprogramming TME cells and their intercellular communication is an attractive and promising strategy for cancer therapy. TME cells consist of immune and nonimmune cells. These cells need to be manipulated precisely and safely to improve cancer therapy. Furthermore, it is encouraging that this field has rapidly developed in recent years with the advent and development of gene editing technologies. In this review, we briefly introduce gene editing technologies and systematically summarize their applications in the TME for precision cancer therapy, including the reprogramming of TME cells and their intercellular communication. TME cell reprogramming can regulate cell differentiation, proliferation, and function. Moreover, reprogramming the intercellular communication of TME cells can optimize immune infiltration and the specific recognition of tumor cells by immune cells. Thus, gene editing will pave the way for further breakthroughs in precision cancer therapy.
Collapse
|
2
|
The Apolipoprotein C1 is involved in breast cancer progression via EMT and MAPK/JNK pathway. Pathol Res Pract 2022; 229:153746. [DOI: 10.1016/j.prp.2021.153746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
|
3
|
Herrera-Melle L, Crespo M, Leiva M, Sabio G. Stress-activated kinases signaling pathways in cancer development. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2020.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Preston SP, Doerflinger M, Scott HW, Allison CC, Horton M, Cooney J, Pellegrini M. The role of MKK4 in T-cell development and immunity to viral infections. Immunol Cell Biol 2020; 99:428-435. [PMID: 33175451 PMCID: PMC8247422 DOI: 10.1111/imcb.12426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 11/28/2022]
Abstract
The stress-activated protein kinases (SAPKs)/c-Jun-N-terminal-kinases (JNK) are members of the mitogen-activated protein kinase family. These kinases are responsible for transducing cellular signals through a phosphorylation-dependent signaling cascade. JNK activation in immune cells can lead to a range of critical cellular responses that include proliferation, differentiation and apoptosis. MKK4 is a SAPK that can activate both JNK1 and JNK2; however, its role in T-cell development and function has been controversial. Additionally, loss of either JNK1 or JNK2 has opposing effects in the generation of T-cell immunity to viral infection and cancer. We used mice with a conditional loss of MKK4 in T cells to investigate the in vivo role of MKK4 in T-cell development and function during lymphocytic choriomeningitis virus (LCMV) infection. We found no physiologically relevant differences in T-cell responses or immunity to either acute or chronic LCMV in the absence of MKK4.
Collapse
Affiliation(s)
- Simon P Preston
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Marcel Doerflinger
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Hamish W Scott
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Cody C Allison
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Miles Horton
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - James Cooney
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Marc Pellegrini
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
5
|
Cheng X, Zhang Y, Song F, Song F, Gao C, Liang X, Wang F, Chen Z. URM1 Promoted Tumor Growth and Suppressed Apoptosis via the JNK Signaling Pathway in Hepatocellular Carcinoma. Onco Targets Ther 2020; 13:8011-8025. [PMID: 32848422 PMCID: PMC7429233 DOI: 10.2147/ott.s258843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/15/2020] [Indexed: 12/24/2022] Open
Abstract
Objective Ubiquitin-related modifier 1 (URM1) is a member of the ubiquitin-like regulator family, which acts as a post-translational protein modifier in the oxidative emergency response mechanism. Previous studies have shown that URM1 may be involved in the process of apoptosis and may play a role in JNK signaling pathway. In this study, we aimed to investigate the role and possible mechanism of URM1 in HCC progression. Patients and Methods Expression of URM1 was determined in 90 pairs of matched liver cancer and adjacent non-cancerous tissues by immunohistochemistry. The impacts of URM1 on HCC cell proliferation, apoptosis, migration and invasion capacities were verified by CCK-8, colony formation, TUNEL staining, wound healing assay and transwell, respectively. Then, the effect of URM1 on subcutaneous tumor formation in vitro was explored by nude mouse xenograft model of liver cancer. Finally, the expression of apoptosis-related proteins was analyzed in URM1 knockdown samples by Western blotting. Results In this study, compared with paired adjacent non-cancerous tissues, the expression of URM1 was higher in liver cancer tissues (P <0.01). Kaplan-Meier survival analysis showed that high URM1 expression was significantly associated with poor prognosis (P <0.05). Moreover, URM1 knockdown inhibited liver cancer cell proliferation and migration. Furthermore, URM1 knockdown promoted apoptosis of liver cancer cells. At the same time, URM1 knockdown inhibited tumor growth in nude mouse xenograft model of liver cancer. In addition, URM1 knockdown downregulated the expression of the apoptosis-related factors JNK1/2 and TP53 and upregulated the phosphorylation of JNK1/2 and P53. Conclusion In summary, our results suggested that URM1 expression is increased in liver cancer tissues, and URM1 knockdown inhibits the proliferation and migration of liver cancer cells and accelerates apoptosis. High URM1 expression is associated with poor prognosis in patients with HCC.
Collapse
Affiliation(s)
- Xin Cheng
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China.,Medical College of Nantong University, Nantong 226001, People's Republic of China
| | - Yu Zhang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China.,Medical College of Nantong University, Nantong 226001, People's Republic of China
| | - Fei Song
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China.,Medical College of Nantong University, Nantong 226001, People's Republic of China
| | - Fengliang Song
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China.,Medical College of Nantong University, Nantong 226001, People's Republic of China
| | - Cheng Gao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China.,Medical College of Nantong University, Nantong 226001, People's Republic of China
| | - Xiaoliang Liang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China.,Medical College of Nantong University, Nantong 226001, People's Republic of China
| | - Feiran Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China.,Medical College of Nantong University, Nantong 226001, People's Republic of China
| | - Zhong Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong 226001, People's Republic of China
| |
Collapse
|
6
|
Decrease in Intracellular Perforin Levels and IFN- γ Production in Human CD8 + T Cell Line following Long-Term Exposure to Asbestos Fibers. J Immunol Res 2018; 2018:4391731. [PMID: 30426024 PMCID: PMC6218727 DOI: 10.1155/2018/4391731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/31/2018] [Accepted: 09/16/2018] [Indexed: 12/15/2022] Open
Abstract
Although the tumorigenicity of asbestos, which is thought to cause mesothelioma, has been clarified, its effect on antitumor immunity requires further investigation. We previously reported a decrease in the percentage of perforin+ cells of stimulated CD8+ lymphocytes derived from patients with malignant mesothelioma. Therefore, we examined the effects of long-term exposure to asbestos on CD8+ T cell functions by comparing long-term cultures of the human CD8+ T cell line EBT-8 with and without exposure to chrysotile (CH) asbestos as an in vitro model. Exposure to CH asbestos at 5 μg/ml or 30 μg/ml did not result in a decrease in intracellular granzyme B in EBT-8 cells. In contrast, the percentage of perforin+ cells decreased at both doses of CH exposure. CH exposure at 30 μg/ml did not suppress degranulation following stimulation with antibodies to CD3. Secreted production of IFN-γ stimulated via CD3 decreased by CH exposure at 30 μg/ml, although the percentage of IFN-γ+ cells induced by PMA/ionomycin did not decrease. These results indicate that long-term exposure to asbestos can potentially suppress perforin levels and the production of IFN-γ in human CD8+ T cells.
Collapse
|
7
|
Functional properties of CD8(+) lymphocytes in patients with pleural plaque and malignant mesothelioma. J Immunol Res 2014; 2014:670140. [PMID: 25045719 PMCID: PMC4087265 DOI: 10.1155/2014/670140] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/24/2014] [Accepted: 05/26/2014] [Indexed: 12/22/2022] Open
Abstract
It is known that asbestos exposure can cause malignant mesothelioma (MM) and that CD8+ T cells play a critical role in antitumor immunity. We examined the properties of peripheral blood CD8+ lymphocytes from asbestos-exposed patients with pleural plaque (PL) and MM. The percentage of CD3+CD8+ cells in PBMCs did not differ among the three groups, although the total numbers of PBMCs of the PL and MM groups were lower than those of the healthy volunteers (HV). The percentage of IFN-γ+ and CD107a+ cells in PMA/ionomycin-stimulated CD8+ lymphocytes did not differ among the three groups. Percentages of perforin+ cells and CD45RA− cells in fresh CD8+ lymphocytes of PL and MM groups were higher than those of HV. Percentages of granzyme B+ and perforin+ cells in PMA/ionomycin-stimulated CD8+ lymphocytes were higher in PL group compared with HV. The MM group showed a decrease of perforin level in CD8+ lymphocytes after stimulation compared with patients with PL. These results indicate that MM patients have characteristics of impairment in stimulation-induced cytotoxicity of peripheral blood CD8+ lymphocytes and that PL and MM patients have a common character of functional alteration in those lymphocytes, namely, an increase in memory cells, possibly related to exposure to asbestos.
Collapse
|
8
|
Zhou P, Shaffer DR, Alvarez Arias DA, Nakazaki Y, Pos W, Torres AJ, Cremasco V, Dougan SK, Cowley GS, Elpek K, Brogdon J, Lamb J, Turley SJ, Ploegh HL, Root DE, Love JC, Dranoff G, Hacohen N, Cantor H, Wucherpfennig KW. In vivo discovery of immunotherapy targets in the tumour microenvironment. Nature 2014; 506:52-7. [PMID: 24476824 DOI: 10.1038/nature12988] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 12/31/2013] [Indexed: 02/07/2023]
Abstract
Recent clinical trials showed that targeting of inhibitory receptors on T cells induces durable responses in a subset of cancer patients, despite advanced disease. However, the regulatory switches controlling T-cell function in immunosuppressive tumours are not well understood. Here we show that such inhibitory mechanisms can be systematically discovered in the tumour microenvironment. We devised an in vivo pooled short hairpin RNA (shRNA) screen in which shRNAs targeting negative regulators became highly enriched in murine tumours by releasing a block on T-cell proliferation upon tumour antigen recognition. Such shRNAs were identified by deep sequencing of the shRNA cassette from T cells infiltrating tumour or control tissues. One of the target genes was Ppp2r2d, a regulatory subunit of the PP2A phosphatase family. In tumours, Ppp2r2d knockdown inhibited T-cell apoptosis and enhanced T-cell proliferation as well as cytokine production. Key regulators of immune function can therefore be discovered in relevant tissue microenvironments.
Collapse
Affiliation(s)
- Penghui Zhou
- 1] Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA [2]
| | - Donald R Shaffer
- 1] Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA [2] [3] Jounce Therapeutics, Cambridge, Massachusetts 02138, USA
| | | | - Yukoh Nakazaki
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Wouter Pos
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Alexis J Torres
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | | - Stephanie K Dougan
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Glenn S Cowley
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Kutlu Elpek
- 1] Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA [2] Jounce Therapeutics, Cambridge, Massachusetts 02138, USA
| | - Jennifer Brogdon
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, USA
| | - John Lamb
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | | | - Hidde L Ploegh
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - David E Root
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - J Christopher Love
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Glenn Dranoff
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Harvey Cantor
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
9
|
Cunningham CA, Knudson KM, Peng BJ, Teixeiro E, Daniels MA. The POSH/JIP-1 scaffold network regulates TCR-mediated JNK1 signals and effector function in CD8+T cells. Eur J Immunol 2013; 43:3361-71. [DOI: 10.1002/eji.201343635] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/15/2013] [Accepted: 08/16/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Cody A. Cunningham
- Department of Molecular Microbiology and Immunology & Department of Surgery; Center for Cellular and Molecular Immunology, School of Medicine, University of Missouri; Columbia MO USA
| | - Karin M. Knudson
- Department of Molecular Microbiology and Immunology & Department of Surgery; Center for Cellular and Molecular Immunology, School of Medicine, University of Missouri; Columbia MO USA
| | - Binghao J. Peng
- Department of Molecular Microbiology and Immunology & Department of Surgery; Center for Cellular and Molecular Immunology, School of Medicine, University of Missouri; Columbia MO USA
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology & Department of Surgery; Center for Cellular and Molecular Immunology, School of Medicine, University of Missouri; Columbia MO USA
| | - Mark A. Daniels
- Department of Molecular Microbiology and Immunology & Department of Surgery; Center for Cellular and Molecular Immunology, School of Medicine, University of Missouri; Columbia MO USA
| |
Collapse
|
10
|
Muthusamy V, Piva TJ. UVB-stimulated TNFα release from human melanocyte and melanoma cells is mediated by p38 MAPK. Int J Mol Sci 2013; 14:17029-54. [PMID: 23965971 PMCID: PMC3759950 DOI: 10.3390/ijms140817029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/05/2013] [Accepted: 08/09/2013] [Indexed: 01/18/2023] Open
Abstract
Ultraviolet (UV) radiation activates cell signaling pathways in melanocytes. As a result of altered signaling pathways and UV-induced cellular damage, melanocytes can undergo oncogenesis and develop into melanomas. In this study, we investigated the effect of UV-radiation on p38 MAPK (mitogen-activated protein kinase), JNK and NFκB pathways to determine which plays a major role in stimulating TNFα secretion in human HEM (melanocytes) and MM96L (melanoma) cells. MM96L cells exhibited 3.5-fold higher p38 activity than HEM cells at 5 min following UVA + B radiation and 1.6-fold higher JNK activity at 15–30 min following UVB+A radiation, while NFκB was minimally activated in both cells. Irradiated HEM cells had the greatest fold of TNFα secretion (UVB: 109-fold, UVA + B: 103-fold & UVB+A: 130-fold) when co-exposed to IL1α. The p38 inhibitor, SB202190, inhibited TNFα release by 93% from UVB-irradiated HEM cells. In the UVB-irradiated MM96L cells, both SB202190 and sulfasalazine (NFκB inhibitor) inhibited TNFα release by 52%. Although, anisomycin was a p38 MAPK activator, it inhibited TNFα release in UV-irradiated cells. This suggests that UV-mediated TNFα release may occur via different p38 pathway intermediates compared to those stimulated by anisomycin. As such, further studies into the functional role p38 MAPK plays in regulating TNFα release in UV-irradiated melanocyte-derived cells are warranted.
Collapse
Affiliation(s)
- Visalini Muthusamy
- School of Medical Sciences, RMIT University, PO Box 71, Bundoora VIC 3083, Australia.
| | | |
Collapse
|
11
|
Paley MA, Gordon SM, Bikoff EK, Robertson EJ, Wherry EJ, Reiner SL. Technical Advance: Fluorescent reporter reveals insights into eomesodermin biology in cytotoxic lymphocytes. J Leukoc Biol 2012. [PMID: 23192430 DOI: 10.1189/jlb.0812400] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The T-box transcription factor Eomes is expressed in cytotoxic immune cells and plays an important role in development, maintenance, and function of these cell types. Identification and separation of cells with differential Eomes expression would allow for better understanding of the transcriptional program governing these cytotoxic lymphocytes. Here, we report the use of an Eomes(gfp)-targeted mouse allele that displays robust fidelity to Eomes protein expression in NK and T cells. Use of this reporter mouse revealed that Eomes expression in antiviral effector cells did not correlate with enhanced cytotoxicity but rather was associated with more efficient central memory differentiation. Weakening of reporter activity in Eomes-deficient CD8(+) T cells revealed a critical role for Eomes protein in maintaining central memory cells that have activated the Eomes locus. Characterization of reporter activity in NK lineage cells also permitted identification of a novel intermediate of NK cell maturation. Thus, the murine Eomes(gfp)-targeted allele provides a novel opportunity to explore Eomes biology in cytotoxic lymphocytes.
Collapse
Affiliation(s)
- Michael A Paley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
12
|
ADAP regulates cell cycle progression of T cells via control of cyclin E and Cdk2 expression through two distinct CARMA1-dependent signaling pathways. Mol Cell Biol 2012; 32:1908-17. [PMID: 22411628 DOI: 10.1128/mcb.06541-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adhesion and degranulation-promoting adapter protein (ADAP) is a multifunctional scaffold that regulates T cell receptor-mediated activation of integrins via association with the SKAP55 adapter and the NF-κB pathway through interactions with both the CARMA1 adapter and serine/threonine kinase transforming growth factor β-activated kinase 1 (TAK1). ADAP-deficient T cells exhibit impaired proliferation following T cell receptor stimulation, but the contribution of these distinct functions of ADAP to this defect is not known. We demonstrate that loss of ADAP results in a G₁-S transition block in cell cycle progression following T cell activation due to impaired accumulation of cyclin-dependent kinase 2 (Cdk2) and cyclin E. The CARMA1-binding site in ADAP is critical for mitogen-activated protein (MAP) kinase kinase 7 (MKK7) phosphorylation and recruitment to the protein kinase C θ (PKCθ) signalosome and subsequent c-Jun kinase (JNK)-mediated Cdk2 induction. Cyclin E expression following T cell receptor stimulation of ADAP-deficient T cells is transient and associated with enhanced cyclin E ubiquitination. Both the CARMA1- and TAK1-binding sites in ADAP are critical for restraining cyclin E ubiquitination and turnover independently of ADAP-dependent JNK activation. T cell receptor-mediated proliferation was most dramatically impaired by the loss of ADAP interactions with CARMA1 or TAK1 rather than SKAP55. Thus, ADAP coordinates distinct CARMA1-dependent control of key cell cycle proteins in T cells.
Collapse
|
13
|
Zloza A, Kohlhapp FJ, Lyons GE, Schenkel JM, Moore TV, Lacek AT, O'Sullivan JA, Varanasi V, Williams JW, Jagoda MC, Bellavance EC, Marzo AL, Thomas PG, Zafirova B, Polić B, Al-Harthi L, Sperling AI, Guevara-Patiño JA. NKG2D signaling on CD8⁺ T cells represses T-bet and rescues CD4-unhelped CD8⁺ T cell memory recall but not effector responses. Nat Med 2012; 18:422-8. [PMID: 22366950 PMCID: PMC3436127 DOI: 10.1038/nm.2683] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 01/20/2012] [Indexed: 02/03/2023]
Abstract
CD4-unhelped CD8(+) T cells are functionally defective T cells primed in the absence of CD4(+) T cell help. Given the co-stimulatory role of natural-killer group 2, member D protein (NKG2D) on CD8(+) T cells, we investigated its ability to rescue these immunologically impotent cells. We demonstrate that augmented co-stimulation through NKG2D during priming paradoxically rescues memory, but not effector, CD8(+) T cell responses. NKG2D-mediated rescue is characterized by reversal of elevated transcription factor T-box expressed in T cells (T-bet) expression and recovery of interleukin-2 and interferon-γ production and cytolytic responses. Rescue is abrogated in CD8(+) T cells lacking NKG2D. Augmented co-stimulation through NKG2D confers a high rate of survival to mice lacking CD4(+) T cells in a CD4-dependent influenza model and rescues HIV-specific CD8(+) T cell responses from CD4-deficient HIV-positive donors. These findings demonstrate that augmented co-stimulation through NKG2D is effective in rescuing CD4-unhelped CD8(+) T cells from their pathophysiological fate and may provide therapeutic benefits.
Collapse
Affiliation(s)
- Andrew Zloza
- Department of Surgery, Committee on Immunology, The University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Transcription factor Smad-independent T helper 17 cell induction by transforming-growth factor-β is mediated by suppression of eomesodermin. Immunity 2011; 34:741-54. [PMID: 21600798 DOI: 10.1016/j.immuni.2011.02.021] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 01/05/2011] [Accepted: 02/04/2011] [Indexed: 12/29/2022]
Abstract
Transforming growth factor-β (TGF-β) has been shown to be required for Th17 cell differentiation via Smad-independent mechanisms. The molecular mechanism underlying this pathway remains to be clarified, however. We searched for genes regulated by TGF-β through the Smad-independent pathway by using Smad2 and Smad3 double-deficient T cells and identified the transcription factor Eomesodermin (Eomes), whose expression was suppressed by TGF-β via the c-Jun N-terminal kinase (JNK)-c-Jun signaling pathway. Inhibition of JNK strongly suppressed disease in an in vivo EAE model as well as in vitro Th17 cell induction. Overexpression of Eomes substantially suppressed Th17 cell differentiation, whereas ablation of Eomes expression could substitute for TGF-β in Th17 cell induction in primary T cells. Eomes suppressed Rorc and Il17a promoters by directly binding to the proximal region of these promoters. In conclusion, the suppression of Eomes by TGF-β via the JNK pathway is an important mechanism for Smad-independent Th17 cell differentiation.
Collapse
|
15
|
Requirement of c-Jun NH(2)-terminal kinase for Ras-initiated tumor formation. Mol Cell Biol 2011; 31:1565-76. [PMID: 21282468 DOI: 10.1128/mcb.01122-10] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The c-Jun NH(2)-terminal kinase (JNK) signal transduction pathway causes increased gene expression mediated, in part, by members of the activating transcription factor protein (AP1) group. JNK is therefore implicated in the regulation of cell growth and cancer. To test the role of JNK in Ras-induced tumor formation, we examined the effect of compound ablation of the ubiquitously expressed genes Jnk1 plus Jnk2. We report that JNK is required for Ras-induced transformation of p53-deficient primary cells in vitro. Moreover, JNK is required for lung tumor development caused by mutational activation of the endogenous KRas gene in vivo. Together, these data establish that JNK plays a key role in Ras-induced tumorigenesis.
Collapse
|
16
|
He W, Hao J, Dong S, Gao Y, Tao J, Chi H, Flavell R, O'Brien RL, Born WK, Craft J, Han J, Wang P, Zhao L, Wu J, Yin Z. Naturally activated V gamma 4 gamma delta T cells play a protective role in tumor immunity through expression of eomesodermin. THE JOURNAL OF IMMUNOLOGY 2010; 185:126-33. [PMID: 20525896 DOI: 10.4049/jimmunol.0903767] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We previously demonstrated that gammadelta T cells played an important role in tumor immune surveillance by providing an early source of IFN-gamma. The precise role of different subsets of gammadelta T cells in the antitumor immune response, however, is unknown. Vgamma1 and Vgamma4 gammadelta T cells are the principal subsets of peripheral lymphoid gammadelta T cells and they might play distinct roles in tumor immunity. In support of this, we observed that reconstitution of TCRdelta(-/-) mice with Vgamma4, but not Vgamma1, gammadelta T cells restored the antitumor response. We also found that these effects were exerted by the activated (CD44(high)) portion of Vgamma4 gammadelta T cells. We further determined that IFN-gamma and perforin are critical elements in the Vgamma4-mediated antitumor immune response. Indeed, CD44(high) Vgamma4 gammadelta T cells produced significantly more IFN-gamma and perforin on activation, and showed greater cytolytic activity than did CD44(high) Vgamma1 gammadelta T cells, apparently due to the high level of eomesodermin (Eomes) in these activated Vgamma4 gammadelta T cells. Consistently, transfection of dominant-negative Eomes in Vgamma4 gammadelta T cells diminished the level of IFN-gamma secretion, indicating a critical role of Eomes in the effector function of these gammadelta T cells. Our results thus reveal distinct functions of Vgamma4 and Vgamma1 gammadelta T cells in antitumor immune response, and identify a protective role of activated Vgamma4 gammadelta T cells, with possible implications for tumor immune therapy.
Collapse
Affiliation(s)
- Weifeng He
- Chongqing Key Laboratory for Diseases Proteomics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sukhumavasi W, Warren AL, Del Rio L, Denkers EY. Absence of mitogen-activated protein kinase family member c-Jun N-terminal kinase-2 enhances resistance to Toxoplasma gondii. Exp Parasitol 2010; 126:415-20. [PMID: 20117109 DOI: 10.1016/j.exppara.2010.01.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 01/14/2010] [Accepted: 01/21/2010] [Indexed: 11/16/2022]
Abstract
The function of mitogen-activated protein kinase (MAPK) family member c-Jun N-terminal kinase (JNK)-2 in resistance and pathology during infection has not been greatly studied. Here, we employed Jnk2(-/-) mice to investigate the role of JNK2 in resistance and immunity during oral infection with the protozoan pathogen Toxoplasma gondii. We found increased host resistance in the absence of JNK2 as determined by lower parasite burden and increased host survival. Lack of JNK2 also correlated with decreased neutrophil recruitment to the intestinal mucosa and less pathology in the small intestine. In the absence of JNK2, IL-12 production was slightly but significantly increased in restimulated splenocyte populations as well as in purified splenic dendritic cell cultures. These results provide evidence that expression of JNK2 plays a role in T. gondii-induced immunopathology, at the same time in promoting susceptibility to this parasitic pathogen.
Collapse
Affiliation(s)
- Woraporn Sukhumavasi
- Parasitology Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | | | | | |
Collapse
|
18
|
Nakano T, Goto S, Lai CY, Hsu LW, Takaoka Y, Kawamoto S, Chiang KC, Shimada Y, Ohmori N, Goto T, Sato S, Ono K, Cheng YF, Chen CL. Immunological aspects and therapeutic significance of an autoantibody against histone H1 in a rat model of concanavalin A-induced hepatitis. Immunology 2009; 129:547-55. [PMID: 20102416 DOI: 10.1111/j.1365-2567.2009.03149.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We previously demonstrated the immunosuppressive activity of anti-histone H1 autoantibody induced in experimental and clinical liver allograft tolerance. This study aimed to explore the immunological aspects of anti-histone H1 autoantibody in liver injury induced by concanavalin A (Con A). To establish a Con A-hepatitis model, 20 mg/kg Con A was intravenously injected into rats, after which liver function and histopathological analyses were performed. In this model, anti-histone H1 autoantibody was transiently induced in the sera during the natural recovery stage, 3-7 days after Con A injection. To evaluate the therapeutic significance of anti-histone H1 autoantibody, a polyclonal antibody against histone H1 was intraperitoneally injected immediately after Con A injection. We found that injection of anti-histone H1 antibody could reduce Con A-induced liver damage. Further mechanical analyses revealed that anti-histone H1 antibody altered the intracellular activation of mitogen-activated protein kinase, nuclear factor-kappaB and calcineurin via T-cell receptor signalling, suggesting that anti-histone H1 antibody may protect the liver from Con A-induced injury by inhibiting activation of effector T cells. These findings suggest that anti-histone H1 autoantibody may be a natural immune regulatory factor that protects inflamed livers suffering from autoimmune hepatitis and may lead to T-cell unresponsiveness through the selective regulation of mitogen-activated protein kinase/nuclear factor-kappaB and calcineurin signalling.
Collapse
Affiliation(s)
- Toshiaki Nakano
- Liver Transplantation Program and Department of Surgery, Chang Gung Memorial Hospital-Kaohsiung Medical Centre, Chang Gung University College of Medicine, Niao-Sung, Kaohsiung, Taiwan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|