1
|
Benichou G, Lancia HH. Intercellular transfer of MHC molecules in T cell alloimmunity and allotransplantation. Biomed J 2024; 47:100749. [PMID: 38797478 DOI: 10.1016/j.bj.2024.100749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024] Open
Abstract
After transplantation of allogeneic tissues and organs, recognition by recipient T cells of donor MHC molecules initiates the pro-inflammatory adaptive immune response leading to allograft rejection. T cell allorecognition has long been known to be mediated via two distinct pathways: the direct pathway in which T cells recognize intact allogeneic MHC molecules displayed on donor cells and the indirect pathway whereby T cells recognize donor MHC peptides processed and presented by recipient antigen-presenting cells (APCs). It is believed that direct allorecognition is the driving force behind early acute allograft rejection while indirect allorecognition is involved in chronic allograft rejection, a progressive condition characterized by graft vasculopathy and tissue fibrosis. Recently, we and others have reported that after transplantation of allogeneic skin and organs, donor MHC molecules are transferred from donor cells to the host's APCs via trogocytosis or extracellular vesicles. Recipient APCs having captured donor MHC molecules can either present them to T cells in their intact form on their surface (semi-direct pathway) or the form of peptides bound to self-MHC molecules (indirect pathway). The present article provides an overview of recent studies evaluating the role of intercellular exchange of MHC molecules in T cell alloimmunity and its contribution to allograft rejection and tolerance.
Collapse
Affiliation(s)
- Gilles Benichou
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, MA, USA.
| | - Hyshem H Lancia
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, MA, USA
| |
Collapse
|
2
|
Liu S, Wei S, Sun Y, Xu G, Zhang S, Li J. Molecular Characteristics, Functional Definitions, and Regulatory Mechanisms for Cross-Presentation Mediated by the Major Histocompatibility Complex: A Comprehensive Review. Int J Mol Sci 2023; 25:196. [PMID: 38203367 PMCID: PMC10778590 DOI: 10.3390/ijms25010196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The major histocompatibility complexes of vertebrates play a key role in the immune response. Antigen-presenting cells are loaded on MHC I molecules, which mainly present endogenous antigens; when MHC I presents exogenous antigens, this is called cross-presentation. The discovery of cross-presentation provides an important theoretical basis for the study of exogenous antigens. Cross-presentation is a complex process in which MHC I molecules present antigens to the cell surface to activate CD8+ T lymphocytes. The process of cross-representation includes many components, and this article briefly outlines the origins and development of MHC molecules, gene structures, functions, and their classical presentation pathways. The cross-presentation pathways of MHC I molecules, the cell lines that support cross-presentation, and the mechanisms of MHC I molecular transporting are all reviewed. After more than 40 years of research, the specific mechanism of cross-presentation is still unclear. In this paper, we summarize cross-presentation and anticipate the research and development prospects for cross-presentation.
Collapse
Affiliation(s)
| | | | | | | | - Shidong Zhang
- Engineering Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Animal Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.L.); (S.W.); (Y.S.); (G.X.)
| | - Jianxi Li
- Engineering Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Animal Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.L.); (S.W.); (Y.S.); (G.X.)
| |
Collapse
|
3
|
MacNabb BW, Kline J. MHC cross-dressing in antigen presentation. Adv Immunol 2023; 159:115-147. [PMID: 37996206 DOI: 10.1016/bs.ai.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Dendritic cells (DCs) orchestrate T cell responses by presenting antigenic peptides on major histocompatibility complex (MHC) and providing costimulation and other instructive signals. Professional antigen presenting cells (APCs), including DCs, are uniquely capable of generating and presenting peptide antigens derived from exogenous proteins. In addition to these canonical cross-presentation and MHC-II presentation pathways, APCs can also display exogenous peptide/MHC (p/MHC) acquired from neighboring cells and extracellular vesicles (EVs). This process, known as MHC cross-dressing, has been implicated in the regulation of T cell responses in a variety of in vivo contexts, including allogeneic solid organ transplantation, tumors, and viral infection. Although the occurrence of MHC cross-dressing has been clearly demonstrated, the importance of this antigen presentation mechanism continues to be elucidated. The contribution of MHC cross-dressing to overall antigen presentation has been obfuscated by the fact that DCs express the same MHC alleles as all other cells in the host, making it difficult to distinguish p/MHC generated within the DC from p/MHC acquired from another cell. As a result, much of what is known about MHC cross-dressing comes from studies using allogeneic organ transplantation and bone marrow chimeric mice, though recent development of mice bearing conditional knockout MHC and β2-microglobulin alleles should facilitate substantial progress in the coming years. In this review, we highlight recent advances in our understanding of MHC cross-dressing and its role in activating T cell responses in various contexts, as well as the experimental insights into the mechanism by which it occurs.
Collapse
Affiliation(s)
- Brendan W MacNabb
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.
| | - Justin Kline
- Department of Medicine, Committee on Immunology, and Committee on Cancer Biology, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
4
|
MHC-dressing on dendritic cells: Boosting anti-tumor immunity via unconventional tumor antigen presentation. Semin Immunol 2023; 66:101710. [PMID: 36640616 DOI: 10.1016/j.smim.2023.101710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/21/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Dendritic cells are crucial for anti-tumor immune responses due to their ability to activate cytotoxic effector CD8+ T cells. Canonically, in anti-tumor immunity, dendritic cells activate CD8+ T cells in a process termed cross-presentation. Recent studies have demonstrated that another type of antigen presentation, MHC-dressing, also serves to activate CD8+ T cells against tumor cell-derived antigens. Understanding MHC-dressing's specific contributions to anti-tumor immunity can open up novel therapeutic avenues. In this review, we summarize the early studies that identified MHC-dressing as a relevant antigen presentation pathway before diving into a deeper discussion of the biology of MHC-dressing, focusing in particular on which dendritic cell subsets are most capable of performing MHC-dressing and how MHC-dressing compares to other forms of antigen presentation. We conclude by discussing the implications MHC-dressing has for anti-tumor immunity.
Collapse
|
5
|
Wang C, Daley SR. How Thymocyte Deletion in the Cortex May Curtail Antigen-Specific T-Regulatory Cell Development in the Medulla. Front Immunol 2022; 13:892498. [PMID: 35693793 PMCID: PMC9176388 DOI: 10.3389/fimmu.2022.892498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
CD4+ T cell responses to self-antigens are pivotal for immunological self-tolerance. Activation of Foxp3– T-conventional (T-conv) cells can precipitate autoimmune disease, whereas activation of Foxp3+ T-regulatory (T-reg) cells is essential to prevent autoimmune disease. This distinction indicates the importance of the thymus in controlling the differentiation of self-reactive CD4+ T cells. Thymocytes and thymic antigen-presenting cells (APC) depend on each other for normal maturation and differentiation. In this Hypothesis and Theory article, we propose this mutual dependence dictates which self-antigens induce T-reg cell development in the thymic medulla. We postulate self-reactive CD4+ CD8– thymocytes deliver signals that stabilize and amplify the presentation of their cognate self-antigen by APC in the thymic medulla, thereby seeding a niche for the development of T-reg cells specific for the same self-antigen. By limiting the number of antigen-specific CD4+ thymocytes in the medulla, thymocyte deletion in the cortex may impede the formation of medullary T-reg niches containing certain self-antigens. Susceptibility to autoimmune disease may arise from cortical deletion creating a “hole” in the self-antigen repertoire recognized by T-reg cells.
Collapse
Affiliation(s)
- Chenglong Wang
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Stephen R Daley
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Březina J, Vobořil M, Filipp D. Mechanisms of Direct and Indirect Presentation of Self-Antigens in the Thymus. Front Immunol 2022; 13:926625. [PMID: 35774801 PMCID: PMC9237256 DOI: 10.3389/fimmu.2022.926625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The inevitability of evolution of the adaptive immune system with its mechanism of randomly rearranging segments of the T cell receptor (TCR) gene is the generation of self-reactive clones. For the sake of prevention of autoimmunity, these clones must be eliminated from the pool of circulating T cells. This process occurs largely in the thymic medulla where the strength of affinity between TCR and self-peptide MHC complexes is the factor determining thymocyte fate. Thus, the display of self-antigens in the thymus by thymic antigen presenting cells, which are comprised of medullary thymic epithelial (mTECs) and dendritic cells (DCs), is fundamental for the establishment of T cell central tolerance. Whereas mTECs produce and present antigens in a direct, self-autonomous manner, thymic DCs can acquire these mTEC-derived antigens by cooperative antigen transfer (CAT), and thus present them indirectly. While the basic characteristics for both direct and indirect presentation of self-antigens are currently known, recent reports that describe the heterogeneity of mTEC and DC subsets, their presentation capacity, and the potentially non-redundant roles in T cell selection processes represents another level of complexity which we are attempting to unravel. In this review, we underscore the seminal studies relevant to these topics with an emphasis on new observations pertinent to the mechanism of CAT and its cellular trajectories underpinning the preferential distribution of thymic epithelial cell-derived self-antigens to specific subsets of DC. Identification of molecular determinants which control CAT would significantly advance our understanding of how the cellularly targeted presentation of thymic self-antigens is functionally coupled to the T cell selection process.
Collapse
Affiliation(s)
| | | | - Dominik Filipp
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
7
|
Srinivasan J, Lancaster JN, Singarapu N, Hale LP, Ehrlich LIR, Richie ER. Age-Related Changes in Thymic Central Tolerance. Front Immunol 2021; 12:676236. [PMID: 33968086 PMCID: PMC8100025 DOI: 10.3389/fimmu.2021.676236] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 01/03/2023] Open
Abstract
Thymic epithelial cells (TECs) and hematopoietic antigen presenting cells (HAPCs) in the thymus microenvironment provide essential signals to self-reactive thymocytes that induce either negative selection or generation of regulatory T cells (Treg), both of which are required to establish and maintain central tolerance throughout life. HAPCs and TECs are comprised of multiple subsets that play distinct and overlapping roles in central tolerance. Changes that occur in the composition and function of TEC and HAPC subsets across the lifespan have potential consequences for central tolerance. In keeping with this possibility, there are age-associated changes in the cellular composition and function of T cells and Treg. This review summarizes changes in T cell and Treg function during the perinatal to adult transition and in the course of normal aging, and relates these changes to age-associated alterations in thymic HAPC and TEC subsets.
Collapse
Affiliation(s)
- Jayashree Srinivasan
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | | | - Nandini Singarapu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, TX, United States
| | - Laura P Hale
- Department of Pathology, Duke University School of Medicine, Durham, NC, United States
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Ellen R Richie
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, TX, United States
| |
Collapse
|
8
|
Cordero Cervantes D, Zurzolo C. Peering into tunneling nanotubes-The path forward. EMBO J 2021; 40:e105789. [PMID: 33646572 PMCID: PMC8047439 DOI: 10.15252/embj.2020105789] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/21/2020] [Accepted: 01/15/2021] [Indexed: 12/19/2022] Open
Abstract
The identification of Tunneling Nanotubes (TNTs) and TNT-like structures signified a critical turning point in the field of cell-cell communication. With hypothesized roles in development and disease progression, TNTs' ability to transport biological cargo between distant cells has elevated these structures to a unique and privileged position among other mechanisms of intercellular communication. However, the field faces numerous challenges-some of the most pressing issues being the demonstration of TNTs in vivo and understanding how they form and function. Another stumbling block is represented by the vast disparity in structures classified as TNTs. In order to address this ambiguity, we propose a clear nomenclature and provide a comprehensive overview of the existing knowledge concerning TNTs. We also discuss their structure, formation-related pathways, biological function, as well as their proposed role in disease. Furthermore, we pinpoint gaps and dichotomies found across the field and highlight unexplored research avenues. Lastly, we review the methods employed to date and suggest the application of new technologies to better understand these elusive biological structures.
Collapse
Affiliation(s)
| | - Chiara Zurzolo
- Institut PasteurMembrane Traffic and PathogenesisParisFrance
| |
Collapse
|
9
|
Clark M, Kroger CJ, Ke Q, Tisch RM. The Role of T Cell Receptor Signaling in the Development of Type 1 Diabetes. Front Immunol 2021; 11:615371. [PMID: 33603744 PMCID: PMC7884625 DOI: 10.3389/fimmu.2020.615371] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
T cell receptor (TCR) signaling influences multiple aspects of CD4+ and CD8+ T cell immunobiology including thymic development, peripheral homeostasis, effector subset differentiation/function, and memory formation. Additional T cell signaling cues triggered by co-stimulatory molecules and cytokines also affect TCR signaling duration, as well as accessory pathways that further shape a T cell response. Type 1 diabetes (T1D) is a T cell-driven autoimmune disease targeting the insulin producing β cells in the pancreas. Evidence indicates that dysregulated TCR signaling events in T1D impact the efficacy of central and peripheral tolerance-inducing mechanisms. In this review, we will discuss how the strength and nature of TCR signaling events influence the development of self-reactive T cells and drive the progression of T1D through effects on T cell gene expression, lineage commitment, and maintenance of pathogenic anti-self T cell effector function.
Collapse
Affiliation(s)
- Matthew Clark
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Charles J Kroger
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Qi Ke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Roland M Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
10
|
Watanabe M, Lu Y, Breen M, Hodes RJ. B7-CD28 co-stimulation modulates central tolerance via thymic clonal deletion and Treg generation through distinct mechanisms. Nat Commun 2020; 11:6264. [PMID: 33293517 PMCID: PMC7722925 DOI: 10.1038/s41467-020-20070-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 11/09/2020] [Indexed: 12/22/2022] Open
Abstract
The molecular and cellular mechanisms mediating thymic central tolerance and prevention of autoimmunity are not fully understood. Here we show that B7-CD28 co-stimulation and B7 expression by specific antigen-presenting cell (APC) types are required for clonal deletion and for regulatory T (Treg) cell generation from endogenous tissue-restricted antigen (TRA)-specific thymocytes. While B7-CD28 interaction is required for both clonal deletion and Treg induction, these two processes differ in their CD28 signaling requirements and in their dependence on B7-expressing dendritic cells, B cells, and thymic epithelial cells. Meanwhile, defective thymic clonal deletion due to altered B7-CD28 signaling results in the accumulation of mature, peripheral TRA-specific T cells capable of mediating destructive autoimmunity. Our findings thus reveal a function of B7-CD28 co-stimulation in shaping the T cell repertoire and limiting autoimmunity through both thymic clonal deletion and Treg cell generation.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/metabolism
- Autoimmunity/physiology
- B7-1 Antigen/metabolism
- CD28 Antigens/genetics
- CD28 Antigens/metabolism
- Cell Differentiation/immunology
- Central Tolerance
- Clonal Deletion
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Flow Cytometry
- Gene Knock-In Techniques
- Mice
- Mice, Knockout
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Signal Transduction/immunology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Thymocytes/physiology
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- Masashi Watanabe
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Ying Lu
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Michael Breen
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Richard J Hodes
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD, 20892, USA.
| |
Collapse
|
11
|
Rausch MP, Meador LR, Metzger TC, Li H, Qiu S, Anderson MS, Hastings KT. GILT in Thymic Epithelial Cells Facilitates Central CD4 T Cell Tolerance to a Tissue-Restricted, Melanoma-Associated Self-Antigen. THE JOURNAL OF IMMUNOLOGY 2020; 204:2877-2886. [PMID: 32269095 DOI: 10.4049/jimmunol.1900523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 03/23/2020] [Indexed: 12/17/2022]
Abstract
Central tolerance prevents autoimmunity, but also limits T cell responses to potentially immunodominant tumor epitopes with limited expression in healthy tissues. In peripheral APCs, γ-IFN-inducible lysosomal thiol reductase (GILT) is critical for MHC class II-restricted presentation of disulfide bond-containing proteins, including the self-antigen and melanoma Ag tyrosinase-related protein 1 (TRP1). The role of GILT in thymic Ag processing and generation of central tolerance has not been investigated. We found that GILT enhanced the negative selection of TRP1-specific thymocytes in mice. GILT expression was enriched in thymic APCs capable of mediating deletion, namely medullary thymic epithelial cells (mTECs) and dendritic cells, whereas TRP1 expression was restricted solely to mTECs. GILT facilitated MHC class II-restricted presentation of endogenous TRP1 by pooled thymic APCs. Using bone marrow chimeras, GILT expression in thymic epithelial cells (TECs), but not hematopoietic cells, was sufficient for complete deletion of TRP1-specific thymocytes. An increased frequency of TRP1-specific regulatory T (Treg) cells was present in chimeras with increased deletion of TRP1-specific thymocytes. Only chimeras that lacked GILT in both TECs and hematopoietic cells had a high conventional T/Treg cell ratio and were protected from melanoma challenge. Thus, GILT expression in thymic APCs, and mTECs in particular, preferentially facilitates MHC class II-restricted presentation, negative selection, and increased Treg cells, resulting in a diminished antitumor response to a tissue-restricted, melanoma-associated self-antigen.
Collapse
Affiliation(s)
- Matthew P Rausch
- Department of Basic Medical Sciences, University of Arizona, Phoenix, AZ 85004; and
| | - Lydia R Meador
- Department of Basic Medical Sciences, University of Arizona, Phoenix, AZ 85004; and
| | - Todd C Metzger
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143
| | - Handong Li
- Department of Basic Medical Sciences, University of Arizona, Phoenix, AZ 85004; and
| | - Shenfeng Qiu
- Department of Basic Medical Sciences, University of Arizona, Phoenix, AZ 85004; and
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143
| | - K Taraszka Hastings
- Department of Basic Medical Sciences, University of Arizona, Phoenix, AZ 85004; and
| |
Collapse
|
12
|
Abstract
Foxp3-expressing CD4+ regulatory T (Treg) cells play key roles in the prevention of autoimmunity and the maintenance of immune homeostasis and represent a major barrier to the induction of robust antitumor immune responses. Thus, a clear understanding of the mechanisms coordinating Treg cell differentiation is crucial for understanding numerous facets of health and disease and for developing approaches to modulate Treg cells for clinical benefit. Here, we discuss current knowledge of the signals that coordinate Treg cell development, the antigen-presenting cell types that direct Treg cell selection, and the nature of endogenous Treg cell ligands, focusing on evidence from studies in mice. We also highlight recent advances in this area and identify key unanswered questions.
Collapse
Affiliation(s)
- Peter A Savage
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA; , ,
| | - David E J Klawon
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA; , ,
| | - Christine H Miller
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA; , ,
| |
Collapse
|
13
|
Class II MHC antigen processing in immune tolerance and inflammation. Immunogenetics 2018; 71:171-187. [PMID: 30421030 DOI: 10.1007/s00251-018-1095-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/31/2018] [Indexed: 01/22/2023]
Abstract
Presentation of peptide antigens by MHC-II proteins is prerequisite to effective CD4 T cell tolerance to self and to recognition of foreign antigens. Antigen uptake and processing pathways as well as expression of the peptide exchange factors HLA-DM and HLA-DO differ among the various professional and non-professional antigen-presenting cells and are modulated by cell developmental state and activation. Recent studies have highlighted the importance of these cell-specific factors in controlling the source and breadth of peptides presented by MHC-II under different conditions. During inflammation, increased presentation of selected self-peptides has implications for maintenance of peripheral tolerance and autoimmunity.
Collapse
|
14
|
Perry JSA, Russler-Germain EV, Zhou YW, Purtha W, Cooper ML, Choi J, Schroeder MA, Salazar V, Egawa T, Lee BC, Abumrad NA, Kim BS, Anderson MS, DiPersio JF, Hsieh CS. Transfer of Cell-Surface Antigens by Scavenger Receptor CD36 Promotes Thymic Regulatory T Cell Receptor Repertoire Development and Allo-tolerance. Immunity 2018; 48:923-936.e4. [PMID: 29752065 DOI: 10.1016/j.immuni.2018.04.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 12/31/2017] [Accepted: 04/05/2018] [Indexed: 11/18/2022]
Abstract
The development of T cell tolerance in the thymus requires the presentation of host proteins by multiple antigen-presenting cell (APC) types. However, the importance of transferring host antigens from transcription factor AIRE-dependent medullary thymic epithelial cells (mTECs) to bone marrow (BM) APCs is unknown. We report that antigen was primarily transferred from mTECs to CD8α+ dendritic cells (DCs) and showed that CD36, a scavenger receptor selectively expressed on CD8α+ DCs, mediated the transfer of cell-surface, but not cytoplasmic, antigens. The absence of CD8α+ DCs or CD36 altered thymic T cell selection, as evidenced by TCR repertoire analysis and the loss of allo-tolerance in murine allogeneic BM transplantation (allo-BMT) studies. Decreases in these DCs and CD36 expression in peripheral blood of human allo-BMT patients correlated with graft-versus-host disease. Our findings suggest that CD36 facilitates transfer of mTEC-derived cell-surface antigen on CD8α+ DCs to promote tolerance to host antigens during homeostasis and allo-BMT.
Collapse
MESH Headings
- Animals
- Antigens, Surface/immunology
- Antigens, Surface/metabolism
- Bone Marrow Transplantation
- CD36 Antigens/genetics
- CD36 Antigens/immunology
- CD36 Antigens/metabolism
- CD8 Antigens/immunology
- CD8 Antigens/metabolism
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Epithelial Cells/immunology
- Epithelial Cells/metabolism
- Immune Tolerance/immunology
- Mice, Inbred BALB C
- Mice, Knockout
- Mice, Transgenic
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Transplantation, Homologous
Collapse
Affiliation(s)
- Justin S A Perry
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emilie V Russler-Germain
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - You W Zhou
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Whitney Purtha
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94131, USA
| | - Matthew L Cooper
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jaebok Choi
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mark A Schroeder
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vanessa Salazar
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Takeshi Egawa
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Byeong-Chel Lee
- University of Pittsburgh Cancer Institute and Department of Medicine, Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Nada A Abumrad
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian S Kim
- Department of Medicine, Division of Dermatology and the Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mark S Anderson
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94131, USA
| | - John F DiPersio
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chyi-Song Hsieh
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
15
|
Lopes N, Charaix J, Cédile O, Sergé A, Irla M. Lymphotoxin α fine-tunes T cell clonal deletion by regulating thymic entry of antigen-presenting cells. Nat Commun 2018; 9:1262. [PMID: 29593265 PMCID: PMC5872006 DOI: 10.1038/s41467-018-03619-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 02/28/2018] [Indexed: 12/31/2022] Open
Abstract
Medullary thymic epithelial cells (mTEC) purge the T cell repertoire of autoreactive thymocytes. Although dendritic cells (DC) reinforce this process by transporting innocuous peripheral self-antigens, the mechanisms that control their thymic entry remain unclear. Here we show that mTEC-CD4+ thymocyte crosstalk regulates the thymus homing of SHPS-1+ conventional DCs (cDC), plasmacytoid DCs (pDC) and macrophages. This homing process is controlled by lymphotoxin α (LTα), which negatively regulates CCL2, CCL8 and CCL12 chemokines in mTECs. Consequently, Ltα-deficient mice have increased expression of these chemokines that correlates with augmented classical NF-κB subunits and increased thymic recruitment of cDCs, pDCs and macrophages. This enhanced migration depends mainly on the chemokine receptor CCR2, and increases thymic clonal deletion. Altogether, this study identifies a fine-tuning mechanism of T cell repertoire selection and paves the way for therapeutic interventions to treat autoimmune disorders.
Collapse
Affiliation(s)
- Noëlla Lopes
- Centre d'Immunologie de Marseille-Luminy, INSERM U1104, CNRS UMR7280, Aix-Marseille Université UM2, Marseille, 13288 cedex 09, France
| | - Jonathan Charaix
- Centre d'Immunologie de Marseille-Luminy, INSERM U1104, CNRS UMR7280, Aix-Marseille Université UM2, Marseille, 13288 cedex 09, France
| | - Oriane Cédile
- Institute of Molecular Medicine, Department of Neurobiology Research, University of Southern Denmark, J.B. Winsløwsvej 25, 5000, Odense C, Denmark
| | - Arnauld Sergé
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, INSERM U1068, CNRS UMR7258, Aix-Marseille Université UM105, 13273 cedex 09, Marseille, France
| | - Magali Irla
- Centre d'Immunologie de Marseille-Luminy, INSERM U1104, CNRS UMR7280, Aix-Marseille Université UM2, Marseille, 13288 cedex 09, France.
| |
Collapse
|
16
|
Extracellular vesicle-mediated MHC cross-dressing in immune homeostasis, transplantation, infectious diseases, and cancer. Semin Immunopathol 2018; 40:477-490. [PMID: 29594331 DOI: 10.1007/s00281-018-0679-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/16/2018] [Indexed: 12/19/2022]
Abstract
Eukaryotic cells employ different types of extracellular vesicles (EVs) to exchange proteins, mRNAs, non-coding regulatory RNAs, carbohydrates, and lipids. Cells of the immune system, in particular antigen (Ag)-presenting cells (APCs), acquire major histocompatibility complex (MHC) class I and II molecules loaded with antigenic peptides from leukocytes and tissue parenchymal and stromal cells, through a mechanism known as MHC cross-dressing. Increasing evidence indicates that cross-dressing of APCs with pre-formed Ag-peptide/MHC complexes (pMHCs) is mediated via passage of clusters of EVs with characteristics of exosomes. A percentage of the transferred EVs remain attached to the acceptor APCs, with the appropriate orientation, at sufficient concentration within localized areas of the plasma membrane, and for sufficient time, so the preformed pMHCs carried by the EVs are presented without further processing, to cognate T cells. Although its biological relevance is not fully understood, numerous studies have demonstrated that MHC cross-dressing of APCs represents a pathway of Ag presentation of acquired pre-formed pMHCs to T cells-alternative to direct and cross-presentation-participate in immune homeostasis and T cell tolerance, cross-regulate alloreactive T cells with different MHC restricted specificities, and is a mechanism of Ag spreading for autologous, allogeneic, microbial, tumor, or vaccine-delivered Ags. Here, we compare MHC cross-dressing with other mechanisms and terminologies used for pMHC transfer, including trogocytosis. We discuss the experimental evidence, mostly from in vitro and ex vivo studies, of the role of MHC cross-dressing of APCs via EVs in positive or negative regulation of T cell immunity in the steady state, transplantation, microbial diseases, and cancer.
Collapse
|
17
|
Yap JY, Wirasinha RC, Chan A, Howard DR, Goodnow CC, Daley SR. Indirect presentation in the thymus limits naive and regulatory T-cell differentiation by promoting deletion of self-reactive thymocytes. Immunology 2018; 154:522-532. [PMID: 29411880 DOI: 10.1111/imm.12904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 12/18/2022] Open
Abstract
Acquisition of T-cell central tolerance involves distinct pathways of self-antigen presentation to thymocytes. One pathway termed indirect presentation requires a self-antigen transfer step from thymic epithelial cells (TECs) to bone marrow-derived cells before the self-antigen is presented to thymocytes. The role of indirect presentation in central tolerance is context-dependent, potentially due to variation in self-antigen expression, processing and presentation in the thymus. Here, we report experiments in mice in which TECs expressed a membrane-bound transgenic self-antigen, hen egg lysozyme (HEL), from either the insulin (insHEL) or thyroglobulin (thyroHEL) promoter. Intrathymic HEL expression was less abundant and more confined to the medulla in insHEL mice compared with thyroHEL mice. When indirect presentation was impaired by generating mice lacking MHC class II expression in bone marrow-derived antigen-presenting cells, insHEL-mediated thymocyte deletion was abolished, whereas thyroHEL-mediated deletion occurred at a later stage of thymocyte development and Foxp3+ regulatory T-cell differentiation increased. Indirect presentation increased the strength of T-cell receptor signalling that both self-antigens induced in thymocytes, as assessed by Helios expression. Hence, indirect presentation limits the differentiation of naive and regulatory T cells by promoting deletion of self-reactive thymocytes.
Collapse
Affiliation(s)
- Jin Yan Yap
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Rushika C Wirasinha
- Infection and Immunity Programme, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Anna Chan
- Infection and Immunity Programme, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Debbie R Howard
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Christopher C Goodnow
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Stephen R Daley
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,Infection and Immunity Programme, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
18
|
Manches O, Muniz LR, Bhardwaj N. Dendritic Cell Biology. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
19
|
Du Y, Liu X, Guo SW. Platelets impair natural killer cell reactivity and function in endometriosis through multiple mechanisms. Hum Reprod 2017; 32:794-810. [PMID: 28184445 DOI: 10.1093/humrep/dex014] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/13/2017] [Indexed: 12/13/2022] Open
Abstract
Study question Do platelets have any role in the reduced cytotoxicity of natural killer (NK) cells in endometriosis? Summary answer Platelets impair NK cell reactivity and function in endometriosis through multiple mechanisms. What is known already Platelets play an important role in the development of endometriosis, and platelet-derived transforming growth factor-β1 (TGF-β1) suppresses the expression of NK Group 2, Member D (NKG2D) on NK cells, resulting in reduced cytotoxicity in women with endometriosis. Study design size, duration Experiments on mice with induced endometriosis in which either platelets, NK cells or both were depleted and controls (none depleted). In vitro experiments with NK cells, platelets and, as target cells, endometriotic epithelial cell and endometrial stromal cell lines. Participants/materials setting methods Immunohistochemistry analysis of ectopic endometrial tissues from mice with induced endometriosis receiving either platelet depletion (PD), NK cell depletion, or both or none. Immunofluorescence, flow cytometry and gene expression analysis for major histocompatibility complex class I (MHC-I) expression in target cells. Cytotoxicity and degranulation assays and the measurement of interferon (IFN)-γ secretion for the evaluation of NK cytotoxicity. Flow cytometry and gene expression for the expression of NK cell receptors. Main results and the role of chance PD resulted in significantly reduced lesion weight in mice with induced endometriosis, but NK cell depletion as well as concomitant platelet and NK cell depletion increased the weight, suggesting that the anti-endometriosis effect of PD is mediated, at least in part, by increased NK cell cytotoxicity against endometriotic cells. Co-incubation of target cells with platelets resulted in rapid platelet coating as well as increased MHC-I expression in these cells, effectively providing a cloak of 'pseudo-self' to these cells to shield against NK cell lysis. It also reduced the expression of NKG2D ligands MICA and MICB and reduced the NK cell cytotoxicity. In addition, co-incubation of NK cells with platelets impaired the NK cell cytotoxicity as well. This impaired NK cell cytotoxicity was not due to the increased NK cell apoptosis, but, rather, through reduced NK cell degranulation and IFN-γ production, and reduced expression of activating receptors NKG2D and NKp46 and increased expression of inhibitory receptor KIR2DL1 in NK cells. Inhibition of TGF-β1 signaling partially restored the aberrant expression of NKG2D, NKp46 and KIR2DL1, and partially restored the impaired NK cell cytotoxicity induced by activated platelets and their releasate. Large scale data Not applicable. Limitations reasons for caution This study is confined by the limitation of animal and in vitro experimentation and the lack of direct human data. Wider implications of the findings Anti-platelet treatment holds promise in treating endometriosis. Study funding/competing interests The National Natural Science Foundation of China (81471434 to S.W.G., 81270676 to S.W.G., 81370695 to X.S.L. and 81671436 to X.S.L). None of the authors has anything to disclose.
Collapse
Affiliation(s)
- Yanbo Du
- Shanghai Obstetrics and Gynecology Hospital, Fudan University Shanghai College of Medicine, Shanghai, China
| | - Xishi Liu
- Shanghai Obstetrics and Gynecology Hospital, Fudan University Shanghai College of Medicine, Shanghai, China
| | - Sun-Wei Guo
- Shanghai Obstetrics and Gynecology Hospital, Fudan University Shanghai College of Medicine, Shanghai, China
| |
Collapse
|
20
|
Kroger CJ, Spidale NA, Wang B, Tisch R. Thymic Dendritic Cell Subsets Display Distinct Efficiencies and Mechanisms of Intercellular MHC Transfer. THE JOURNAL OF IMMUNOLOGY 2016; 198:249-256. [PMID: 27895179 DOI: 10.4049/jimmunol.1601516] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/28/2016] [Indexed: 11/19/2022]
Abstract
Thymic dendritic cells (DC) delete self-antigen-specific thymocytes, and drive development of Foxp3-expressing immunoregulatory T cells. Unlike medullary thymic epithelial cells, which express and present peripheral self-antigen, DC must acquire self-antigen to mediate thymic negative selection. One such mechanism entails the transfer of surface MHC-self peptide complexes from medullary thymic epithelial cells to thymic DC. Despite the importance of thymic DC cross-dressing in negative selection, the factors that regulate the process and the capacity of different thymic DC subsets to acquire MHC and stimulate thymocytes are poorly understood. In this study intercellular MHC transfer by thymic DC subsets was investigated using an MHC-mismatch-based in vitro system. Thymic conventional DC (cDC) subsets signal regulatory protein α (SIRPα+) and CD8α+ readily acquired MHC class I and II from thymic epithelial cells but plasmacytoid DC were less efficient. Intercellular MHC transfer was donor-cell specific; thymic DC readily acquired MHC from TEC plus thymic or splenic DC, whereas thymic or splenic B cells were poor donors. Furthermore DC origin influenced cross-dressing; thymic versus splenic DC exhibited an increased capacity to capture TEC-derived MHC, which correlated with direct expression of EpCAM by DC. Despite similar capacities to acquire MHC-peptide complexes, thymic CD8α+ cDC elicited increased T cell stimulation relative to SIRPα+ cDC. DC cross-dressing was cell-contact dependent and unaffected by lipid raft disruption of donor TEC. Furthermore, blocking PI3K signaling reduced MHC acquisition by thymic CD8α+ cDC and plasmacytoid DC but not SIRPα+ cDC. These findings demonstrate that multiple parameters influence the efficiency of and distinct mechanisms drive intercellular MHC transfer by thymic DC subsets.
Collapse
Affiliation(s)
- Charles J Kroger
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Nicholas A Spidale
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Bo Wang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Roland Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
21
|
Pezzi N, Assis AF, Cotrim-Sousa LC, Lopes GS, Mosella MS, Lima DS, Bombonato-Prado KF, Passos GA. Aire knockdown in medullary thymic epithelial cells affects Aire protein, deregulates cell adhesion genes and decreases thymocyte interaction. Mol Immunol 2016; 77:157-73. [PMID: 27505711 DOI: 10.1016/j.molimm.2016.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/12/2016] [Accepted: 08/02/2016] [Indexed: 12/15/2022]
Abstract
We demonstrate that even a partial reduction of Aire mRNA levels by siRNA-induced Aire knockdown (Aire KD) has important consequences to medullary thymic epithelial cells (mTECs). Aire knockdown is sufficient to reduce Aire protein levels, impair its nuclear location, and cause an imbalance in large-scale gene expression, including genes that encode cell adhesion molecules. These genes drew our attention because adhesion molecules are implicated in the process of mTEC-thymocyte adhesion, which is critical for T cell development and the establishment of central self-tolerance. Accordingly, we consider the following: 1) mTECs contribute to the elimination of self-reactive thymocytes through adhesion; 2) Adhesion molecules play a crucial role during physical contact between these cells; and 3) Aire is an important transcriptional regulator in mTECs. However, its role in controlling mTEC-thymocyte adhesion remains unclear. Because Aire controls adhesion molecule genes, we hypothesized that the disruption of its expression could influence mTEC-thymocyte interaction. To test this hypothesis, we used a murine Aire(+) mTEC cell line as a model system to reproduce mTEC-thymocyte adhesion in vitro. Transcriptome analysis of the mTEC cell line revealed that Aire KD led to the down-modulation of more than 800 genes, including those encoding for proteins involved in cell adhesion, i.e., the extracellular matrix constituent Lama1, the CAM family adhesion molecules Vcam1 and Icam4, and those that encode peripheral tissue antigens. Thymocytes co-cultured with Aire KD mTECs had a significantly reduced capacity to adhere to these cells. This finding is the first direct evidence that Aire also plays a role in controlling mTEC-thymocyte adhesion.
Collapse
Affiliation(s)
- Nicole Pezzi
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Amanda Freire Assis
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Larissa Cotrim Cotrim-Sousa
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Gabriel Sarti Lopes
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, USP, Ribeirão Preto, SP, Brazil
| | - Maritza Salas Mosella
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Djalma Sousa Lima
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, USP, Ribeirão Preto, SP, Brazil
| | - Karina F Bombonato-Prado
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Geraldo Aleixo Passos
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil; Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
22
|
Intercellular Protein Transfer from Thymocytes to Thymic Epithelial Cells. PLoS One 2016; 11:e0152641. [PMID: 27022746 PMCID: PMC4811443 DOI: 10.1371/journal.pone.0152641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/16/2016] [Indexed: 01/22/2023] Open
Abstract
Promiscuous expression of tissue restricted antigens (TRAs) in medullary thymic epithelial cells (mTECs) is crucial for negative selection of self-reactive T cells to establish central tolerance. Intercellular transfer of self-peptide-MHC complexes from mTECs to thymic dendritic cells (DCs) allows DCs to acquire TRAs, which in turn contributes to negative selection and regulatory T cell generation. However, mTECs are unlikely to express all TRAs, such as immunoglobulins generated only in B cells after somatic recombination, hyper-mutation, or class-switches. We report here that both mTECs and cortical TECs can efficiently acquire not only cell surface but also intracellular proteins from thymocytes. This reveals a previously unappreciated intercellular sharing of molecules from thymocytes to TECs, which may broaden the TRA inventory in mTECs for establishing a full spectrum of central tolerance.
Collapse
|
23
|
Nitta T, Suzuki H. Thymic stromal cell subsets for T cell development. Cell Mol Life Sci 2016; 73:1021-37. [PMID: 26825337 PMCID: PMC11108406 DOI: 10.1007/s00018-015-2107-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/26/2015] [Accepted: 12/01/2015] [Indexed: 12/20/2022]
Abstract
The thymus provides a specialized microenvironment in which a variety of stromal cells of both hematopoietic and non-hematopoietic origin regulate development and repertoire selection of T cells. Recent studies have been unraveling the inter- and intracellular signals and transcriptional networks for spatiotemporal regulation of development of thymic stromal cells, mainly thymic epithelial cells (TECs), and the molecular mechanisms of how different TEC subsets control T cell development and selection. TECs are classified into two functionally different subsets: cortical TECs (cTECs) and medullary TECs (mTECs). cTECs induce positive selection of diverse and functionally distinct T cells by virtue of unique antigen-processing systems, while mTECs are essential for establishing T cell tolerance via ectopic expression of peripheral tissue-restricted antigens and cooperation with dendritic cells. In addition to reviewing the role of the thymic stroma in conventional T cell development, we will discuss recently discovered novel functions of TECs in the development of unconventional T cells, such as natural killer T cells and γδT cells.
Collapse
Affiliation(s)
- Takeshi Nitta
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Chiba, 272-8516, Japan.
| | - Harumi Suzuki
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Chiba, 272-8516, Japan.
| |
Collapse
|
24
|
Campana S, De Pasquale C, Carrega P, Ferlazzo G, Bonaccorsi I. Cross-dressing: an alternative mechanism for antigen presentation. Immunol Lett 2015; 168:349-54. [DOI: 10.1016/j.imlet.2015.11.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/02/2015] [Accepted: 11/03/2015] [Indexed: 12/16/2022]
|
25
|
Hu Z, Lancaster JN, Ehrlich LIR. The Contribution of Chemokines and Migration to the Induction of Central Tolerance in the Thymus. Front Immunol 2015; 6:398. [PMID: 26300884 PMCID: PMC4528182 DOI: 10.3389/fimmu.2015.00398] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/20/2015] [Indexed: 02/01/2023] Open
Abstract
As T cells develop, they migrate throughout the thymus where they undergo essential bi-directional signaling with stromal cells in distinct thymic microenvironments. Immature thymocyte progenitors are located in the thymic cortex. Following T cell receptor expression and positive selection, thymocytes undergo a dramatic transition: they become rapidly motile and relocate to the thymic medulla. Antigen-presenting cells (APCs) within the cortex and medulla display peptides derived from a wide array of self-proteins, which promote thymocyte self-tolerance. If a thymocyte is auto-reactive against such antigens, it undergoes either negative selection, via apoptosis, or differentiation into the regulatory T cell lineage. This induction of central tolerance is critical for prevention of autoimmunity. Chemokines and adhesion molecules play an essential role in tolerance induction, as they promote migration of developing thymocytes through the different thymic microenvironments and enhance interactions with APCs displaying self-antigens. Herein, we review the contribution of chemokines and other regulators of thymocyte localization and motility to T cell development, with a focus on their contribution to the induction of central tolerance.
Collapse
Affiliation(s)
- Zicheng Hu
- Ehrlich Laboratory, Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin , Austin, TX , USA
| | - Jessica Naomi Lancaster
- Ehrlich Laboratory, Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin , Austin, TX , USA
| | - Lauren I R Ehrlich
- Ehrlich Laboratory, Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin , Austin, TX , USA
| |
Collapse
|
26
|
Lopes N, Sergé A, Ferrier P, Irla M. Thymic Crosstalk Coordinates Medulla Organization and T-Cell Tolerance Induction. Front Immunol 2015; 6:365. [PMID: 26257733 PMCID: PMC4507079 DOI: 10.3389/fimmu.2015.00365] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/06/2015] [Indexed: 12/29/2022] Open
Abstract
The thymus ensures the generation of a functional and highly diverse T-cell repertoire. The thymic medulla, which is mainly composed of medullary thymic epithelial cells (mTECs) and dendritic cells (DCs), provides a specialized microenvironment dedicated to the establishment of T-cell tolerance. mTECs play a privileged role in this pivotal process by their unique capacity to express a broad range of peripheral self-antigens that are presented to developing T cells. Reciprocally, developing T cells control mTEC differentiation and organization. These bidirectional interactions are commonly referred to as thymic crosstalk. This review focuses on the relative contributions of mTEC and DC subsets to the deletion of autoreactive T cells and the generation of natural regulatory T cells. We also summarize current knowledge regarding how hematopoietic cells conversely control the composition and complex three-dimensional organization of the thymic medulla.
Collapse
Affiliation(s)
- Noëlla Lopes
- Centre d'Immunologie de Marseille-Luminy, INSERM, U1104, CNRS UMR7280, Aix-Marseille Université UM2 , Marseille , France
| | - Arnauld Sergé
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, INSERM U1068, CNRS UMR7258, Aix-Marseille Université UM105 , Marseille , France
| | - Pierre Ferrier
- Centre d'Immunologie de Marseille-Luminy, INSERM, U1104, CNRS UMR7280, Aix-Marseille Université UM2 , Marseille , France
| | - Magali Irla
- Centre d'Immunologie de Marseille-Luminy, INSERM, U1104, CNRS UMR7280, Aix-Marseille Université UM2 , Marseille , France
| |
Collapse
|
27
|
Reinforcing the 'gauntlet' of thymic negative selection via exosomal transfer of self-antigens. Immunol Cell Biol 2015; 93:679-80. [PMID: 26032582 DOI: 10.1038/icb.2015.52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Abstract
Professional antigen-presenting cells (APCs) such as conventional dendritic cells (DCs) process protein antigens to MHC-bound peptides and then present the peptide–MHC complexes to T cells. In addition to this canonical antigen presentation pathway, recent studies have revealed that DCs and non-APCs can acquire MHC class I (MHCI) and/or MHC class II (MHCII) from neighboring cells through a process of cell–cell contact-dependent membrane transfer called trogocytosis. These MHC-dressed cells subsequently activate or regulate T cells via the preformed antigen peptide–MHC complexes without requiring any further processing. In addition to trogocytosis, intercellular transfer of MHCI and MHCII can be mediated by secretion of membrane vesicles such as exosomes from APCs, generating MHC-dressed cells. This review focuses on the physiological role of antigen presentation by MHCI- or MHCII-dressed cells, and also discusses differences and similarities between trogocytosis and exosome-mediated transfer of MHC.
Collapse
Affiliation(s)
- Masafumi Nakayama
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University , Sendai , Japan
| |
Collapse
|
29
|
Spidale NA, Wang B, Tisch R. Cutting edge: Antigen-specific thymocyte feedback regulates homeostatic thymic conventional dendritic cell maturation. THE JOURNAL OF IMMUNOLOGY 2014; 193:21-5. [PMID: 24890722 DOI: 10.4049/jimmunol.1400321] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Thymic dendritic cells (DC) mediate self-tolerance by presenting self-peptides to and depleting autoreactive thymocytes. Despite a significant role in negative selection, the events regulating thymic DC maturation and function under steady-state conditions are poorly understood. We report that cross-talk with thymocytes regulates thymic conventional DC (cDC) numbers, phenotype, and function. In mice lacking TCR-expressing thymocytes, thymic cDC were reduced and exhibited a less mature phenotype. Furthermore, thymic cDC in TCR-transgenic mice lacking cognate Ag expression in the thymus were also immature; notably, however, thymic cDC maturation was re-established by an Ag-specific cognate interaction with CD4+ or CD8+ single-positive thymocytes (SP). Blockade of CD40L during Ag-specific interactions with CD4 SP, but not CD8 SP, limited the effect on cDC maturation. Together, these novel findings demonstrate that homeostatic maturation and function of thymic cDC are regulated by feedback delivered by CD4 SP and CD8 SP via distinct mechanisms during a cognate Ag-specific interaction.
Collapse
Affiliation(s)
- Nicholas A Spidale
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599; and
| | - Bo Wang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599; and
| | - Roland Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599; and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599
| |
Collapse
|
30
|
Klein L, Kyewski B, Allen PM, Hogquist KA. Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see). Nat Rev Immunol 2014; 14:377-91. [PMID: 24830344 PMCID: PMC4757912 DOI: 10.1038/nri3667] [Citation(s) in RCA: 903] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The fate of developing T cells is specified by the interaction of their antigen receptors with self-peptide-MHC complexes that are displayed by thymic antigen-presenting cells (APCs). Various subsets of thymic APCs are strategically positioned in particular thymic microenvironments and they coordinate the selection of a functional and self-tolerant T cell repertoire. In this Review, we discuss the different strategies that these APCs use to sample and process self antigens and to thereby generate partly unique, 'idiosyncratic' peptide-MHC ligandomes. We discuss how the particular composition of the peptide-MHC ligandomes that are presented by specific APC subsets not only shapes the T cell repertoire in the thymus but may also indelibly imprint the behaviour of mature T cells in the periphery.
Collapse
Affiliation(s)
- Ludger Klein
- Institute for Immunology, Ludwig Maximilians University, 80336 Munich, Germany
| | - Bruno Kyewski
- Division of Developmental Immunology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Paul M Allen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Kristin A Hogquist
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55414, USA
| |
Collapse
|
31
|
Xu X, Ge Q. Maturation and migration of murine CD4 single positive thymocytes and thymic emigrants. Comput Struct Biotechnol J 2014; 9:e201403003. [PMID: 24757506 PMCID: PMC3995209 DOI: 10.5936/csbj.201403003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/18/2014] [Accepted: 03/23/2014] [Indexed: 11/22/2022] Open
Abstract
T lymphopoiesis in the thymus was thought to be completed once they reach the single positive (SP) stage, when they are “fully mature” and wait to be exported at random or follow a “first in-first out” manner. Recently, accumulating evidence has revealed that newly generated SP thymocytes undergo further maturation in the thymic medulla before they follow a tightly regulated emigrating process to become recent thymic emigrants (RTEs). RTEs in the periphery then experience a post-thymic maturation and peripheral tolerance and eventually become licensed as mature naïve T cells. This review summarizes the recent progress in the late stage T cell development in and outside of the thymus. The regulation of this developmental process is also discussed.
Collapse
Affiliation(s)
- Xi Xu
- Key Laboratory of Medical Immunology, Ministry of Health. Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100191, P R China
| | - Qing Ge
- Key Laboratory of Medical Immunology, Ministry of Health. Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100191, P R China
| |
Collapse
|
32
|
Exploring the MHC-peptide matrix of central tolerance in the human thymus. Nat Commun 2013; 4:2039. [PMID: 23783831 DOI: 10.1038/ncomms3039] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 05/21/2013] [Indexed: 01/22/2023] Open
Abstract
Ever since it was discovered that central tolerance to self is imposed on developing T cells in the thymus through their interaction with self-peptide major histocompatibility complexes on thymic antigen-presenting cells, immunologists have speculated about the nature of these peptides, particularly in humans. Here, to shed light on the so-far unknown human thymic peptide repertoire, we analyse peptides eluted from isolated thymic dendritic cells, dendritic cell-depleted antigen-presenting cells and whole thymus. Bioinformatic analysis of the 842 identified natural major histocompatibility complex I and II ligands reveals significant cross-talk between major histocompatibility complex-class I and II pathways and differences in source protein representation between individuals as well as different antigen-presenting cells. Furthermore, several autoimmune- and tumour-related peptides, from enolase and vimentin for example, are presented in the healthy thymus. 302 peptides are directly derived from negatively selecting dendritic cells, thus providing the first global view of the peptide matrix in the human thymus that imposes self-tolerance in vivo.
Collapse
|
33
|
Maturation and emigration of single-positive thymocytes. Clin Dev Immunol 2013; 2013:282870. [PMID: 24187562 PMCID: PMC3804360 DOI: 10.1155/2013/282870] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/01/2013] [Indexed: 01/01/2023]
Abstract
T lymphopoiesis in the thymus was thought to be completed once it reaches the single positive (SP)
stage, a stage when T cells are “fully mature” and waiting to be exported at random or follow a “first-in-first-out” manner. Recent evidence, however, has revealed that the newly generated SP thymocytes undergo a multistage maturation program in the thymic medulla. Such maturation is followed by a tightly regulated emigration process and a further postthymic maturation of recent thymic emigrants (RTEs). This review summarizes recent progress in the late stage T cell development. The regulation of this developmental process is discussed.
Collapse
|
34
|
Abstract
Exosomes are nanosized membrane-bound vesicles that are released by various cell types and are capable of carrying proteins, lipids and RNAs which can be delivered to recipient cells. Exosomes play a role in intercellular communication and have been described to mediate immunologic information. In this article we report the first isolation and characterization of exosomes from human thymic tissue. Using electron microscopy, particle size determination, density gradient measurement, flow cytometry, proteomic analysis and microRNA profiling we describe the morphology, size, density, protein composition and microRNA content of human thymic exosomes. The thymic exosomes share characteristics with previously described exosomes such as antigen presentation molecules, but they also exhibit thymus specific features regarding surface markers, protein content and microRNA profile. Interestingly, thymic exosomes carry proteins that have a tissue restricted expression in the periphery which may suggest a role in T cell selection and the induction of central tolerance. We speculate that thymic exosomes may provide the means for intercellular information exchange necessary for negative selection and regulatory T cell formation of the developing thymocytes within the human thymic medulla.
Collapse
|
35
|
Oh J, Wu N, Baravalle G, Cohn B, Ma J, Lo B, Mellman I, Ishido S, Anderson M, Shin JS. MARCH1-mediated MHCII ubiquitination promotes dendritic cell selection of natural regulatory T cells. ACTA ACUST UNITED AC 2013; 210:1069-77. [PMID: 23712430 PMCID: PMC3674695 DOI: 10.1084/jem.20122695] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Ubiquitination of MHCII molecules on dendritic cells is essential for the development of natural regulatory T cells Membrane-associated RING-CH1 (MARCH1) is an E3 ubiquitin ligase that mediates ubiquitination of MHCII in dendritic cells (DCs). MARCH1-mediated MHCII ubiquitination in DCs is known to regulate MHCII surface expression, thereby controlling DC-mediated T cell activation in vitro. However, its role at steady state or in vivo is not clearly understood. Here, we show that MARCH1 deficiency resulted in a substantial reduction in the number of thymus-derived regulatory T cells (T reg cells) in mice. A specific ablation of MHCII ubiquitination also significantly reduced the number of thymic T reg cells. Indeed, DCs deficient in MARCH1 or MHCII ubiquitination both failed to generate antigen-specific T reg cells in vivo and in vitro, although both exhibited an increased capacity for antigen presentation in parallel with the increased surface MHCII. Thus, MARCH1-mediated MHCII ubiquitination in DCs is required for proper production of naturally occurring T reg cells, suggesting a role in balancing immunogenic and regulatory T cell development.
Collapse
Affiliation(s)
- Jaehak Oh
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Capalbo D, Giardino G, Martino LD, Palamaro L, Romano R, Gallo V, Cirillo E, Salerno M, Pignata C. Genetic basis of altered central tolerance and autoimmune diseases: a lesson from AIRE mutations. Int Rev Immunol 2012; 31:344-62. [PMID: 23083345 DOI: 10.3109/08830185.2012.697230] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The thymus is a specialized organ that provides an inductive environment for the development of T cells from multipotent hematopoietic progenitors. Self-nonself discrimination plays a key role in inducing a productive immunity and in preventing autoimmune reactions. Tolerance represents a state of immunologic nonresponsiveness in the presence of a particular antigen. The immune system becomes tolerant to self-antigens through the two main processes, central and peripheral tolerance. Central tolerance takes place within the thymus and represents the mechanism by which T cells binding with high avidity self-antigens, which are potentially autoreactive, are eliminated through so-called negative selection. This process is mostly mediated by medullary thymic epithelia cells (mTECs) and medullary dendritic cells (DCs). A remarkable event in the process is the expression of tissue-specific antigens (TSA) by mTECs driven by the transcription factor autoimmune regulator (AIRE). Mutations in this gene result in autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED), a rare autosomal recessive disease (OMIM 240300). Thus far, this syndrome is the paradigm of a genetically determined failure of central tolerance and autoimmunty. Patients with APECED have a variable pattern of autoimmune reactions, involving different endocrine and nonendocrine organs. However, although APECED is a monogenic disorder, it is characterized by a wide variability of the clinical expression, thus implying a further role for disease-modifying genes and environmental factors in the pathogenesis. Studies on this polyreactive autoimmune syndrome contributed enormously to unraveling several issues of the molecular basis of autoimmunity. This review focuses on the developmental, functional, and molecular events governing central tolerance and on the clinical implication of its failure.
Collapse
|
37
|
Gottrand G, Taleb K, Ragon I, Bergot AS, Goldstein JD, Marodon G. Intrathymic injection of lentiviral vector curtails the immune response in the periphery of normal mice. J Gene Med 2012; 14:90-9. [PMID: 22228582 DOI: 10.1002/jgm.1650] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Gene transfer in the thymus, based on HIV-derived lentiviral vectors, is a promising avenue for modulation of T cell selection and autoimmunity. However, the impact of intrathymic (IT) injections on an antigen-specific immune response elicited in the periphery of normal mice has not been investigated yet. METHODS Highly concentrated stocks of lentiviral vectors expressing the soluble form of hemaglutinin of the influenza virus (LvHA) were injected in the thymus of normal BALB/c mice. The CD4 and CD8-mediated immune responses to HA after peripheral immunization were measured by various parameters. RESULTS We first show that a lentiviral vector expressing the luciferase was detected for at least 2 months after IT-injections. We then show that the LvHA vector could elicit a functional CD4- and CD8-T cell-mediated immune responses in the peripheral lymphoid organs of BALB/c mice. IT-injection of the LvHA vector significantly curbed this response: lower numbers of transferred HA-specific CD4(+) T cells were found in LvHA-injected compared to control animals. Furthermore, lower frequencies of HA-specific CD8(+) T cells, interferon γ-producing cells and cytotoxic cells were detected from 3 weeks to 3 months in LvHA-injected mice compared to controls. However, these reduced CD8-mediated responses were not increased after depletion of CD25(+) cells in vitro or in vivo. CONCLUSIONS The results obtained in the present study show that injection of the LvHA lentiviral vector significantly curtailed the immune response to the same antigen in the periphery. Increased selection of HA-specific regulatory T cells and negative selection of HA-specific CD8(+) T cell precursors may explain the results. Our work establish the feasibility of IT-injections of lentiviral vectors to manipulate T cell tolerance in the thymus of normal mice, for basic and pre-clinical research.
Collapse
Affiliation(s)
- Gaëlle Gottrand
- Université Pierre et Marie Curie, UPMC University of Paris 06, Paris, France
| | | | | | | | | | | |
Collapse
|
38
|
Stoeckle C, Quecke P, Rückrich T, Burster T, Reich M, Weber E, Kalbacher H, Driessen C, Melms A, Tolosa E. Cathepsin S dominates autoantigen processing in human thymic dendritic cells. J Autoimmun 2012; 38:332-43. [PMID: 22424724 DOI: 10.1016/j.jaut.2012.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 02/25/2012] [Accepted: 02/26/2012] [Indexed: 10/28/2022]
Abstract
The interaction of developing thymocytes with peptide-MHC complexes on thymic antigen presenting cells (APC) is crucial for T cell development, both for positive selection of "useful" thymocytes as well as negative selection of autoreactive thymocytes to prevent autoimmunity. The peptides presented on MHC II molecules are generated by lysosomal proteases such as the cathepsins. At the same time, lysosomal proteases will also destroy other potential T cell epitopes from self-antigens. This will lead to a lack of presentation on negatively selecting thymic antigen presenting cells and consequently, escape of autoreactive T cells recognizing these epitopes. In order to understand the processes that govern generation or destruction of self-epitopes in thymic APC, we studied the antigen processing machinery and epitope processing in the human thymus. We find that each type of thymic APC expresses a different signature of lysosomal proteases, providing indirect evidence that positive and negative selection of CD4(+) T cells might occur on different sets of peptides, in analogy to what has been proposed for CD8(+) T cells. We also find that myeloid dendritic cells (DC) are more efficient in processing autoantigen than plasmacytoid DC. In addition, we observed that cathepsin S plays a central role in processing of the autoantigens myelin basic protein and proinsulin in thymic dendritic cells. Cathepsin S destroyed a number of known T cell epitopes, which would be expected to result in lack of presentation and consequently, escape of autoreactive T cells. Cathepsin S therefore appears to be an important factor that influences selection of autoreactive T cells.
Collapse
Affiliation(s)
- Christina Stoeckle
- Hertie Institute for Clinical Brain Research, University of Tuebingen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Siatskas C, Seach N, Sun G, Emerson-Webber A, Silvain A, Toh BH, Alderuccio F, Bäckström BT, Boyd RL, Bernard CC. Thymic gene transfer of myelin oligodendrocyte glycoprotein ameliorates the onset but not the progression of autoimmune demyelination. Mol Ther 2012; 20:1349-59. [PMID: 22354375 DOI: 10.1038/mt.2012.15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tolerance induction, and thus prevention of autoimmunity, is linked with the amount of self-antigen presented on thymic stroma. We describe that intrathymic (i.t.) delivery of the autoantigen, myelin oligodendrocyte glycoprotein (MOG), via a lentiviral vector (LV), led to tolerance induction and prevented mice from developing fulminant experimental autoimmune encephalomyelitis (EAE). This protective effect was associated with the long-term expression of antigen in transduced stromal cells, which resulted in the negative selection of MOG-specific T cells and the generation of regulatory T cells (Tregs). These selection events were effective at decreasing T-cell proliferative responses and reduced Th1 and Th17 cytokines. In vivo, this translated to a reduction in inflammation and demyelination with minimal, or no axonal loss in the spinal cords of treated animals. Significantly intrathymic delivery of MOG to mice during the priming phase of the disease failed to suppress clinical symptoms despite mice being previously treated with a clearing anti-CD4 antibody. These results indicate that targeting autoantigens to the thymic stroma might offer an alternative means to induce the de novo production of tolerant, antigen-specific T cells; however, methods that control the number and or the activation of residual autoreactive cells in the periphery are required to successfully treat autoimmune neuroinflammation.
Collapse
Affiliation(s)
- Christopher Siatskas
- Monash Immunology and Stem Cell Laboratories, Monash University, Melbourne, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Differential processing of self-antigens by subsets of thymic stromal cells. Curr Opin Immunol 2012; 24:99-104. [PMID: 22296716 DOI: 10.1016/j.coi.2012.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 01/02/2012] [Accepted: 01/09/2012] [Indexed: 12/21/2022]
Abstract
The stromal network of the thymus provides a unique environment that supports the development of mature CD4(+) and CD8(+) T cells expressing a very diverse repertoire of T cell receptors (TCR) with limited reactivity to self-antigens. Thymic cortical epithelial cells (cTECs) are specialized antigen-presenting cells (APCs) that promote the positive selection of developing thymocytes while medullary thymic epithelial cells (mTECs) and thymic dendritic cells (tDCs) induce central tolerance to self-antigens. Recent studies showed that cTECs express a unique set of proteases involved in the generation of self-peptides presented by major-histocompatibility encoded molecules (pMHC) and consequently may express a unique set of pMHC complexes. Conversely, the stromal cells of the medulla developed several mechanisms to mirror as closely as possible the constellation of self-peptides derived from peripheral tissues. Here, we discuss how these different features allow for the development of a highly diverse but poorly self-reactive repertoire of functional T cells.
Collapse
|
41
|
|
42
|
Klein L, Hinterberger M, von Rohrscheidt J, Aichinger M. Autonomous versus dendritic cell-dependent contributions of medullary thymic epithelial cells to central tolerance. Trends Immunol 2011; 32:188-93. [PMID: 21493141 DOI: 10.1016/j.it.2011.03.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/02/2011] [Accepted: 03/04/2011] [Indexed: 12/27/2022]
Abstract
Promiscuous expression of 'peripheral' tissue-restricted antigens (TRAs) by medullary thymic epithelial cells (mTECs) is essential for central tolerance. Remarkably, the expression of individual TRAs varies among mTECs and is confined to a perplexingly small number of cells. To reconcile this with the ensuing robust state of tolerance, one might envisage that mTECs serve primarily as an antigen reservoir, whereas tolerogenic recognition of TRAs would ultimately require antigen uptake and presentation by dendritic cells (DCs). Here, we survey the evidence for this 'antigen-spreading' scenario and relate it to findings that document autonomous antigen-presentation by mTECs. We suggest that DC-dependent and autonomous tolerogenic functions of mTECs operate in parallel, and the underlying mechanisms remain to be established.
Collapse
Affiliation(s)
- Ludger Klein
- University of Munich, Institute for Immunology, Goethestr. 31, 80336 Munich, Germany.
| | | | | | | |
Collapse
|
43
|
Nitta T, Ohigashi I, Nakagawa Y, Takahama Y. Cytokine crosstalk for thymic medulla formation. Curr Opin Immunol 2010; 23:190-7. [PMID: 21194915 DOI: 10.1016/j.coi.2010.12.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 11/24/2010] [Accepted: 12/03/2010] [Indexed: 01/12/2023]
Abstract
The medullary microenvironment of the thymus plays a crucial role in the establishment of self-tolerance through the deletion of self-reactive thymocytes and the generation of regulatory T cells. Crosstalk or bidirectional signal exchanges between developing thymocytes and medullary thymic epithelial cells (mTECs) contribute to the formation of the thymic medulla. Recent studies have identified the molecules that mediate thymic crosstalk. Tumor necrosis factor superfamily cytokines, including RANKL, CD40L, and lymphotoxin, produced by positively selected thymocytes and lymphoid tissue inducer cells promote the proliferation and differentiation of mTECs. In return, CCR7 ligand chemokines produced by mTECs facilitate the migration of positively selected thymocytes to the medulla. The cytokine crosstalk between developing thymocytes and mTECs nurtures the formation of the thymic medulla and thereby regulates the establishment of self-tolerance.
Collapse
Affiliation(s)
- Takeshi Nitta
- Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, Tokushima 770-8503, Japan
| | | | | | | |
Collapse
|
44
|
Derbinski J, Kyewski B. How thymic antigen presenting cells sample the body's self-antigens. Curr Opin Immunol 2010; 22:592-600. [DOI: 10.1016/j.coi.2010.08.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 08/08/2010] [Indexed: 12/20/2022]
|
45
|
Kroger CJ, Flores RR, Morillon M, Wang B, Tisch R. Dysregulation of thymic clonal deletion and the escape of autoreactive T cells. Arch Immunol Ther Exp (Warsz) 2010; 58:449-57. [PMID: 20872284 DOI: 10.1007/s00005-010-0100-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 06/25/2010] [Indexed: 12/25/2022]
Abstract
Events ongoing in the thymus are critical for deleting developing thymocytes specific for tissue antigens, and establishing self-tolerance within the T cell compartment. Aberrant thymic negative selection, however, is believed to generate a repertoire with increased self-reactivity, which in turn can contribute to the development of T cell-mediated autoimmunity. In this review, mechanisms that regulate the efficacy of negative selection and influence the deletion of autoreactive thymocytes will be discussed.
Collapse
Affiliation(s)
- Charles J Kroger
- Department of Microbiology and Immunology, University of North Carolina, Mary Ellen Jones Bldg., Room 635, Campus Box 7290, Chapel Hill, NC 27599-7290, USA
| | | | | | | | | |
Collapse
|
46
|
Brown K, Fidanboylu M, Wong W. Intercellular exchange of surface molecules and its physiological relevance. Arch Immunol Ther Exp (Warsz) 2010; 58:263-72. [PMID: 20508995 DOI: 10.1007/s00005-010-0085-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 02/11/2010] [Indexed: 12/31/2022]
Abstract
For many decades, cellular immunologists have relied on the expression of various cell surface molecules to divide cells into different types and subtypes to study their function. However, in recent years, a large and fast-expanding body of work has described the transfer of surface molecules, including MHC class I and II molecules, between cells, both in vitro and in vivo. The function of this process is still largely unknown, but it is likely to have a significant role in the control of the immune system. It is also likely that this process takes place in a regulated rather than stochastic manner, thus providing another way for the immune system to orchestrate its function. In this review we will summarize the key findings so far, examining the mechanisms of transfer, the consequences of this transfer as shown by in vitro experiments, and possible consequences for the wider immune response.
Collapse
Affiliation(s)
- Kathryn Brown
- MRC Centre for Transplantation, King's College London, School of Medicine at Guy's, King's and St. Thomas' Hospitals, London, UK
| | | | | |
Collapse
|
47
|
|
48
|
Hinterberger M, Aichinger M, Prazeres da Costa O, Voehringer D, Hoffmann R, Klein L. Autonomous role of medullary thymic epithelial cells in central CD4(+) T cell tolerance. Nat Immunol 2010; 11:512-9. [PMID: 20431619 DOI: 10.1038/ni.1874] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 03/30/2010] [Indexed: 12/11/2022]
Abstract
Medullary thymic epithelial cells (mTECs) serve an essential function in central tolerance by expressing peripheral-tissue antigens. These antigens may be transferred to and presented by dendritic cells (DCs). Therefore, it is unclear whether mTECs, in addition to being an antigen reservoir, also serve a mandatory function as antigen-presenting cells. Here we diminished major histocompatibility complex (MHC) class II on mTECs through transgenic expression of a 'designer' microRNA specific for the MHC class II transactivator CIITA (called 'C2TA' here). This resulted in an enlarged polyclonal CD4(+) single-positive compartment and, among thymocytes specific for model antigens expressed in mTECs, enhanced selection of regulatory T cells (T(reg) cells) at the expense of deletion. Our data document an autonomous contribution of mTECs to both dominant and recessive mechanisms of CD4(+) T cell tolerance and support an avidity model of T(reg) cell development versus deletion.
Collapse
Affiliation(s)
- Maria Hinterberger
- Institute for Immunology, Ludwig-Maximilians-Universität, Munich, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Daubeuf S, Lindorfer MA, Taylor RP, Joly E, Hudrisier D. The direction of plasma membrane exchange between lymphocytes and accessory cells by trogocytosis is influenced by the nature of the accessory cell. THE JOURNAL OF IMMUNOLOGY 2010; 184:1897-908. [PMID: 20089699 DOI: 10.4049/jimmunol.0901570] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Exchange of plasma membrane fragments, including cell-surface proteins and lipids, in conjugates formed between lymphocytes and their cellular partners is a field of intense investigation. Apart from its natural occurrence during Ag recognition, the process of membrane transfer can be triggered in experimental or therapeutic settings when lymphocytes targeted by Abs are conjugated to FcgammaR-expressing accessory cells. The direction of membrane capture (i.e., which of the two cells is going to donate or accept plasma membrane fragments) can have important functional consequences, such as insensitivity of tumor cells to treatment by therapeutic mAbs. This effect, called antigenic modulation or shaving, occurs as a result of a process in which the FcgammaR-expressing cells remove the mAb and its target protein from the tumor cells. We therefore analyzed this process in conjugates formed between various FcgammaR-expressing cells and a series of normal or tumor T and B cells opsonized with different Abs capable of triggering membrane exchange (including the therapeutic Ab rituximab). Our results show that the direction of membrane capture is dictated by the identity of the FcgammaR-expressing cell, much more so than the type of lymphocyte or the Ab used. We found that monocytes and macrophages are prone to be involved in bidirectional trogocytosis with opsonized target cells, a process they can perform in parallel to phagocytosis. Our observations open new perspectives to understand the mechanisms involved in trogocytosis and may contribute to optimization of Ab-based immunotherapeutic approaches.
Collapse
Affiliation(s)
- Sandrine Daubeuf
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
| | | | | | | | | |
Collapse
|
50
|
Stephen TL, Tikhonova A, Riberdy JM, Laufer TM. The activation threshold of CD4+ T cells is defined by TCR/peptide-MHC class II interactions in the thymic medulla. THE JOURNAL OF IMMUNOLOGY 2009; 183:5554-62. [PMID: 19843939 DOI: 10.4049/jimmunol.0901104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immature thymocytes that are positively selected based upon their response to self-peptide-MHC complexes develop into mature T cells that are not overtly reactive to those same complexes. Developmental tuning is the active process through which TCR-associated signaling pathways of single-positive thymocytes are attenuated to respond appropriately to the peptide-MHC molecules that will be encountered in the periphery. In this study, we explore the mechanisms that regulate the tuning of CD4(+) single-positive T cells to MHC class II encountered in the thymic medulla. Experiments with murine BM chimeras demonstrate that tuning can be mediated by MHC class II expressed by either thymic medullary epithelial cells or thymic dendritic cells. Tuning does not require the engagement of CD4 by MHC class II on stromal cells. Rather, it is mediated by interactions between MHC class II and the TCR. To understand the molecular changes that distinguish immature hyperactive T cells from tuned mature CD4(+) T cells, we compared their responses to TCR stimulation. The altered response of mature CD4 single-positive thymocytes is characterized by the inhibition of ERK activation by low-affinity self-ligands and increased expression of the inhibitory tyrosine phosphatase SHP-1. Thus, persistent TCR engagement by peptide-MHC class II on thymic medullary stroma inhibits reactivity to self-Ags and prevents autoreactivity in the mature repertoire.
Collapse
Affiliation(s)
- Tom Li Stephen
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|