1
|
Wang J, Cao H, Yang H, Wang N, Weng Y, Luo H. The function of CD36 in Mycobacterium tuberculosis infection. Front Immunol 2024; 15:1413947. [PMID: 38881887 PMCID: PMC11176518 DOI: 10.3389/fimmu.2024.1413947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
CD36 is a scavenger receptor that has been reported to function as a signaling receptor that responds to pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) and could integrate metabolic pathways and cell signaling through its dual functions. Thereby influencing activation to regulate the immune response and immune cell differentiation. Recent studies have revealed that CD36 plays critical roles in the process of lipid metabolism, inflammatory response and immune process caused by Mycobacterium tuberculosis infection. This review will comprehensively investigate CD36's functions in lipid uptake and processing, inflammatory response, immune response and therapeutic targets and biomarkers in the infection process of M. tuberculosis. The study also raised outstanding issues in this field to designate future directions.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, China
| | - Hui Cao
- Department of Food and Nutrition Safety, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Hongwei Yang
- Department of Clinical Laboratory, Suzhou BOE Hospital, Suzhou, Jiangsu, China
| | - Nan Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, China
| | - Yiwei Weng
- Department of Clinical Laboratory, The Fourth People’s Hospital of Kunshan, Suzhou, Jiangsu, China
| | - Hao Luo
- Department of Clinical Laboratory, The Second People's Hospital of Kunshan, Suzhou, China
| |
Collapse
|
2
|
Aiello A, Najafi-Fard S, Goletti D. Initial immune response after exposure to Mycobacterium tuberculosis or to SARS-COV-2: similarities and differences. Front Immunol 2023; 14:1244556. [PMID: 37662901 PMCID: PMC10470049 DOI: 10.3389/fimmu.2023.1244556] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) and Coronavirus disease-2019 (COVID-19), whose etiologic agent is severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), are currently the two deadliest infectious diseases in humans, which together have caused about more than 11 million deaths worldwide in the past 3 years. TB and COVID-19 share several aspects including the droplet- and aerosol-borne transmissibility, the lungs as primary target, some symptoms, and diagnostic tools. However, these two infectious diseases differ in other aspects as their incubation period, immune cells involved, persistence and the immunopathological response. In this review, we highlight the similarities and differences between TB and COVID-19 focusing on the innate and adaptive immune response induced after the exposure to Mtb and SARS-CoV-2 and the pathological pathways linking the two infections. Moreover, we provide a brief overview of the immune response in case of TB-COVID-19 co-infection highlighting the similarities and differences of each individual infection. A comprehensive understanding of the immune response involved in TB and COVID-19 is of utmost importance for the design of effective therapeutic strategies and vaccines for both diseases.
Collapse
Affiliation(s)
| | | | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
3
|
Kim H, Shin SJ. Pathological and protective roles of dendritic cells in Mycobacterium tuberculosis infection: Interaction between host immune responses and pathogen evasion. Front Cell Infect Microbiol 2022; 12:891878. [PMID: 35967869 PMCID: PMC9366614 DOI: 10.3389/fcimb.2022.891878] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Dendritic cells (DCs) are principal defense components that play multifactorial roles in translating innate immune responses to adaptive immunity in Mycobacterium tuberculosis (Mtb) infections. The heterogeneous nature of DC subsets follows their altered functions by interacting with other immune cells, Mtb, and its products, enhancing host defense mechanisms or facilitating pathogen evasion. Thus, a better understanding of the immune responses initiated, promoted, and amplified or inhibited by DCs in Mtb infection is an essential step in developing anti-tuberculosis (TB) control measures, such as host-directed adjunctive therapy and anti-TB vaccines. This review summarizes the recent advances in salient DC subsets, including their phenotypic classification, cytokine profiles, functional alterations according to disease stages and environments, and consequent TB outcomes. A comprehensive overview of the role of DCs from various perspectives enables a deeper understanding of TB pathogenesis and could be useful in developing DC-based vaccines and immunotherapies.
Collapse
|
4
|
Neutrophils in Tuberculosis: Cell Biology, Cellular Networking and Multitasking in Host Defense. Int J Mol Sci 2021; 22:ijms22094801. [PMID: 33946542 PMCID: PMC8125784 DOI: 10.3390/ijms22094801] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/20/2022] Open
Abstract
Neutrophils readily infiltrate infection foci, phagocytose and usually destroy microbes. In tuberculosis (TB), a chronic pulmonary infection caused by Mycobacterium tuberculosis (Mtb), neutrophils harbor bacilli, are abundant in tissue lesions, and their abundances in blood correlate with poor disease outcomes in patients. The biology of these innate immune cells in TB is complex. Neutrophils have been assigned host-beneficial as well as deleterious roles. The short lifespan of neutrophils purified from blood poses challenges to cell biology studies, leaving intracellular biological processes and the precise consequences of Mtb–neutrophil interactions ill-defined. The phenotypic heterogeneity of neutrophils, and their propensity to engage in cellular cross-talk and to exert various functions during homeostasis and disease, have recently been reported, and such observations are newly emerging in TB. Here, we review the interactions of neutrophils with Mtb, including subcellular events and cell fate upon infection, and summarize the cross-talks between neutrophils and lung-residing and -recruited cells. We highlight the roles of neutrophils in TB pathophysiology, discussing recent findings from distinct models of pulmonary TB, and emphasize technical advances that could facilitate the discovery of novel neutrophil-related disease mechanisms and enrich our knowledge of TB pathogenesis.
Collapse
|
5
|
Role of α-glucan-induced oxygen species in dendritic cells and its impact in immune response against tuberculosis. Int J Med Microbiol 2019; 309:151328. [PMID: 31324524 DOI: 10.1016/j.ijmm.2019.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/25/2019] [Accepted: 07/07/2019] [Indexed: 11/24/2022] Open
Abstract
With 10 million new cases and three million deaths estimated to occur yearly ̶ more than any time in history ̶ tuberculosis (TB) remains the single most widespread and deadly infectious disease. Until recently, it was thought that both latent and active TB was primarily related to host factors. Nonetheless, the participation of bacterial factors is becoming increasingly evident. Minimal variations in genes related to Mycobacterium tuberculosis (Mtb) virulence and pathogenesis can lead to marked differences in immunogenicity. Dendritic cells (DC) are professional antigen presenting cells whose maturation can vary depending on the cell wall composition of each particular Mtb strain being critical for the onset of the immune response against Mtb. Here we evaluated the role played by α-glucan, in the endogenous production of reactive oxygen species, ROS, and the impact on DC maturation and function. Results showed that α-glucans on Mtb induce ROS production leading to DC maturation and lymphocyte proliferation. Even more, α-glucans induced Syk activation but were not essential in non-opsonized phagocytosis. In summary, α-glucans of Mtb participates in ROS production and the subsequent DC maturation and antigen presentation, suggesting a relevant role of α-glucans for the onset of the protective immune response against TB.
Collapse
|
6
|
Abstract
The engulfment of apoptotic cells by phagocytes, a process referred to as efferocytosis, is essential for maintenance of normal tissue homeostasis and a prerequisite for the resolution of inflammation. Neutrophils are the predominant circulating white blood cell in humans, and contain an arsenal of toxic substances that kill and degrade microbes. Neutrophils are short-lived and spontaneously die by apoptosis. This review will highlight how the engulfment of apoptotic neutrophils by human phagocytes occurs, how heterogeneity of phagocyte populations influences efferocytosis signaling, and downstream consequences of efferocytosis. The efferocytosis of apoptotic neutrophils by macrophages promotes anti-inflammatory signaling, prevents neutrophil lysis, and dampens immune responses. Given the immunomodulatory properties of efferocytosis, understanding pathways that regulate and enhance efferocytosis could be harnessed to combat infection and chronic inflammatory conditions.
Collapse
Affiliation(s)
- Mallary C Greenlee-Wacker
- Inflammation Program, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Veterans Administration Medical Center, Iowa City, IA, USA
| |
Collapse
|
7
|
Abstract
Tuberculosis remains one of the greatest threats to human health. The causative bacterium, Mycobacterium tuberculosis, is acquired by the respiratory route. It is exquisitely adapted to humans and is a prototypic intracellular pathogen of macrophages, with alveolar macrophages being the primary conduit of infection and disease. However, M. tuberculosis bacilli interact with and are affected by several soluble and cellular components of the innate immune system which dictate the outcome of primary infection, most commonly a latently infected healthy human host, in whom the bacteria are held in check by the host immune response within the confines of tissue granuloma, the host histopathologic hallmark. Such individuals can develop active TB later in life with impairment in the immune system. In contrast, in a minority of infected individuals, the early host immune response fails to control bacterial growth, and progressive granulomatous disease develops, facilitating spread of the bacilli via infectious aerosols. The molecular details of the M. tuberculosis-host innate immune system interaction continue to be elucidated, particularly those occurring within the lung. However, it is clear that a number of complex processes are involved at the different stages of infection that may benefit either the bacterium or the host. In this article, we describe a contemporary view of the molecular events underlying the interaction between M. tuberculosis and a variety of cellular and soluble components and processes of the innate immune system.
Collapse
|
8
|
Abstract
The modulation of tuberculosis (TB)-induced immunopathology caused by human immunodeficiency virus (HIV)-1 coinfection remains incompletely understood but underlies the change seen in the natural history, presentation, and prognosis of TB in such patients. The deleterious combination of these two pathogens has been dubbed a "deadly syndemic," with each favoring the replication of the other and thereby contributing to accelerated disease morbidity and mortality. HIV-1 is the best-recognized risk factor for the development of active TB and accounts for 13% of cases globally. The advent of combination antiretroviral therapy (ART) has considerably mitigated this risk. Rapid roll-out of ART globally and the recent recommendation by the World Health Organization (WHO) to initiate ART for everyone living with HIV at any CD4 cell count should lead to further reductions in HIV-1-associated TB incidence because susceptibility to TB is inversely proportional to CD4 count. However, it is important to note that even after successful ART, patients with HIV-1 are still at increased risk for TB. Indeed, in settings of high TB incidence, the occurrence of TB often remains the first presentation of, and thereby the entry into, HIV care. As advantageous as ART-induced immune recovery is, it may also give rise to immunopathology, especially in the lower-CD4-count strata in the form of the immune reconstitution inflammatory syndrome. TB-immune reconstitution inflammatory syndrome will continue to impact the HIV-TB syndemic.
Collapse
|
9
|
|
10
|
Breedveld A, Groot Kormelink T, van Egmond M, de Jong EC. Granulocytes as modulators of dendritic cell function. J Leukoc Biol 2017. [DOI: 10.1189/jlb.4mr0217-048rr] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
11
|
Romero MM, Basile JI, Corra Feo L, López B, Ritacco V, Alemán M. Reactive oxygen species production by human dendritic cells involves TLR2 and dectin-1 and is essential for efficient immune response against Mycobacteria. Cell Microbiol 2016; 18:875-86. [DOI: 10.1111/cmi.12562] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 01/29/2023]
Affiliation(s)
- María Mercedes Romero
- IMEX-CONTICET-ANM, Buenos Aires, Argentina and Servicio de Micobacterias, Instituto Malbrán; Buenos Aires Argentina
| | - Juan Ignacio Basile
- IMEX-CONTICET-ANM, Buenos Aires, Argentina and Servicio de Micobacterias, Instituto Malbrán; Buenos Aires Argentina
| | - Laura Corra Feo
- IMEX-CONTICET-ANM, Buenos Aires, Argentina and Servicio de Micobacterias, Instituto Malbrán; Buenos Aires Argentina
| | - Beatriz López
- IMEX-CONTICET-ANM, Buenos Aires, Argentina and Servicio de Micobacterias, Instituto Malbrán; Buenos Aires Argentina
| | - Viviana Ritacco
- IMEX-CONTICET-ANM, Buenos Aires, Argentina and Servicio de Micobacterias, Instituto Malbrán; Buenos Aires Argentina
| | - Mercedes Alemán
- IMEX-CONTICET-ANM, Buenos Aires, Argentina and Servicio de Micobacterias, Instituto Malbrán; Buenos Aires Argentina
| |
Collapse
|
12
|
Apoptotic cell clearance of Leishmania major-infected neutrophils by dendritic cells inhibits CD8⁺ T-cell priming in vitro by Mer tyrosine kinase-dependent signaling. Cell Death Dis 2015; 6:e2018. [PMID: 26658192 PMCID: PMC4720886 DOI: 10.1038/cddis.2015.351] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 01/07/2023]
Abstract
Neutrophils are the predominant recruited and infected cells during the early stages of Leishmania major infection in the skin, and depletion of neutrophils promotes immunity to infection transmitted by sand fly bite. In order to better understand how the acute neutrophilic response suppresses immunity, we assessed the consequences of the interaction between neutrophils recovered from the skin-inoculation site and bone marrow-derived dendritic cells (DCs) in vitro. The capture of infected, apoptotic neutrophils by the DCs completely inhibited their cross-presentation function that was dependent on engagement of the receptor tyrosine kinase Mer on the DCs. The capture of uninfected neutrophils, or neutrophils infected with Toxoplasma gondii, had only slight immunomodulatory effects. These studies define the clearance of infected, apoptotic neutrophils by DCs and Mer receptor signaling as central to the early immune evasion strategies of L. major, with relevance to other vector-borne pathogens delivered by bite to the skin.
Collapse
|
13
|
Neutrophil apoptosis in the context of tuberculosis infection. Tuberculosis (Edinb) 2015; 95:359-63. [DOI: 10.1016/j.tube.2015.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/24/2015] [Indexed: 12/21/2022]
|
14
|
Irwin SM, Driver E, Lyon E, Schrupp C, Ryan G, Gonzalez-Juarrero M, Basaraba RJ, Nuermberger EL, Lenaerts AJ. Presence of multiple lesion types with vastly different microenvironments in C3HeB/FeJ mice following aerosol infection with Mycobacterium tuberculosis. Dis Model Mech 2015; 8:591-602. [PMID: 26035867 PMCID: PMC4457037 DOI: 10.1242/dmm.019570] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/26/2015] [Indexed: 01/01/2023] Open
Abstract
Cost-effective animal models that accurately reflect the pathological progression of pulmonary tuberculosis are needed to screen and evaluate novel tuberculosis drugs and drug regimens. Pulmonary disease in humans is characterized by a number of heterogeneous lesion types that reflect differences in cellular composition and organization, extent of encapsulation, and degree of caseous necrosis. C3HeB/FeJ mice have been increasingly used to model tuberculosis infection because they produce hypoxic, well-defined granulomas exhibiting caseous necrosis following aerosol infection with Mycobacterium tuberculosis. A comprehensive histopathological analysis revealed that C3HeB/FeJ mice develop three morphologically distinct lesion types in the lung that differ with respect to cellular composition, degree of immunopathology and control of bacterial replication. Mice displaying predominantly the fulminant necrotizing alveolitis lesion type had significantly higher pulmonary bacterial loads and displayed rapid and severe immunopathology characterized by increased mortality, highlighting the pathological role of an uncontrolled granulocytic response in the lung. Using a highly sensitive novel fluorescent acid-fast stain, we were able to visualize the spatial distribution and location of bacteria within each lesion type. Animal models that better reflect the heterogeneity of lesion types found in humans will permit more realistic modeling of drug penetration into solid caseous necrotic lesions and drug efficacy testing against metabolically distinct bacterial subpopulations. A more thorough understanding of the pathological progression of disease in C3HeB/FeJ mice could facilitate modulation of the immune response to produce the desired pathology, increasing the utility of this animal model. Summary: C3HeB/FeJ mice develop three morphologically distinct lesion types, which differ with respect to bacterial load, cellular composition and degree of immunopathology following low-dose aerosol infection with Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Scott M Irwin
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Emily Driver
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Edward Lyon
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Christopher Schrupp
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Gavin Ryan
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Randall J Basaraba
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Eric L Nuermberger
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Anne J Lenaerts
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
15
|
Schuster S, Hurrell B, Tacchini-Cottier F. Crosstalk between neutrophils and dendritic cells: a context-dependent process. J Leukoc Biol 2013; 94:671-5. [DOI: 10.1189/jlb.1012540] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
16
|
Balboa L, Romero MM, Laborde E, Sabio Y García CA, Basile JI, Schierloh P, Yokobori N, Musella RM, Castagnino J, de la Barrera S, Sasiain MC, Alemán M. Impaired dendritic cell differentiation of CD16-positive monocytes in tuberculosis: role of p38 MAPK. Eur J Immunol 2013. [PMID: 23192690 DOI: 10.1002/eji.201242557] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Tuberculosis (TB) is one of the world's most pernicious diseases mainly due to immune evasion strategies displayed by its causative agent Mycobacterium tuberculosis (Mtb). Blood monocytes (Mos) represent an important source of DCs during chronic infections; consequently, the alteration of their differentiation constitutes an escape mechanism leading to mycobacterial persistence. We evaluated whether the CD16(+)/CD16(-) Mo ratio could be associated with the impaired Mo differentiation into DCs found in TB patients. The phenotype and ability to stimulate Mtb-specific memory clones DCs from isolated Mo subsets were assessed. We found that CD16(-) Mos differentiated into CD1a(+) DC-SIGN(high) cells achieving an efficient recall response, while CD16(+) Mos differentiated into a CD1a(-) DC-SIGN(low) population characterized by a poor mycobacterial Ag-presenting capacity. The high and sustained phosphorylated p38 expression observed in CD16(+) Mos was involved in the altered DC profile given that its blockage restored DC phenotype and its activation impaired CD16(-) Mo differentiation. Furthermore, depletion of CD16(+) Mos indeed improved the differentiation of Mos from TB patients toward CD1a(+) DC-SIGN(high) DCs. Therefore, Mos from TB patients are less prone to differentiate into DCs due to their increased proportion of CD16(+) Mos, suggesting that during Mtb infection Mo subsets may have different fates after entering the lungs.
Collapse
Affiliation(s)
- Luciana Balboa
- IMEX-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hilda JN, Selvaraj A, Das SD. Mycobacterium tuberculosisH37Rv is more effective compared to vaccine strains in modulating neutrophil functions: anin vitrostudy. ACTA ACUST UNITED AC 2012; 66:372-81. [DOI: 10.1111/j.1574-695x.2012.01025.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 08/02/2012] [Accepted: 08/02/2012] [Indexed: 11/29/2022]
|
18
|
Yokobori N, Sabio y García CA, Geffner L, Schierloh P, López B, Ritacco V, Barrera L, de la Barrera S, del Carmen Saisiain M. Differential induction of macrophage cell death by antigens of a clustered and a non-clustered multidrug-resistant Mycobacterium tuberculosis strain from Haarlem family. ACTA ACUST UNITED AC 2012; 66:363-71. [PMID: 22889125 DOI: 10.1111/j.1574-695x.2012.01024.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 07/03/2012] [Accepted: 08/01/2012] [Indexed: 01/16/2023]
Abstract
Some multidrug-resistant (MDR) Mycobacterium tuberculosis (Mtb) genotypes are the cause of large outbreaks, including strain M identified in Argentina. In contrast, its kin strain 410 has only caused a single case to date. Cell wall antigens from Mtb were associated with the modulation of macrophage (MΦ) cell death, and the ability to inhibit of MΦ apoptosis is considered a virulence mechanism. In this study, the ability these two clinical isolates with divergent epidemiology to induce MΦ cell death was evaluated using whole inactivated bacteria. We showed that gamma-irradiated (I-) strains induced MΦ necrosis, the strongest inducer being I-410. Cell death biased towards apoptosis with the heat-killed (hk) strains, both hk-MDR strains being poorer inducers of MΦ apoptosis than was H37Rv. These effects were partly due to their ability to induce anti-apoptotic mechanisms which were not related to the lack of tumor necrosis factor alpha induction or a compensatory effect of interleukin-10. The most noticeable difference between strain M and strain 410 was the ability shown by hk-M to interfere with apoptosis induced by hk-H37Rv. Thus, heat-stable and heat-labile antigens from these epidemiologically divergent Mtb strains differ in their ability to manipulate MΦ death.
Collapse
Affiliation(s)
- Noemí Yokobori
- Instituto de Medicina Experimental-CONICET, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Clinical isolates of Mycobacterium tuberculosis differ in their ability to induce respiratory burst and apoptosis in neutrophils as a possible mechanism of immune escape. Clin Dev Immunol 2012; 2012:152546. [PMID: 22778761 PMCID: PMC3388301 DOI: 10.1155/2012/152546] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 04/29/2012] [Indexed: 11/17/2022]
Abstract
Tuberculosis pathogenesis was earlier thought to be mainly related to the host but now it appears to be clear that bacterial factors are also involved. Genetic variability of Mycobacterium tuberculosis (Mtb) could be slight but it may lead to sharp phenotypic differences. We have previously reported that nonopsonized Mtb H37Rv induce apoptosis of polymorphonuclear neutrophils (PMNs) by a mechanism that involves the p38 pathway. Here we evaluated the capability to induce PMN apoptosis of two prevalent Mtb lineages in Argentina, the Latin America and Mediterranean (LAM), and Haarlem, using the H37Rv as a reference strain. Results showed that LAM strains strongly induced apoptosis of PMN which correlated with the induction of reactive oxygen species (ROS) production and p38 activation. Interestingly, the highly prosperous multidrug-resistant M strain, belonging to the Haarlem lineage, lacked the ability to activate and to induce PMN apoptosis as a consequence of (1) a weak ROS production and (2) the contribution of antiapoptotic mechanisms mediated at least by ERK. Although with less skill, M is able to enter the PMN so that phenotypic differences could lead PMN to be a reservoir allowing some pathogens to prevail and persist over other strains in the community.
Collapse
|
20
|
Efficient capture of infected neutrophils by dendritic cells in the skin inhibits the early anti-leishmania response. PLoS Pathog 2012; 8:e1002536. [PMID: 22359507 PMCID: PMC3280984 DOI: 10.1371/journal.ppat.1002536] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 01/03/2012] [Indexed: 11/19/2022] Open
Abstract
Neutrophils and dendritic cells (DCs) converge at localized sites of acute inflammation in the skin following pathogen deposition by the bites of arthropod vectors or by needle injection. Prior studies in mice have shown that neutrophils are the predominant recruited and infected cells during the earliest stage of Leishmania major infection in the skin, and that neutrophil depletion promotes host resistance to sand fly transmitted infection. How the massive influx of neutrophils aimed at wound repair and sterilization might modulate the function of DCs in the skin has not been previously addressed. The infected neutrophils recovered from the skin expressed elevated apoptotic markers compared to uninfected neutrophils, and were preferentially captured by dermal DCs when injected back into the mouse ear dermis. Following challenge with L. major directly, the majority of the infected DCs recovered from the skin at 24 hr stained positive for neutrophil markers, indicating that they acquired their parasites via uptake of infected neutrophils. When infected, dermal DCs were recovered from neutrophil depleted mice, their expression of activation markers was markedly enhanced, as was their capacity to present Leishmania antigens ex vivo. Neutrophil depletion also enhanced the priming of L. major specific CD4+ T cells in vivo. The findings suggest that following their rapid uptake by neutrophils in the skin, L. major exploits the immunosuppressive effects associated with the apoptotic cell clearance function of DCs to inhibit the development of acquired resistance until the acute neutrophilic response is resolved. Prior studies in mice have shown that the inoculation of Leishmania major into the skin by sand fly bite or by needle provokes a massive recruitment of neutrophils that take up the parasite, and that this response somehow suppresses immunity since neutrophil depletion results in better control of the infection. We investigated how neutrophils recruited to the injection site might interact with and suppress the function of dendritic cells (DCs) in the skin. Infected neutrophils recovered from the skin expressed increased levels of apoptotic markers compared to uninfected neutrophils, and were efficiently taken up by dermal DCs when injected back into the skin. When dermal DCs were permitted to take up parasites in the absence of neutrophils, their expression of activation markers and their ability to present Leishmania antigens were enhanced. Neutrophil depletion also enhanced the activation of Leishmania specific CD4+ T cells in vivo. The results suggest that for insect borne pathogens like Leishmania that provoke a strong inflammatory response at the site of infection, the immunosuppressive effects associated with the apoptotic cell clearance function of DCs will inhibit the early development of immunity.
Collapse
|
21
|
Neutrophils in tuberculosis: friend or foe? Trends Immunol 2011; 33:14-25. [PMID: 22094048 DOI: 10.1016/j.it.2011.10.003] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/06/2011] [Accepted: 10/17/2011] [Indexed: 12/22/2022]
Abstract
Neutrophils are rapidly recruited to sites of mycobacterial infection, where they phagocytose bacilli. Whether neutrophils can kill mycobacteria in vivo probably depends on the tissue microenvironment, stage of infection, individual host, and infecting organism. The interaction of neutrophils with macrophages, as well as the downstream effects on T cell activity, could result in a range of outcomes from early clearance of infection to dissemination of viable bacteria together with an attenuated acquired immune response. In established disease, neutrophils accumulate in situations of high pathogen load or immunological dysfunction, and are likely to contribute to pathology. These activities may have clinical importance in terms of new treatments, targeted interventions and vaccine strategies.
Collapse
|
22
|
Ryan RCM, O'Sullivan MP, Keane J. Mycobacterium tuberculosis infection induces non-apoptotic cell death of human dendritic cells. BMC Microbiol 2011; 11:237. [PMID: 22024399 PMCID: PMC3229477 DOI: 10.1186/1471-2180-11-237] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 10/24/2011] [Indexed: 01/16/2023] Open
Abstract
Background Dendritic cells (DCs) connect innate and adaptive immunity, and are necessary for an efficient CD4+ and CD8+ T cell response after infection with Mycobacterium tuberculosis (Mtb). We previously described the macrophage cell death response to Mtb infection. To investigate the effect of Mtb infection on human DC viability, we infected these phagocytes with different strains of Mtb and assessed viability, as well as DNA fragmentation and caspase activity. In parallel studies, we assessed the impact of infection on DC maturation, cytokine production and bacillary survival. Results Infection of DCs with live Mtb (H37Ra or H37Rv) led to cell death. This cell death proceeded in a caspase-independent manner, and without nuclear fragmentation. In fact, substrate assays demonstrated that Mtb H37Ra-induced cell death progressed without the activation of the executioner caspases, 3/7. Although the death pathway was triggered after infection, the DCs successfully underwent maturation and produced a host-protective cytokine profile. Finally, dying infected DCs were permissive for Mtb H37Ra growth. Conclusions Human DCs undergo cell death after infection with live Mtb, in a manner that does not involve executioner caspases, and results in no mycobactericidal effect. Nonetheless, the DC maturation and cytokine profile observed suggests that the infected cells can still contribute to TB immunity.
Collapse
Affiliation(s)
- Ruth C M Ryan
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, Ireland
| | | | | |
Collapse
|
23
|
Blomgran R, Ernst JD. Lung neutrophils facilitate activation of naive antigen-specific CD4+ T cells during Mycobacterium tuberculosis infection. THE JOURNAL OF IMMUNOLOGY 2011; 186:7110-9. [PMID: 21555529 DOI: 10.4049/jimmunol.1100001] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Initiation of the adaptive immune response to Mycobacterium tuberculosis occurs in the lung-draining mediastinal lymph node and requires transport of M. tuberculosis by migratory dendritic cells (DCs) to the local lymph node. The previously published observations that 1) neutrophils are a transiently prominent population of M. tuberculosis-infected cells in the lungs early in infection and 2) that the peak of infected neutrophils immediately precedes the peak of infected DCs in the lungs prompted us to characterize the role of neutrophils in the initiation of adaptive immune responses to M. tuberculosis. We found that, although depletion of neutrophils in vivo increased the frequency of M. tuberculosis-infected DCs in the lungs, it decreased trafficking of DCs to the mediastinal lymph node. This resulted in delayed activation (CD69 expression) and proliferation of naive M. tuberculosis Ag85B-specific CD4 T cells in the mediastinal lymph node. To further characterize the role of neutrophils in DC migration, we used a Transwell chemotaxis system and found that DCs that were directly infected by M. tuberculosis migrated poorly in response to CCL19, an agonist for the chemokine receptor CCR7. In contrast, DCs that had acquired M. tuberculosis through uptake of infected neutrophils exhibited unimpaired migration. These results revealed a mechanism wherein neutrophils promote adaptive immune responses to M. tuberculosis by delivering M. tuberculosis to DCs in a form that makes DCs more effective initiators of naive CD4 T cell activation. These observations provide insight into a mechanism for neutrophils to facilitate initiation of adaptive immune responses in tuberculosis.
Collapse
Affiliation(s)
- Robert Blomgran
- Division of Infectious Diseases, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
24
|
Abi Abdallah DS, Egan CE, Butcher BA, Denkers EY. Mouse neutrophils are professional antigen-presenting cells programmed to instruct Th1 and Th17 T-cell differentiation. Int Immunol 2011; 23:317-26. [PMID: 21422151 DOI: 10.1093/intimm/dxr007] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neutrophils play a major role in the innate immune system and are normally considered to be short-lived effector cells that exert anti-microbial activity and sometimes immunopathology. Here, we show that these cells possess an additional function as professional antigen-presenting cells capable of priming a T(h)1- and T(h)17-acquired immune response. Using flow cytometry, fluorescence microscopy and western blotting, we show that mouse neutrophils express MHC class II and co-stimulatory molecules CD80 and CD86 after T-cell co-incubation. Neutrophils pulsed with ovalbumin (OVA) process and present peptide antigen to OVA-specific T cells in an MHC class II-dependent manner. Importantly, we demonstrate that neutrophils can prime antigen-specific T(h)1 and T(h)17 immune responses even without the addition of exogenous cytokines to cell cultures.
Collapse
Affiliation(s)
- Delbert S Abi Abdallah
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
25
|
Majai G, Gogolák P, Ambrus C, Vereb G, Hodrea J, Fésüs L, Rajnavölgyi E. PPARγ modulated inflammatory response of human dendritic cell subsets to engulfed apoptotic neutrophils. J Leukoc Biol 2010; 88:981-91. [PMID: 20686116 DOI: 10.1189/jlb.0310144] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The means of how phagocytes handle apoptotic cells has a great impact on the outcome of immune responses. Here, we show that phagocytosis of allogeneic, apoptotic neutrophils by human monocyte-derived DCs is slow and less efficient than that of macrophages, and CD1a(-) DCs are more active in the engulfment of apoptotic neutrophils than CD1a(+) DCs. Blocking DC-SIGN function partially interferes with the uptake of apoptotic cells, and long-term interaction of apoptotic neutrophils with DCs makes them prone to proinflammatory cytokine responses. Engulfment of apoptotic cells sensitizes CD1a(-) DCs for high IL-8, TNF-α, IL-6, and CD1a(+) cells for IL-12 and IL-10 cytokine secretion elicited by additional inflammatory stimuli, which also result in the polarization of autologous T lymphocytes to Th1 effector cells. Ligand-induced activation of PPARγ by RSG results in enhanced phagocytosis, but the proinflammatory response and the capacity to trigger Th1 cell activation of CD1a(-) DCs are not enhanced. These results demonstrate that DCs are able to respond to allogeneic, apoptotic neutrophils with inflammatory cytokines and T cell responses in a subtype-specific manner that is modulated by the anti-inflammatory effects of PPARγ.
Collapse
Affiliation(s)
- Gyöngyike Majai
- Research Center for Molecular Medicine, University of Debrecen, Egyetem tér 1, Debrecen, Hungary
| | | | | | | | | | | | | |
Collapse
|
26
|
Mayadas TN, Rosetti F, Ernandez T, Sethi S. Neutrophils: game changers in glomerulonephritis? Trends Mol Med 2010; 16:368-78. [PMID: 20667782 DOI: 10.1016/j.molmed.2010.06.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/10/2010] [Accepted: 06/14/2010] [Indexed: 01/13/2023]
Abstract
Glomerulonephritides represent a diverse array of diseases that have in common immune cell-mediated effector mechanisms that cause organ damage. The contribution of neutrophils to the pathogenesis of proliferative glomerulonephritis (GN) is not well recognized. Most equate neutrophils with killing pathogens and causing collateral tissue damage during acute inflammation. However, these phagocytes are endowed with additional characteristics that have been traditionally reserved for cells of the adaptive immune system. They communicate with other cells, exhibit plasticity in their responses and have the potential to coordinate and inform the subsequent immune response, thus countering the notion that they arrive, destroy and then disappear. Therefore, neutrophils, which are the first to arrive at a site of inflammation, are potential game changers in GN.
Collapse
Affiliation(s)
- Tanya N Mayadas
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
27
|
Horvat JC, Starkey MR, Kim RY, Beagley KW, Preston JA, Gibson PG, Foster PS, Hansbro PM. Chlamydial respiratory infection during allergen sensitization drives neutrophilic allergic airways disease. THE JOURNAL OF IMMUNOLOGY 2010; 184:4159-69. [PMID: 20228193 DOI: 10.4049/jimmunol.0902287] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Neutrophilic asthma is a prevalent, yet recently described phenotype of asthma. It is characterized by neutrophilic rather than eosinophilic airway inflammation and airways hyperresponsiveness (AHR) and may have an infectious origin. Chlamydial respiratory infections are associated with asthma, but how these Th1-inducing bacteria influence Th2-mediated asthma remains unknown. The effects of chlamydial infection on the development of asthma were investigated using a BALB/c mouse model of OVA-induced allergic airways disease (AAD). The effects of current and resolved Chlamydia muridarum infection during OVA sensitization on AAD were assessed and compared with uninfected and nonsensitized controls. Current, but not resolved, infection attenuated hallmark features of AAD: pulmonary eosinophil influx, T cell production of IL-5, mucus-secreting cell hyperplasia, and AHR. Current infection also induced robust OVA-driven neutrophilic inflammation and IFN-gamma release from T cells. The phenotype of suppressed but persistent Th2 responses in association with enhanced neutrophilia is reminiscent of neutrophilic asthma. This phenotype was also characterized by increased pulmonary IL-12 and IL-17 expression and activation of APCs, as well as by reduced thymus- and activation-regulated chemokine. Inhibition of pulmonary neutrophil influx during infection blocked OVA-induced neutrophilic inflammation and T cell IFN-gamma production and reversed the suppressive effects on mucus-secreting cell hyperplasia and AHR during AAD. These changes correlated with decreased IL-12 and IL-17 expression, increased thymus- and activation-regulated chemokine and altered APC activation. Blocking IFN-gamma and IL-17 during OVA challenge had no effect. Thus, active chlamydial respiratory infection during sensitization enhances subsequent neutrophilic inflammation and Th1/Th17 responses during allergen exposure and may have a role in the pathogenesis of neutrophilic asthma.
Collapse
Affiliation(s)
- Jay C Horvat
- Centre for Asthma and Respiratory Disease and Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Hedlund S, Persson A, Vujic A, Che KF, Stendahl O, Larsson M. Dendritic cell activation by sensing Mycobacterium tuberculosis-induced apoptotic neutrophils via DC-SIGN. Hum Immunol 2010; 71:535-40. [PMID: 20219612 DOI: 10.1016/j.humimm.2010.02.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 02/08/2010] [Accepted: 02/19/2010] [Indexed: 11/16/2022]
Abstract
Mycobacterium tuberculosis (Mtb) manipulates cells of the innate immune system to provide the bacteria with a sustainable intracellular niche. Mtb spread through aerosol carrying them deep into the lungs, where they are internalized by phagocytic cells, such as neutrophils (PMNs), dendritic cells (DCs), and macrophages. PMNs undergo accelerated apoptosis after interaction with the bacterium, and apoptotic cells are sequestered by neighboring phagocytes. Removal of aged apoptotic cells because of natural tissue turnover is described as an immunologically silent process facilitating resolution of inflammation and inhibition of DC maturation. Silencing of immune cells could be favorable for intracellular bacteria. The aim of this study was to clarify the interaction between Mtb-induced apoptotic PMNs and DCs, and evaluate whether this interaction follows the proposed anti-inflammatory pathway. In contrast to aged apoptotic cells, Mtb-induced apoptotic PMNs induced functional DC maturation. We found that the cell fraction from Mtb-induced apoptotic PMNs contained almost all stimulatory capacity, suggesting that cell-cell interaction is crucial for DC activation. Inhibitory studies showed that this cell contact-dependent activation required binding of the PMN Mac-1 (CD11b/CD18) to the DC via DC-SIGN and endocytic activity involving the alpha(v)beta(5) but did not involve the scavenger receptor CD36. Taken together, this study demonstrates that the DCs can distinguish between normal and infected apoptotic PMNs via cellular crosstalk, where the DCs can sense the presence of danger on the Mtb-infected PMNs and modulate their response accordingly.
Collapse
Affiliation(s)
- Sebastian Hedlund
- Division of Medical Microbiology, Department of Molecular and Clinical Medicine, Linköping University, Sweden
| | | | | | | | | | | |
Collapse
|
29
|
Balboa L, Romero MM, Yokobori N, Schierloh P, Geffner L, Basile JI, Musella RM, Abbate E, Barrera S, Sasiain MC, Alemán M. Mycobacterium tuberculosis
impairs dendritic cell response by altering CD1b, DC‐SIGN and MR profile. Immunol Cell Biol 2010; 88:716-26. [DOI: 10.1038/icb.2010.22] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Luciana Balboa
- Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina Buenos Aires Argentina
| | - María Mercedes Romero
- Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina Buenos Aires Argentina
| | - Noemí Yokobori
- Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina Buenos Aires Argentina
| | - Pablo Schierloh
- Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina Buenos Aires Argentina
| | - Laura Geffner
- Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina Buenos Aires Argentina
| | - Juan I Basile
- Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina Buenos Aires Argentina
| | - Rosa M Musella
- Servicio de Tisioneumonología, Hospital Muñiz Buenos Aires Argentina
| | - Eduardo Abbate
- Servicio de Tisioneumonología, Hospital Muñiz Buenos Aires Argentina
| | - Silvia Barrera
- Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina Buenos Aires Argentina
| | - María C Sasiain
- Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina Buenos Aires Argentina
| | - Mercedes Alemán
- Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina Buenos Aires Argentina
| |
Collapse
|
30
|
Kondratieva TK, Rubakova EI, Linge IA, Evstifeev VV, Majorov KB, Apt AS. B cells delay neutrophil migration toward the site of stimulus: tardiness critical for effective bacillus Calmette-Guérin vaccination against tuberculosis infection in mice. THE JOURNAL OF IMMUNOLOGY 2009; 184:1227-34. [PMID: 20028653 DOI: 10.4049/jimmunol.0902011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mutations in the btk gene encoding Bruton's tyrosine kinase cause X-linked immune deficiency, with impaired B lymphocyte function as the major phenotype. Earlier, we demonstrated that CBA/N-xid mice, unlike the wild-type CBA mice, were not protected by bacillus Calmette-Guérin (BCG) vaccination against tuberculosis infection. Because IFN-gamma-producing T cells and activated macrophages are key elements of antituberculosis protection, it remained unclear how the mutation predominantly affecting B cell functions interferes with responses along the T cell-macrophage axis. In this study, we show that B cell deficiency leads to an abnormally rapid neutrophil migration toward the site of external stimulus. Using adoptive cell transfers and B cell genetic knockout, we demonstrate a previously unappreciated capacity of B cells to downregulate neutrophil motility. In our system, an advanced capture of BCG by neutrophils instead of macrophages leads to a significant decrease in numbers of IFN-gamma-producing T cells and impairs BCG performance in X-linked immune-deficient mice. The defect is readily compensated for by the in vivo neutrophil depletion.
Collapse
|
31
|
De Gregorio E, D’Oro U, Wack A. Immunology of TLR-independent vaccine adjuvants. Curr Opin Immunol 2009; 21:339-45. [DOI: 10.1016/j.coi.2009.05.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 05/04/2009] [Indexed: 12/13/2022]
|
32
|
D'Avila H, Roque NR, Cardoso RM, Castro-Faria-Neto HC, Melo RCN, Bozza PT. Neutrophils recruited to the site of Mycobacterium bovis BCG infection undergo apoptosis and modulate lipid body biogenesis and prostaglandin E production by macrophages. Cell Microbiol 2008; 10:2589-604. [PMID: 18771558 DOI: 10.1111/j.1462-5822.2008.01233.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Neutrophil influx to sites of mycobacterial infections is one of the first events of tuberculosis pathogenesis. However, the role of early neutrophil recruitment in mycobacterial infection is not completely understood. We investigated the rate of neutrophil apoptosis and the role of macrophage uptake of apoptotic neutrophils in a pleural tuberculosis model induced by BCG. Recruited neutrophils were shown to phagocyte BCG and a large number of neutrophils undergo apoptosis within 24 h. Notably, the great majority of apoptotic neutrophils were infected by BCG. Increased lipid body (lipid droplets) formation, accompanied by prostaglandin E(2) (PGE(2)) and TGF-beta1 synthesis, occurred in parallel to macrophage uptake of apoptotic cells. Lipid body and PGE(2) formation was observed after macrophage exposure to apoptotic, but not necrotic or live neutrophils. Blockage of BCG-induced lipid body formation significantly inhibited PGE(2) synthesis. Pre-treatment with the pan-caspase inhibitor zVAD inhibited BCG-induced neutrophil apoptosis and lipid body formation, indicating a role for apoptotic neutrophils in macrophage lipid body biogenesis in infected mice. In conclusion, BCG infection induced activation and apoptosis of infected neutrophils at the inflammatory site. The uptake of apoptotic neutrophils by macrophages leads to TGF-beta1 generation and PGE(2)-derived lipid body formation, and may have modulator roles in mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Heloisa D'Avila
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Tuberculosis is the most important bacterial infection world wide. The causative agent, Mycobacterium tuberculosis survives and proliferates within macrophages. Immune mediators such as interferon gamma (IFN-gamma) and tumour necrosis factor alpha (TNF-alpha) activate macrophages and promote bacterial killing. IFN-gamma is predominantly secreted by innate cells (mainly natural killer (NK) cells) and by T cells upon instruction by interleukin 12 (IL-12) and IL-18. These cytokines are primarily produced by dendritic cells and macrophages in response to Toll-like receptor (TLR) signalling interaction with tubercle bacilli. These signals also induce pro-inflammatory cytokines (including IL-1beta and TNF-alpha), chemokines and defensins. The inflammatory environment further recruits innate effector cells such as macrophages, polymorphonuclear neutrophils (PMN) and NK cells to the infectious foci. This eventually leads to the downstream establishment of acquired T cell immunity which appears to be protective in more than 90% of infected individuals. Robust innate immune activation is considered an essential prerequisite for protective immunity and vaccine efficacy. However, data published so far provide a muddled view of the functional importance of innate immunity in tuberculosis. Here we critically discuss certain aspects of innate immunity, namely PMN, TLRs and NK cells, as characterised in tuberculosis to date, and their contribution to protection and pathology.
Collapse
Affiliation(s)
- Daniel S Korbel
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | | | | |
Collapse
|
34
|
Morel C, Badell E, Abadie V, Robledo M, Setterblad N, Gluckman JC, Gicquel B, Boudaly S, Winter N. Mycobacterium bovis BCG-infected neutrophils and dendritic cells cooperate to induce specific T cell responses in humans and mice. Eur J Immunol 2008; 38:437-47. [PMID: 18203135 DOI: 10.1002/eji.200737905] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neutrophils are increasingly thought to modulate dendritic cell (DC) functions. We investigated the role of the neutrophil-DC partnership in the response to Mycobacterium bovis BCG-the vaccine used against tuberculosis. We compared neutrophil-DC crosstalk in humans and mice, searching for functional differences. In both species, neutrophils captured fluorescent BCG-enhanced green fluorescent protein (EGFP) and were more phagocytic than DC. Non-apoptotic BCG-infected neutrophils clustered with immature DC, establishing intimate contacts with dendrites, at which fluorescent intact bacilli were observed. Physical interactions between neutrophils and DC were required for DC activation. Human BCG-infected DC produced interleukin (IL)-10, an inhibitory cytokine, whereas DC exposed to BCG-infected neutrophils produced low to undetectable amounts of the cytokine. Mouse BCG-infected neutrophils induced sustained IL-2 production by DC. Human DC exposed to BCG-infected neutrophils stimulated recall T cell reactivity from vaccinated donors. Mouse DC infected with recombinant ovalbumin (OVA)-producing BCG (rBCG(ova)) elicited proliferation of TCR-OVA-transgenic CD4 and CD8 T cells. Moreover, exposing DC to rBCG(ova)-infected neutrophils enhanced OVA presentation. Thus, in mice and humans, neutrophils help DC to cross-present BCG antigens to T cells. Our results suggest that this "ménage à trois" involving neutrophils, DC and T cells plays a major role in the immune response to BCG.
Collapse
Affiliation(s)
- Céline Morel
- Unité Mixte de Recherche 7151 CNRS, Université Paris 7, Laboratoire d'immunologie cellulaire et immunopathologie de l'Ecole Pratique des Hautes Etudes, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|