1
|
Han J, Huang J, Hu J, Shi W, Wang H, Zhang W, Wang J, Shao H, Shen H, Bo H, Tao C, Wu F. miR-744-5p promotes T-cell differentiation via inhibiting STK11. Gene 2024; 926:148635. [PMID: 38830518 DOI: 10.1016/j.gene.2024.148635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/06/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
T cells utilized in adoptive T cell immunotherapy are typically activated in vitro. Although these cells demonstrate proliferation and anti-tumor activity following activation, they often face difficulties in sustaining long-term survival post-reinfusion. This issue is attributed to the induction of T cells into a terminal differentiation state upon activation, whereas early-stage differentiated T cells exhibit enhanced proliferation potential and survival capabilities. In previous study, we delineated four T cell subsets at varying stages of differentiation: TN, TSCM, TCM, and TEM, and acquired their miRNA expression profiles via high-throughput sequencing. In the current study, we performed a differential analysis of miRNA across these subsets, identifying a distinct miRNA, hsa-miR-744-5p, characterized by progressively increasing expression levels upon T cell activation. This miRNA is not expressed in TSCM but is notably present in TEM. Target genes of miR-744-5p were predicted, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, revealing that these genes predominantly associate with pathways related to the 'Wnt signaling pathway'. We established that miR-744-5p directly targets STK11, influencing its expression. Further, we investigated the implications of miR-744-5p on T cell differentiation and functionality. Overexpression of miR-744-5p in T cells resulted in heightened apoptosis, reduced proliferation, an increased proportion of late-stage differentiated T cells, and elevated secretion of the cytokine TNF-α. Moreover, post-overexpression of miR-744-5p led to a marked decline in the expression of early-stage differentiation-associated genes in T cells (CCR7, CD62L, LEF1, BCL2) and a significant rise in late-stage differentiation-associated genes (KLRG1, PDCD1, GZMB). In conclusion, our findings affirm that miR-744-5p contributes to the progressive differentiation of T cells by downregulating the STK11 gene expression.
Collapse
Affiliation(s)
- Jiayi Han
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jianqing Huang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jieming Hu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenkai Shi
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongqiong Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenfeng Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jinquan Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongwei Shao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Han Shen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huaben Bo
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Changli Tao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fenglin Wu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
2
|
Xiao Z, Wang S, Luo L, Lv W, Feng P, Sun Y, Yang Q, He J, Cao G, Yin Z, Yang M. Lkb1 orchestrates γδ T-cell metabolic and functional fitness to control IL-17-mediated autoimmune hepatitis. Cell Mol Immunol 2024; 21:546-560. [PMID: 38641698 PMCID: PMC11143210 DOI: 10.1038/s41423-024-01163-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/02/2024] [Indexed: 04/21/2024] Open
Abstract
γδ T cells play a crucial role in immune surveillance and serve as a bridge between innate and adaptive immunity. However, the metabolic requirements and regulation of γδ T-cell development and function remain poorly understood. In this study, we investigated the role of liver kinase B1 (Lkb1), a serine/threonine kinase that links cellular metabolism with cell growth and proliferation, in γδ T-cell biology. Our findings demonstrate that Lkb1 is not only involved in regulating γδ T lineage commitment but also plays a critical role in γδ T-cell effector function. Specifically, T-cell-specific deletion of Lkb1 resulted in impaired thymocyte development and distinct alterations in γδ T-cell subsets in both the thymus and peripheral lymphoid tissues. Notably, loss of Lkb1 inhibited the commitment of Vγ1 and Vγ4 γδ T cells, promoted the maturation of IL-17-producing Vγ6 γδ T cells, and led to the occurrence of fatal autoimmune hepatitis (AIH). Notably, clearance of γδ T cells or blockade of IL-17 significantly attenuated AIH. Mechanistically, Lkb1 deficiency disrupted metabolic homeostasis and AMPK activity, accompanied by increased mTORC1 activation, thereby causing overactivation of γδ T cells and enhanced apoptosis. Interestingly, activation of AMPK or suppression of mTORC1 signaling effectively inhibited IL-17 levels and attenuated AIH in Lkb1-deficient mice. Our findings highlight the pivotal role of Lkb1 in maintaining the homeostasis of γδ T cells and preventing IL-17-mediated autoimmune diseases, providing new insights into the metabolic programs governing the subset determination and functional differentiation of thymic γδ T cells.
Collapse
Affiliation(s)
- Zhiqiang Xiao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, China
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Shanshan Wang
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Liang Luo
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Wenkai Lv
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Peiran Feng
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
| | - Yadong Sun
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Quanli Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, China
| | - Jun He
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control (Jinan University). Guangzhou Key Laboratory for Germ-Free Animals and Microbiota Application. Institute of Laboratory Animal Science, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Guangchao Cao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, China
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, China.
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Meixiang Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, China.
- The Biomedical Translational Research Institute, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China.
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control (Jinan University). Guangzhou Key Laboratory for Germ-Free Animals and Microbiota Application. Institute of Laboratory Animal Science, School of Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
3
|
Wang N, Wang B, Maswikiti EP, Yu Y, Song K, Ma C, Han X, Ma H, Deng X, Yu R, Chen H. AMPK-a key factor in crosstalk between tumor cell energy metabolism and immune microenvironment? Cell Death Discov 2024; 10:237. [PMID: 38762523 PMCID: PMC11102436 DOI: 10.1038/s41420-024-02011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024] Open
Abstract
Immunotherapy has now garnered significant attention as an essential component in cancer therapy during this new era. However, due to immune tolerance, immunosuppressive environment, tumor heterogeneity, immune escape, and other factors, the efficacy of tumor immunotherapy has been limited with its application to very small population size. Energy metabolism not only affects tumor progression but also plays a crucial role in immune escape. Tumor cells are more metabolically active and need more energy and nutrients to maintain their growth, which causes the surrounding immune cells to lack glucose, oxygen, and other nutrients, with the result of decreased immune cell activity and increased immunosuppressive cells. On the other hand, immune cells need to utilize multiple metabolic pathways, for instance, cellular respiration, and oxidative phosphorylation pathways to maintain their activity and normal function. Studies have shown that there is a significant difference in the energy expenditure of immune cells in the resting and activated states. Notably, competitive uptake of glucose is the main cause of impaired T cell function. Conversely, glutamine competition often affects the activation of most immune cells and the transformation of CD4+T cells into inflammatory subtypes. Excessive metabolite lactate often impairs the function of NK cells. Furthermore, the metabolite PGE2 also often inhibits the immune response by inhibiting Th1 differentiation, B cell function, and T cell activation. Additionally, the transformation of tumor-suppressive M1 macrophages into cancer-promoting M2 macrophages is influenced by energy metabolism. Therefore, energy metabolism is a vital factor and component involved in the reconstruction of the tumor immune microenvironment. Noteworthy and vital is that not only does the metabolic program of tumor cells affect the antigen presentation and recognition of immune cells, but also the metabolic program of immune cells affects their own functions, ultimately leading to changes in tumor immune function. Metabolic intervention can not only improve the response of immune cells to tumors, but also increase the immunogenicity of tumors, thereby expanding the population who benefit from immunotherapy. Consequently, identifying metabolic crosstalk molecules that link tumor energy metabolism and immune microenvironment would be a promising anti-tumor immune strategy. AMPK (AMP-activated protein kinase) is a ubiquitous serine/threonine kinase in eukaryotes, serving as the central regulator of metabolic pathways. The sequential activation of AMPK and its associated signaling cascades profoundly impacts the dynamic alterations in tumor cell bioenergetics. By modulating energy metabolism and inflammatory responses, AMPK exerts significant influence on tumor cell development, while also playing a pivotal role in tumor immunotherapy by regulating immune cell activity and function. Furthermore, AMPK-mediated inflammatory response facilitates the recruitment of immune cells to the tumor microenvironment (TIME), thereby impeding tumorigenesis, progression, and metastasis. AMPK, as the link between cell energy homeostasis, tumor bioenergetics, and anti-tumor immunity, will have a significant impact on the treatment and management of oncology patients. That being summarized, the main objective of this review is to pinpoint the efficacy of tumor immunotherapy by regulating the energy metabolism of the tumor immune microenvironment and to provide guidance for the development of new immunotherapy strategies.
Collapse
Affiliation(s)
- Na Wang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Bofang Wang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Ewetse Paul Maswikiti
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Yang Yu
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Kewei Song
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Chenhui Ma
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Xiaowen Han
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Huanhuan Ma
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Xiaobo Deng
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Rong Yu
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Hao Chen
- The Department of Tumor Surgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730030, China.
- Key Laboratory of Environmental Oncology of Gansu Province, Lanzhou, Gansu, 730030, China.
| |
Collapse
|
4
|
Elhage R, Kelly M, Goudin N, Megret J, Legrand A, Nemazanyy I, Patitucci C, Quellec V, Wai T, Hamaï A, Ezine S. Mitochondrial dynamics and metabolic regulation control T cell fate in the thymus. Front Immunol 2024; 14:1270268. [PMID: 38288115 PMCID: PMC10822881 DOI: 10.3389/fimmu.2023.1270268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024] Open
Abstract
Several studies demonstrated that mitochondrial dynamics and metabolic pathways control T cell fate in the periphery. However, little is known about their implication in thymocyte development. Our results showed that thymic progenitors (CD3-CD4-CD8- triple negative, TN), in active division, have essentially a fused mitochondrial morphology and rely on high glycolysis and mitochondrial oxidative phosphorylation (OXPHOS). As TN cells differentiate to double positive (DP, CD4+CD8+) and single positive (SP, CD4+ and CD8+) stages, they became more quiescent, their mitochondria fragment and they downregulate glycolysis and OXPHOS. Accordingly, in vitro inhibition of the mitochondrial fission during progenitor differentiation on OP9-DL4 stroma, affected the TN to DP thymocyte transition by enhancing the percentage of TN and reducing that of DP, leading to a decrease in the total number of thymic cells including SP T cells. We demonstrated that the stage 3 triple negative pre-T (TN3) and the stage 4 triple negative pre-T (TN4) have different metabolic and functional behaviors. While their mitochondrial morphologies are both essentially fused, the LC-MS based analysis of their metabolome showed that they are distinct: TN3 rely more on OXPHOS whereas TN4 are more glycolytic. In line with this, TN4 display an increased Hexokinase II expression in comparison to TN3, associated with high proliferation and glycolysis. The in vivo inhibition of glycolysis using 2-deoxyglucose (2-DG) and the absence of IL-7 signaling, led to a decline in glucose metabolism and mitochondrial membrane potential. In addition, the glucose/IL-7R connection affects the TN3 to TN4 transition (also called β-selection transition), by enhancing the percentage of TN3, leading to a decrease in the total number of thymocytes. Thus, we identified additional components, essential during β-selection transition and playing a major role in thymic development.
Collapse
Affiliation(s)
- Rima Elhage
- Institut Necker Enfant-Malades (INEM), INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France
| | - Mairead Kelly
- Institut Necker Enfant-Malades (INEM), INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France
| | - Nicolas Goudin
- Platform for Image Analysis Center, SFR Necker, INSERM US 24 - CNRS UMS 3633, Paris, France
| | - Jérôme Megret
- Platform for Cytometry, SFR Necker, INSERM US 24 - CNRS UMS 3633, Paris, France
| | - Agnès Legrand
- Institut Necker Enfant-Malades (INEM), INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, SFR Necker, INSERM US 24 - CNRS UMS 3633, Paris, France
| | - Cécilia Patitucci
- Mitochondrial Biology Group, Institut Pasteur, CNRS UMR 3691, Paris, France
| | - Véronique Quellec
- Institut Necker Enfant-Malades (INEM), INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France
| | - Timothy Wai
- Mitochondrial Biology Group, Institut Pasteur, CNRS UMR 3691, Paris, France
| | - Ahmed Hamaï
- Institut Necker Enfant-Malades (INEM), INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France
| | - Sophie Ezine
- Institut Necker Enfant-Malades (INEM), INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France
| |
Collapse
|
5
|
Helms RS, Marin-Gonzalez A, Patel CH, Sun IH, Wen J, Leone RD, Duvall B, Gao RD, Ha T, Tsukamoto T, Slusher BS, Pomerantz JL, Powell JD. SIKs Regulate HDAC7 Stabilization and Cytokine Recall in Late-Stage T Cell Effector Differentiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1767-1782. [PMID: 37947442 PMCID: PMC10842463 DOI: 10.4049/jimmunol.2300248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/05/2023] [Indexed: 11/12/2023]
Abstract
Understanding the mechanisms underlying the acquisition and maintenance of effector function during T cell differentiation is important to unraveling how these processes can be dysregulated in the context of disease and manipulated for therapeutic intervention. In this study, we report the identification of a previously unappreciated regulator of murine T cell differentiation through the evaluation of a previously unreported activity of the kinase inhibitor, BioE-1197. Specifically, we demonstrate that liver kinase B1 (LKB1)-mediated activation of salt-inducible kinases epigenetically regulates cytokine recall potential in effector CD8+ and Th1 cells. Evaluation of this phenotype revealed that salt-inducible kinase-mediated phosphorylation-dependent stabilization of histone deacetylase 7 (HDAC7) occurred during late-stage effector differentiation. HDAC7 stabilization increased nuclear HDAC7 levels, which correlated with total and cytokine loci-specific reductions in the activating transcription mark histone 3 lysine 27 acetylation (H3K27Ac). Accordingly, HDAC7 stabilization diminished transcriptional induction of cytokine genes upon restimulation. Inhibition of this pathway during differentiation produced effector T cells epigenetically poised for enhanced cytokine recall. This work identifies a previously unrecognized target for enhancing effector T cell functionality.
Collapse
Affiliation(s)
- Rachel S Helms
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Alberto Marin-Gonzalez
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Boston, MA
| | - Chirag H Patel
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD
- Calico Life Sciences LLC, South San Francisco, CA
| | - Im-Hong Sun
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Surgery, University of California San Francisco, San Francisco, CA
| | - Jiayu Wen
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Robert D Leone
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Run-Duo Gao
- Johns Hopkins Drug Discovery, Baltimore, MD
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Taekjip Ha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Boston, MA
| | - Takashi Tsukamoto
- Johns Hopkins Drug Discovery, Baltimore, MD
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Baltimore, MD
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Joel L Pomerantz
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jonathan D Powell
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD
- Calico Life Sciences LLC, South San Francisco, CA
| |
Collapse
|
6
|
Panwar V, Singh A, Bhatt M, Tonk RK, Azizov S, Raza AS, Sengupta S, Kumar D, Garg M. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Signal Transduct Target Ther 2023; 8:375. [PMID: 37779156 PMCID: PMC10543444 DOI: 10.1038/s41392-023-01608-z] [Citation(s) in RCA: 161] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is a protein kinase that controls cellular metabolism, catabolism, immune responses, autophagy, survival, proliferation, and migration, to maintain cellular homeostasis. The mTOR signaling cascade consists of two distinct multi-subunit complexes named mTOR complex 1/2 (mTORC1/2). mTOR catalyzes the phosphorylation of several critical proteins like AKT, protein kinase C, insulin growth factor receptor (IGF-1R), 4E binding protein 1 (4E-BP1), ribosomal protein S6 kinase (S6K), transcription factor EB (TFEB), sterol-responsive element-binding proteins (SREBPs), Lipin-1, and Unc-51-like autophagy-activating kinases. mTOR signaling plays a central role in regulating translation, lipid synthesis, nucleotide synthesis, biogenesis of lysosomes, nutrient sensing, and growth factor signaling. The emerging pieces of evidence have revealed that the constitutive activation of the mTOR pathway due to mutations/amplification/deletion in either mTOR and its complexes (mTORC1 and mTORC2) or upstream targets is responsible for aging, neurological diseases, and human malignancies. Here, we provide the detailed structure of mTOR, its complexes, and the comprehensive role of upstream regulators, as well as downstream effectors of mTOR signaling cascades in the metabolism, biogenesis of biomolecules, immune responses, and autophagy. Additionally, we summarize the potential of long noncoding RNAs (lncRNAs) as an important modulator of mTOR signaling. Importantly, we have highlighted the potential of mTOR signaling in aging, neurological disorders, human cancers, cancer stem cells, and drug resistance. Here, we discuss the developments for the therapeutic targeting of mTOR signaling with improved anticancer efficacy for the benefit of cancer patients in clinics.
Collapse
Affiliation(s)
- Vivek Panwar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Aishwarya Singh
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Manini Bhatt
- Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab, 140001, India
| | - Rajiv K Tonk
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India
| | - Shavkatjon Azizov
- Laboratory of Biological Active Macromolecular Systems, Institute of Bioorganic Chemistry, Academy of Sciences Uzbekistan, Tashkent, 100125, Uzbekistan
- Faculty of Life Sciences, Pharmaceutical Technical University, 100084, Tashkent, Uzbekistan
| | - Agha Saquib Raza
- Rajive Gandhi Super Speciality Hospital, Tahirpur, New Delhi, 110093, India
| | - Shinjinee Sengupta
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India.
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
7
|
Yuan W, Fang W, Zhang R, Lyu H, Xiao S, Guo D, Ali DW, Michalak M, Chen XZ, Zhou C, Tang J. Therapeutic strategies targeting AMPK-dependent autophagy in cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119537. [PMID: 37463638 DOI: 10.1016/j.bbamcr.2023.119537] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023]
Abstract
Macroautophagy is a health-modifying process of engulfing misfolded or aggregated proteins or damaged organelles, coating these proteins or organelles into vesicles, fusion of vesicles with lysosomes to form autophagic lysosomes, and degradation of the encapsulated contents. It is also a self-rescue strategy in response to harsh environments and plays an essential role in cancer cells. AMP-activated protein kinase (AMPK) is the central pathway that regulates autophagy initiation and autophagosome formation by phosphorylating targets such as mTORC1 and unc-51 like activating kinase 1 (ULK1). AMPK is an evolutionarily conserved serine/threonine protein kinase that acts as an energy sensor in cells and regulates various metabolic processes, including those involved in cancer. The regulatory network of AMPK is complicated and can be regulated by multiple upstream factors, such as LKB1, AKT, PPAR, SIRT1, or noncoding RNAs. Currently, AMPK is being investigated as a novel target for anticancer therapies based on its role in macroautophagy regulation. Herein, we review the effects of AMPK-dependent autophagy on tumor cell survival and treatment strategies targeting AMPK.
Collapse
Affiliation(s)
- Wenbin Yuan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Wanyi Fang
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Rui Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Hao Lyu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Shuai Xiao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Dong Guo
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Cefan Zhou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China.
| | - Jingfeng Tang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China.
| |
Collapse
|
8
|
Bosselut R. Genetic Strategies to Study T Cell Development. Methods Mol Biol 2023; 2580:117-130. [PMID: 36374453 PMCID: PMC10803070 DOI: 10.1007/978-1-0716-2740-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Genetics approaches have been instrumental to deciphering T cell development in the thymus, including gene disruption by homologous recombination and more recently Crispr-based gene editing and transgenic gene expression, especially of specific T cell antigen receptors (TCR). This brief chapter describes commonly used tools and strategies to modify the genome of thymocytes, including mouse strains with lineage- and stage-specific expression of the Cre recombinase used for conditional allele inactivation or expressing unique antigen receptor specificities.
Collapse
Affiliation(s)
- Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
9
|
Zhang M, Lin X, Yang Z, Li X, Zhou Z, Love PE, Huang J, Zhao B. Metabolic regulation of T cell development. Front Immunol 2022; 13:946119. [PMID: 35958585 PMCID: PMC9357944 DOI: 10.3389/fimmu.2022.946119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/24/2022] [Indexed: 11/24/2022] Open
Abstract
T cell development in the thymus is tightly controlled by complex regulatory mechanisms at multiple checkpoints. Currently, many studies have focused on the transcriptional and posttranslational control of the intrathymic journey of T-cell precursors. However, over the last few years, compelling evidence has highlighted cell metabolism as a critical regulator in this process. Different thymocyte subsets are directed by distinct metabolic pathways and signaling networks to match the specific functional requirements of the stage. Here, we epitomize these metabolic alterations during the development of a T cell and review several recent works that provide insights into equilibrating metabolic quiescence and activation programs. Ultimately, understanding the interplay between cellular metabolism and T cell developmental programs may offer an opportunity to selectively regulate T cell subset functions and to provide potential novel therapeutic approaches to modulate autoimmunity.
Collapse
Affiliation(s)
- Mengdi Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoxi Lin
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhou Yang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Paul E. Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Jiaqi Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Bin Zhao, ; ; Jiaqi Huang, ;;
| | - Bin Zhao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Bin Zhao, ; ; Jiaqi Huang, ;;
| |
Collapse
|
10
|
Ndembe G, Intini I, Perin E, Marabese M, Caiola E, Mendogni P, Rosso L, Broggini M, Colombo M. LKB1: Can We Target an Hidden Target? Focus on NSCLC. Front Oncol 2022; 12:889826. [PMID: 35646638 PMCID: PMC9131655 DOI: 10.3389/fonc.2022.889826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
LKB1 (liver kinase B1) is a master regulator of several processes such as metabolism, proliferation, cell polarity and immunity. About one third of non-small cell lung cancers (NSCLCs) present LKB1 alterations, which almost invariably lead to protein loss, resulting in the absence of a potential druggable target. In addition, LKB1-null tumors are very aggressive and resistant to chemotherapy, targeted therapies and immune checkpoint inhibitors (ICIs). In this review, we report and comment strategies that exploit peculiar co-vulnerabilities to effectively treat this subgroup of NSCLCs. LKB1 loss leads to an enhanced metabolic avidity, and treatments inducing metabolic stress were successful in inhibiting tumor growth in several preclinical models. Biguanides, by compromising mitochondria and reducing systemic glucose availability, and the glutaminase inhibitor telaglenastat (CB-839), inhibiting glutamate production and reducing carbon intermediates essential for TCA cycle progression, have provided the most interesting results and entered different clinical trials enrolling also LKB1-null NSCLC patients. Nutrient deprivation has been investigated as an alternative therapeutic intervention, giving rise to interesting results exploitable to design specific dietetic regimens able to counteract cancer progression. Other strategies aimed at targeting LKB1-null NSCLCs exploit its pivotal role in modulating cell proliferation and cell invasion. Several inhibitors of LKB1 downstream proteins, such as mTOR, MEK, ERK and SRK/FAK, resulted specifically active on LKB1-mutated preclinical models and, being molecules already in clinical experimentation, could be soon proposed as a specific therapy for these patients. In particular, the rational use in combination of these inhibitors represents a very promising strategy to prevent the activation of collateral pathways and possibly avoid the potential emergence of resistance to these drugs. LKB1-null phenotype has been correlated to ICIs resistance but several studies have already proposed the mechanisms involved and potential interventions. Interestingly, emerging data highlighted that LKB1 alterations represent positive determinants to the new KRAS specific inhibitors response in KRAS co-mutated NSCLCs. In conclusion, the absence of the target did not block the development of treatments able to hit LKB1-mutated NSCLCs acting on several fronts. This will give patients a concrete chance to finally benefit from an effective therapy.
Collapse
Affiliation(s)
- Gloriana Ndembe
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilenia Intini
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elisa Perin
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Mirko Marabese
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elisa Caiola
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Paolo Mendogni
- Thoracic Surgery and Lung Transplantation Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenzo Rosso
- Thoracic Surgery and Lung Transplantation Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Massimo Broggini
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marika Colombo
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
11
|
Salt inducible kinases 2 and 3 are required for thymic T cell development. Sci Rep 2021; 11:21550. [PMID: 34732767 PMCID: PMC8566462 DOI: 10.1038/s41598-021-00986-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 10/15/2021] [Indexed: 12/22/2022] Open
Abstract
Salt Inducible Kinases (SIKs), of which there are 3 isoforms, are established to play roles in innate immunity, metabolic control and neuronal function, but their role in adaptive immunity is unknown. To address this gap, we used a combination of SIK knockout and kinase-inactive knock-in mice. The combined loss of SIK1 and SIK2 activity did not block T cell development. Conditional knockout of SIK3 in haemopoietic cells, driven by a Vav-iCre transgene, resulted in a moderate reduction in the numbers of peripheral T cells, but normal B cell numbers. Constitutive knockout of SIK2 combined with conditional knockout of SIK3 in the haemopoietic cells resulted in a severe reduction in peripheral T cells without reducing B cell number. A similar effect was seen when SIK3 deletion was driven via CD4-Cre transgene to delete at the DP stage of T cell development. Analysis of the SIK2/3 Vav-iCre mice showed that thymocyte number was greatly reduced, but development was not blocked completely as indicated by the presence of low numbers CD4 and CD8 single positive cells. SIK2 and SIK3 were not required for rearrangement of the TCRβ locus, or for low level cell surface expression of the TCR complex on the surface of CD4/CD8 double positive thymocytes. In the absence of both SIK2 and SIK3, progression to mature single positive cells was greatly reduced, suggesting a defect in negative and/or positive selection in the thymus. In agreement with an effect on negative selection, increased apoptosis was seen in thymic TCRbeta high/CD5 positive cells from SIK2/3 knockout mice. Together, these results show an important role for SIK2 and SIK3 in thymic T cell development.
Collapse
|
12
|
Modulating Tumor Microenvironment: A Review on STK11 Immune Properties and Predictive vs Prognostic Role for Non-small-cell Lung Cancer Immunotherapy. Curr Treat Options Oncol 2021; 22:96. [PMID: 34524570 DOI: 10.1007/s11864-021-00891-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 01/07/2023]
Abstract
OPINION STATEMENT The quest for immunotherapy (IT) biomarkers is an element of highest clinical interest in both solid and hematologic tumors. In non-small-cell lung cancer (NSCLC) patients, besides PD-L1 expression evaluation with its intrinsic limitations, tissue and circulating parameters, likely portraying the tumor and its stromal/immune counterparts, have been proposed as potential predictors of IT responsiveness. STK11 mutations have been globally labeled as markers of IT resistance. After a thorough literature review, STK11 mutations condition the prognosis of NSCLC patients receiving ICI-containing regimens, implying a relevant biological and clinical significance. On the other hand, waiting for prospective and solid data, the putative negative predictive value of STK11 inactivation towards IT is sustained by less evidence. The physiologic regulation of multiple cellular pathways performed by STK11 likely explains the multifaceted modifications in tumor cells, stroma, and tumor immune microenvironment (TIME) observed in STK11 mutant lung cancer, particularly explored in the molecular subgroup of KRAS co-mutation. IT approaches available thus far in NSCLC, mainly represented by anti-PD-1/PD-L1 inhibitors, are not promising in the case of STK11 inactivation. Perceptive strategies aimed at modulating the TIME, regardless of STK11 status or specifically addressed to STK11-mutated cases, will hopefully provide valid therapeutic options to be adopted in the clinical practice.
Collapse
|
13
|
Mayer KA, Smole U, Zhu C, Derdak S, Minervina AA, Salnikova M, Witzeneder N, Christamentl A, Boucheron N, Waidhofer-Söllner P, Trauner M, Hoermann G, Schmetterer KG, Mamedov IZ, Bilban M, Ellmeier W, Pickl WF, Gualdoni GA, Zlabinger GJ. The energy sensor AMPK orchestrates metabolic and translational adaptation in expanding T helper cells. FASEB J 2021; 35:e21217. [PMID: 33715236 PMCID: PMC8252394 DOI: 10.1096/fj.202001763rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 12/21/2022]
Abstract
The importance of cellular metabolic adaptation in inducing robust T cell responses is well established. However, the mechanism by which T cells link information regarding nutrient supply to clonal expansion and effector function is still enigmatic. Herein, we report that the metabolic sensor adenosine monophosphate-activated protein kinase (AMPK) is a critical link between cellular energy demand and translational activity and, thus, orchestrates optimal expansion of T cells in vivo. AMPK deficiency did not affect T cell fate decision, activation, or T effector cell generation; however, the magnitude of T cell responses in murine in vivo models of T cell activation was markedly reduced. This impairment was global, as all T helper cell subsets were similarly sensitive to loss of AMPK which resulted in reduced T cell accumulation in peripheral organs and reduced disease severity in pathophysiologically as diverse models as T cell transfer colitis and allergic airway inflammation. T cell receptor repertoire analysis confirmed similar clonotype frequencies in different lymphoid organs, thereby supporting the concept of a quantitative impairment in clonal expansion rather than a skewed qualitative immune response. In line with these findings, in-depth metabolic analysis revealed a decrease in T cell oxidative metabolism, and gene set enrichment analysis indicated a major reduction in ribosomal biogenesis and mRNA translation in AMPK-deficient T cells. We, thus, provide evidence that through its interference with these delicate processes, AMPK orchestrates the quantitative, but not the qualitative, manifestation of primary T cell responses in vivo.
Collapse
Affiliation(s)
- Katharina A Mayer
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ursula Smole
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ci Zhu
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Sophia Derdak
- Core Facilities, Medical University of Vienna, Vienna, Austria
| | - Anastasia A Minervina
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Maria Salnikova
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Nadine Witzeneder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.,Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Anna Christamentl
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Nicole Boucheron
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Petra Waidhofer-Söllner
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gregor Hoermann
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.,MLL Munich Leukemia Laboratory, Munich, Germany
| | - Klaus G Schmetterer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Ilgar Z Mamedov
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Martin Bilban
- Core Facilities, Medical University of Vienna, Vienna, Austria.,Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Guido A Gualdoni
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gerhard J Zlabinger
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Corrado M, Samardžić D, Giacomello M, Rana N, Pearce EL, Scorrano L. Deletion of the mitochondria-shaping protein Opa1 during early thymocyte maturation impacts mature memory T cell metabolism. Cell Death Differ 2021; 28:2194-2206. [PMID: 33649469 PMCID: PMC8257785 DOI: 10.1038/s41418-021-00747-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 07/30/2020] [Accepted: 01/28/2021] [Indexed: 01/31/2023] Open
Abstract
Optic atrophy 1 (OPA1), a mitochondria-shaping protein controlling cristae biogenesis and respiration, is required for memory T cell function, but whether it affects intrathymic T cell development is unknown. Here we show that OPA1 is necessary for thymocyte maturation at the double negative (DN)3 stage when rearrangement of the T cell receptor β (Tcrβ) locus occurs. By profiling mitochondrial function at different stages of thymocyte maturation, we find that DN3 cells rely on oxidative phosphorylation. Consistently, Opa1 deletion during early T cell development impairs respiration of DN3 cells and reduces their number. Opa1-deficient DN3 cells indeed display stronger TCR signaling and are more prone to cell death. The surviving Opa1-/- thymocytes that reach the periphery as mature T cells display an effector memory phenotype even in the absence of antigenic stimulation but are unable to generate metabolically fit long-term memory T cells. Thus, mitochondrial defects early during T cell development affect mature T cell function.
Collapse
Affiliation(s)
- Mauro Corrado
- Veneto Institute of Molecular Medicine, Padua, Italy ,grid.429509.30000 0004 0491 4256Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Dijana Samardžić
- Veneto Institute of Molecular Medicine, Padua, Italy ,grid.5608.b0000 0004 1757 3470Department of Biology, University of Padua, Padua, Italy
| | - Marta Giacomello
- grid.5608.b0000 0004 1757 3470Department of Biology, University of Padua, Padua, Italy
| | - Nisha Rana
- grid.429509.30000 0004 0491 4256Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Erika L. Pearce
- grid.429509.30000 0004 0491 4256Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Luca Scorrano
- Veneto Institute of Molecular Medicine, Padua, Italy ,grid.5608.b0000 0004 1757 3470Department of Biology, University of Padua, Padua, Italy
| |
Collapse
|
15
|
Pandit M, Timilshina M, Chang JH. LKB1-PTEN axis controls Th1 and Th17 cell differentiation via regulating mTORC1. J Mol Med (Berl) 2021; 99:1139-1150. [PMID: 34003330 DOI: 10.1007/s00109-021-02090-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 01/09/2023]
Abstract
Immuno-environmental change triggers CD4+ T cell differentiation. T cell specialization activates metabolic signal pathways to meet energy requirements. Defective T cell-intrinsic metabolism can aggravate immunopathology in chronic diseases. Liver kinase B1 (LKB1) deletion in T cell or Treg cell results in systemic inflammatory symptoms, indicating a crucial role of LKB1 in T cells. However, the mechanism underlying the development of inflammation is unclear. In our study, LKB1-deficient T cells were differentiated preferentially into Th1 and Th17 cells in the absence of inflammation. Mechanistically, LKB1 directly binds and phosphorylates phosphatase and tensin homolog (PTEN), an upstream regulator of mammalian target of rapamycin complex 1 (mTORC1), which is independent of AMP-activated protein kinase (AMPK). As a result, LKB1 deficiency was associated with increased mTORC1 activity and hypoxia-inducible factor (HIF)1α-mediated glycolysis. Inhibition of glycolysis or biallelic disruption of LKB1 and HIF1α abrogated this phenotype, suggesting Th1- and Th17-biased differentiation in LKB1-deficient T cells was mediated by glycolysis. Our study indicates that LKB1 controls mTORC1 signaling through PTEN activation, not AMPK, which controls effector T cell differentiation in a T cell-intrinsic manner. KEY MESSAGES: • LKB1 maintains T cell homeostasis in a cell intrinsic manner. • Glycolysis is involved in the LKB1-mediated T cell differentiation. • LKB1 phosphorylates PTEN, not AMPK, to regulate mTORC1.
Collapse
Affiliation(s)
- Mahesh Pandit
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | | | - Jae-Hoon Chang
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
16
|
Werlen G, Jain R, Jacinto E. MTOR Signaling and Metabolism in Early T Cell Development. Genes (Basel) 2021; 12:genes12050728. [PMID: 34068092 PMCID: PMC8152735 DOI: 10.3390/genes12050728] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) controls cell fate and responses via its functions in regulating metabolism. Its role in controlling immunity was unraveled by early studies on the immunosuppressive properties of rapamycin. Recent studies have provided insights on how metabolic reprogramming and mTOR signaling impact peripheral T cell activation and fate. The contribution of mTOR and metabolism during early T-cell development in the thymus is also emerging and is the subject of this review. Two major T lineages with distinct immune functions and peripheral homing organs diverge during early thymic development; the αβ- and γδ-T cells, which are defined by their respective TCR subunits. Thymic T-regulatory cells, which have immunosuppressive functions, also develop in the thymus from positively selected αβ-T cells. Here, we review recent findings on how the two mTOR protein complexes, mTORC1 and mTORC2, and the signaling molecules involved in the mTOR pathway are involved in thymocyte differentiation. We discuss emerging views on how metabolic remodeling impacts early T cell development and how this can be mediated via mTOR signaling.
Collapse
|
17
|
Dai J, Chen Q, Huang W, Shi K, Zhang Y, Li T, Mou T, Huang Z, Wu Z. Liver kinase B1 attenuates liver ischemia/reperfusion injury via inhibiting the NLRP3 inflammasome. Acta Biochim Biophys Sin (Shanghai) 2021; 53:601-611. [PMID: 33783473 DOI: 10.1093/abbs/gmab030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Indexed: 02/05/2023] Open
Abstract
Liver ischemia/reperfusion injury (IRI), a serious inflammatory response driven by innate immunity, occurs in liver surgeries such as liver resection and liver transplantation, leading to liver dysfunction, liver failure, and even rejection after transplantation. Liver kinase B1 (LKB1) plays a pivotal anti-inflammatory role in IRI. One of the most important factors involved in liver IRI is the aberrant activation of the nucleotide binding oligomerization domain like receptor (NLR) family, pyrin domain-containing 3 (NLRP3) inflammasome in Kupffer cells. However, the mechanisms underlying the effect of LKB1 on the NLRP3 inflammasome in liver IRI remain elusive. In this study, we found that the expression of LKB1 was decreased in liver IRI, while the NLRP3 inflammasome level was increased as shown, as revealed by RT-qPCR and western blot analysis. Furthermore, upregulation of LKB1 abrogated the expression of the NLRP3 inflammasome, which improved liver function and liver pathology in the liver IRI model in vivo. In vitro, overexpression of LKB1 inhibited the activation of NLRP3 inflammasome and nuclear factor-κB, while the inhibitory effect was reversed by silencing the expression of the forkhead box protein O1 in the RAW264.7 macrophage hypoxia/reoxygenation model. In conclusion, our results suggest that LKB1 exerts a protective effect against liver IRI by downregulating the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Jiangwen Dai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Qingsong Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Weifeng Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Kun Shi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Yuke Zhang
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tingting Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Tong Mou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Zuotian Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| |
Collapse
|
18
|
Tsogas FK, Majerczyk D, Hart PC. Possible Role of Metformin as an Immune Modulator in the Tumor Microenvironment of Ovarian Cancer. Int J Mol Sci 2021; 22:ijms22020867. [PMID: 33467127 PMCID: PMC7830067 DOI: 10.3390/ijms22020867] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 12/14/2022] Open
Abstract
Growing evidence suggests that the immune component of the tumor microenvironment (TME) may be highly involved in the progression of high-grade serous ovarian cancer (HGSOC), as an immunosuppressive TME is associated with worse patient outcomes. Due to the poor prognosis of HGSOC, new therapeutic strategies targeting the TME may provide a potential path forward for preventing disease progression to improve patient survival. One such postulated approach is the repurposing of the type 2 diabetes medication, metformin, which has shown promise in reducing HGSOC tumor progression in retrospective epidemiological analyses and through numerous preclinical studies. Despite its potential utility in treating HGSOC, and that the immune TME is considered as a key factor in the disease’s progression, little data has definitively shown the ability of metformin to target this component of the TME. In this brief review, we provide a summary of the current understanding of the effects of metformin on leukocyte function in ovarian cancer and, coupled with data from other related disease states, posit the potential mechanisms by which the drug may enhance the anti-tumorigenic effects of immune cells to improve HGSOC patient survival.
Collapse
Affiliation(s)
- Faye K. Tsogas
- College of Science, Health and Pharmacy, Roosevelt University, Schaumburg, IL 60173, USA; (F.K.T.); (D.M.)
| | - Daniel Majerczyk
- College of Science, Health and Pharmacy, Roosevelt University, Schaumburg, IL 60173, USA; (F.K.T.); (D.M.)
- Loyola Medicine, Berwyn, IL 60402, USA
| | - Peter C. Hart
- College of Science, Health and Pharmacy, Roosevelt University, Schaumburg, IL 60173, USA; (F.K.T.); (D.M.)
- Correspondence:
| |
Collapse
|
19
|
Galgani M, Bruzzaniti S, La Rocca C, Micillo T, de Candia P, Bifulco M, Matarese G. Immunometabolism of regulatory T cells in cancer. Mol Aspects Med 2020; 77:100936. [PMID: 33250195 DOI: 10.1016/j.mam.2020.100936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 02/08/2023]
Abstract
Regulatory T (Treg) cells are known to orchestrate the regulatory mechanisms aimed at suppressing pathological auto-reactive immune responses and are thus key in ensuring the maintenance of immune homeostasis. On the other hand, the presence of Treg cells with enhanced suppressive capability in a plethora of human cancers represents a major obstacle to an effective anti-cancer immune response. A relevant research effort has thus been dedicated to comprehend Treg cell biology, leading to a continuously refining characterization of their phenotype and function and unveiling the central role of metabolism in ensuring Treg cell fitness in cancer. Here we focus on how the peculiar biochemical characteristics of the tumor microenvironment actually support Treg cell metabolic activation and favor their selective survival and proliferation. Moreover, we examine the key metabolic pathways that may become useful targets of novel treatments directed at hampering tumor resident Treg cell proficiency, thus representing the next research frontier in cancer immunotherapy.
Collapse
Affiliation(s)
- Mario Galgani
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131, Napoli, Italy; Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), 80131, Napoli, Italy
| | - Sara Bruzzaniti
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), 80131, Napoli, Italy; Dipartimento di Biologia, Università Degli Studi di Napoli "Federico II", 80126, Napoli, Italy
| | - Claudia La Rocca
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), 80131, Napoli, Italy
| | - Teresa Micillo
- Unità di Neuroimmunologia, Fondazione Santa Lucia IRCCS, 00179, Roma, Italy
| | | | - Maurizio Bifulco
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131, Napoli, Italy
| | - Giuseppe Matarese
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131, Napoli, Italy; Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), 80131, Napoli, Italy.
| |
Collapse
|
20
|
Balyan R, Gautam N, Gascoigne NR. The Ups and Downs of Metabolism during the Lifespan of a T Cell. Int J Mol Sci 2020; 21:E7972. [PMID: 33120978 PMCID: PMC7663011 DOI: 10.3390/ijms21217972] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/16/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023] Open
Abstract
Understanding the various mechanisms that govern the development, activation, differentiation, and functions of T cells is crucial as it could provide opportunities for therapeutic interventions to disrupt immune pathogenesis. Immunometabolism is one such area that has garnered significant interest in the recent past as it has become apparent that cellular metabolism is highly dynamic and has a tremendous impact on the ability of T cells to grow, activate, and differentiate. In each phase of the lifespan of a T-cell, cellular metabolism has to be tailored to match the specific functional requirements of that phase. Resting T cells rely on energy-efficient oxidative metabolism but rapidly shift to a highly glycolytic metabolism upon activation in order to meet the bioenergetically demanding process of growth and proliferation. However, upon antigen clearance, T cells return to a more quiescent oxidative metabolism to support T cell memory generation. In addition, each helper T cell subset engages distinct metabolic pathways to support their functional needs. In this review, we provide an overview of the metabolic changes that occur during the lifespan of a T cell and discuss several important studies that provide insights into the regulation of the metabolic landscape of T cells and how they impact T cell development and function.
Collapse
Affiliation(s)
| | | | - Nicholas R.J. Gascoigne
- Immunology Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; (R.B.); (N.G.)
| |
Collapse
|
21
|
Ramstead AG, Wallace JA, Lee SH, Bauer KM, Tang WW, Ekiz HA, Lane TE, Cluntun AA, Bettini ML, Round JL, Rutter J, O'Connell RM. Mitochondrial Pyruvate Carrier 1 Promotes Peripheral T Cell Homeostasis through Metabolic Regulation of Thymic Development. Cell Rep 2020; 30:2889-2899.e6. [PMID: 32130894 PMCID: PMC7170217 DOI: 10.1016/j.celrep.2020.02.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/10/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic pathways regulate T cell development and function, but many remain understudied. Recently, the mitochondrial pyruvate carrier (MPC) was identified as the transporter that mediates pyruvate entry into mitochondria, promoting pyruvate oxidation. Here we find that deleting Mpc1, an obligate MPC subunit, in the hematopoietic system results in a specific reduction in peripheral αβ T cell numbers. MPC1-deficient T cells have defective thymic development at the β-selection, intermediate single positive (ISP)-to-double-positive (DP), and positive selection steps. We find that early thymocytes deficient in MPC1 display alterations to multiple pathways involved in T cell development. This results in preferred escape of more activated T cells. Finally, mice with hematopoietic deletion of Mpc1 are more susceptible to experimental autoimmune encephalomyelitis. Altogether, our study demonstrates that pyruvate oxidation by T cell precursors is necessary for optimal αβ T cell development and that its deficiency results in reduced but activated peripheral T cell populations.
Collapse
Affiliation(s)
- Andrew G Ramstead
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Jared A Wallace
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Soh-Hyun Lee
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Kaylyn M Bauer
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - William W Tang
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - H Atakan Ekiz
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Thomas E Lane
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Ahmad A Cluntun
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Matthew L Bettini
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - June L Round
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Jared Rutter
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Ryan M O'Connell
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
22
|
Kalinin S, Meares GP, Lin SX, Pietruczyk EA, Saher G, Spieth L, Nave KA, Boullerne AI, Lutz SE, Benveniste EN, Feinstein DL. Liver kinase B1 depletion from astrocytes worsens disease in a mouse model of multiple sclerosis. Glia 2019; 68:600-616. [PMID: 31664743 PMCID: PMC7337013 DOI: 10.1002/glia.23742] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/19/2019] [Accepted: 10/05/2019] [Indexed: 12/15/2022]
Abstract
Liver kinase B1 (LKB1) is a ubiquitously expressed kinase involved in the regulation of cell metabolism, growth, and inflammatory activation. We previously reported that a single nucleotide polymorphism in the gene encoding LKB1 is a risk factor for multiple sclerosis (MS). Since astrocyte activation and metabolic function have important roles in regulating neuroinflammation and neuropathology, we examined the serine/threonine kinase LKB1 in astrocytes in a chronic experimental autoimmune encephalomyelitis mouse model of MS. To reduce LKB1, a heterozygous astrocyte-selective conditional knockout (het-cKO) model was used. While disease incidence was similar, disease severity was worsened in het-cKO mice. RNAseq analysis identified Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched in het-cKO mice relating to mitochondrial function, confirmed by alterations in mitochondrial complex proteins and reductions in mRNAs related to astrocyte metabolism. Enriched pathways included major histocompatibility class II genes, confirmed by increases in MHCII protein in spinal cord and cerebellum of het-cKO mice. We observed increased numbers of CD4+ Th17 cells and increased neuronal damage in spinal cords of het-cKO mice, associated with reduced expression of choline acetyltransferase, accumulation of immunoglobulin-γ, and reduced expression of factors involved in motor neuron survival. In vitro, LKB1-deficient astrocytes showed reduced metabolic function and increased inflammatory activation. These data suggest that metabolic dysfunction in astrocytes, in this case due to LKB1 deficiency, can exacerbate demyelinating disease by loss of metabolic support and increase in the inflammatory environment.
Collapse
Affiliation(s)
- Sergey Kalinin
- Department of Anesthesiology, University of Illinois, Chicago, Illinois
| | - Gordon P Meares
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia
| | - Shao Xia Lin
- Department of Anesthesiology, University of Illinois, Chicago, Illinois
| | | | - Gesine Saher
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Gottingen, Germany
| | - Lena Spieth
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Gottingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Gottingen, Germany
| | - Anne I Boullerne
- Department of Anesthesiology, University of Illinois, Chicago, Illinois
| | - Sarah E Lutz
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, Illinois
| | - Etty N Benveniste
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Douglas L Feinstein
- Department of Anesthesiology, University of Illinois, Chicago, Illinois.,Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, Illinois
| |
Collapse
|
23
|
Karrunanithi S, Ravichandran KA, Hima L, Pratap UP, Vasantharekha R, ThyagaRajan S. Virgin coconut oil enhances neuroprotective and anti‐inflammatory factors in the thymus and mesenteric lymph nodes of rats. ACTA ACUST UNITED AC 2019. [DOI: 10.1111/cen3.12540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Sunil Karrunanithi
- Integrative Medicine Laboratory Department of Biotechnology School of Bioengineering SRM Institute of Science and Technology Kattankulathur India
| | - Kishore A. Ravichandran
- Integrative Medicine Laboratory Department of Biotechnology School of Bioengineering SRM Institute of Science and Technology Kattankulathur India
| | - Lalgi Hima
- Integrative Medicine Laboratory Department of Biotechnology School of Bioengineering SRM Institute of Science and Technology Kattankulathur India
| | - Uday P. Pratap
- Integrative Medicine Laboratory Department of Biotechnology School of Bioengineering SRM Institute of Science and Technology Kattankulathur India
| | - Ramasamy Vasantharekha
- Integrative Medicine Laboratory Department of Biotechnology School of Bioengineering SRM Institute of Science and Technology Kattankulathur India
| | - Srinivasan ThyagaRajan
- Integrative Medicine Laboratory Department of Biotechnology School of Bioengineering SRM Institute of Science and Technology Kattankulathur India
| |
Collapse
|
24
|
Borne AL, Huang T, McCloud RL, Pachaiyappan B, Bullock TNJ, Hsu KL. Deciphering T Cell Immunometabolism with Activity-Based Protein Profiling. Curr Top Microbiol Immunol 2019; 420:175-210. [PMID: 30128827 PMCID: PMC7134364 DOI: 10.1007/82_2018_124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
As a major sentinel of adaptive immunity, T cells seek and destroy diseased cells using antigen recognition to achieve molecular specificity. Strategies to block checkpoint inhibition of T cell activity and thus reawaken the patient's antitumor immune responses are rapidly becoming standard of care for treatment of diverse cancers. Adoptive transfer of patient T cells genetically engineered with tumor-targeting capabilities is redefining the field of personalized medicines. The diverse opportunities for exploiting T cell biology in the clinic have prompted new efforts to expand the scope of targets amenable to immuno-oncology. Given the complex spatiotemporal regulation of T cell function and fate, new technologies capable of global molecular profiling in vivo are needed to guide selection of appropriate T cell targets and subsets. In this chapter, we describe the use of activity-based protein profiling (ABPP) to illuminate different aspects of T cell metabolism and signaling as fertile starting points for investigation. We highlight the merits of ABPP methods to enable target, inhibitor, and biochemical pathway discovery of T cells in the burgeoning field of immuno-oncology.
Collapse
Affiliation(s)
- Adam L Borne
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Tao Huang
- Department of Chemistry, University of Virginia, McCormick Road, P.O. Box 400319, Charlottesville, VA, 22904, USA
| | - Rebecca L McCloud
- Department of Chemistry, University of Virginia, McCormick Road, P.O. Box 400319, Charlottesville, VA, 22904, USA
| | - Boobalan Pachaiyappan
- Department of Chemistry, University of Virginia, McCormick Road, P.O. Box 400319, Charlottesville, VA, 22904, USA
| | - Timothy N J Bullock
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia, McCormick Road, P.O. Box 400319, Charlottesville, VA, 22904, USA.
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| |
Collapse
|
25
|
Dissecting the heterogeneity of DENV vaccine-elicited cellular immunity using single-cell RNA sequencing and metabolic profiling. Nat Commun 2019; 10:3666. [PMID: 31413301 PMCID: PMC6694189 DOI: 10.1038/s41467-019-11634-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/10/2019] [Indexed: 12/11/2022] Open
Abstract
Generating effective and durable T cell immunity is a critical prerequisite for vaccination against dengue virus (DENV) and other viral diseases. However, understanding the molecular mechanisms of vaccine-elicited T cell immunity remains a critical knowledge gap in vaccinology. In this study, we utilize single-cell RNA sequencing (scRNAseq) and longitudinal TCR clonotype analysis to identify a unique transcriptional signature present in acutely activated and clonally-expanded T cells that become committed to the memory repertoire. This effector/memory-associated transcriptional signature is dominated by a robust metabolic transcriptional program. Based on this transcriptional signature, we are able to define a set of markers that identify the most durable vaccine-reactive memory-precursor CD8+ T cells. This study illustrates the power of scRNAseq as an analytical tool to assess the molecular mechanisms of host control and vaccine modality in determining the magnitude, diversity and persistence of vaccine-elicited cell-mediated immunity. Using a combination of single-cell RNA sequencing and TCR clonotype analysis on longitudinal samples from dengue vaccinated individuals, Waickman et al. here define a transcriptional signature in acutely-activated T cells that is associated with durable CD8+ T cell memory.
Collapse
|
26
|
Waters LR, Ahsan FM, Ten Hoeve J, Hong JS, Kim DNH, Minasyan A, Braas D, Graeber TG, Zangle TA, Teitell MA. Ampk regulates IgD expression but not energy stress with B cell activation. Sci Rep 2019; 9:8176. [PMID: 31160601 PMCID: PMC6546716 DOI: 10.1038/s41598-019-43985-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/28/2019] [Indexed: 12/25/2022] Open
Abstract
Ampk is an energy gatekeeper that responds to decreases in ATP by inhibiting energy-consuming anabolic processes and promoting energy-generating catabolic processes. Recently, we showed that Lkb1, an understudied kinase in B lymphocytes and a major upstream kinase for Ampk, had critical and unexpected roles in activating naïve B cells and in germinal center formation. Therefore, we examined whether Lkb1 activities during B cell activation depend on Ampk and report surprising Ampk activation with in vitro B cell stimulation in the absence of energy stress, coupled to rapid biomass accumulation. Despite Ampk activation and a controlling role for Lkb1 in B cell activation, Ampk knockout did not significantly affect B cell activation, differentiation, nutrient dynamics, gene expression, or humoral immune responses. Instead, Ampk loss specifically repressed the transcriptional expression of IgD and its regulator, Zfp318. Results also reveal that early activation of Ampk by phenformin treatment impairs germinal center formation but does not significantly alter antibody responses. Combined, the data show an unexpectedly specific role for Ampk in the regulation of IgD expression during B cell activation.
Collapse
Affiliation(s)
- Lynnea R Waters
- Molecular Biology Interdepartmental Program, UCLA, Los Angeles, CA, 90095, USA
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Fasih M Ahsan
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Johanna Ten Hoeve
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, 90095, USA
- UCLA Metabolomics Center, UCLA, Los Angeles, CA, 90095, USA
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA, 90095, USA
| | - Jason S Hong
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Diane N H Kim
- Department of Bioengineering, UCLA, Los Angeles, CA, 90095, USA
| | - Aspram Minasyan
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, 90095, USA
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA, 90095, USA
| | - Daniel Braas
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, 90095, USA
- UCLA Metabolomics Center, UCLA, Los Angeles, CA, 90095, USA
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA, 90095, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, 90095, USA
- UCLA Metabolomics Center, UCLA, Los Angeles, CA, 90095, USA
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
- Broad Stem Cell Research Center, UCLA, Los Angeles, CA, 90095, USA
| | - Thomas A Zangle
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Michael A Teitell
- Molecular Biology Interdepartmental Program, UCLA, Los Angeles, CA, 90095, USA.
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA, 90095, USA.
- Department of Bioengineering, UCLA, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA.
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA.
- Broad Stem Cell Research Center, UCLA, Los Angeles, CA, 90095, USA.
- Department of Pediatrics, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
27
|
Chapman NM, Shrestha S, Chi H. Metabolism in Immune Cell Differentiation and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1011:1-85. [PMID: 28875486 DOI: 10.1007/978-94-024-1170-6_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The immune system is a central determinant of organismal health. Functional immune responses require quiescent immune cells to rapidly grow, proliferate, and acquire effector functions when they sense infectious agents or other insults. Specialized metabolic programs are critical regulators of immune responses, and alterations in immune metabolism can cause immunological disorders. There has thus been growing interest in understanding how metabolic processes control immune cell functions under normal and pathophysiological conditions. In this chapter, we summarize how metabolic programs are tuned and what the physiological consequences of metabolic reprogramming are as they relate to immune cell homeostasis, differentiation, and function.
Collapse
Affiliation(s)
- Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Sharad Shrestha
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
28
|
Raud B, McGuire PJ, Jones RG, Sparwasser T, Berod L. Fatty acid metabolism in CD8 + T cell memory: Challenging current concepts. Immunol Rev 2019; 283:213-231. [PMID: 29664569 DOI: 10.1111/imr.12655] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CD8+ T cells are key members of the adaptive immune response against infections and cancer. As we discuss in this review, these cells can present diverse metabolic requirements, which have been intensely studied during the past few years. Our current understanding suggests that aerobic glycolysis is a hallmark of activated CD8+ T cells, while naive and memory (Tmem ) cells often rely on oxidative phosphorylation, and thus mitochondrial metabolism is a crucial determinant of CD8+ Tmem cell development. Moreover, it has been proposed that CD8+ Tmem cells have a specific requirement for the oxidation of long-chain fatty acids (LC-FAO), a process modulated in lymphocytes by the enzyme CPT1A. However, this notion relies heavily on the metabolic analysis of in vitro cultures and on chemical inhibition of CPT1A. Therefore, we introduce more recent studies using genetic models to demonstrate that CPT1A-mediated LC-FAO is dispensable for the development of CD8+ T cell memory and protective immunity, and question the use of chemical inhibitors to target this enzyme. We discuss insights obtained from those and other studies analyzing the metabolic characteristics of CD8+ Tmem cells, and emphasize how T cells exhibit flexibility in their choice of metabolic fuel.
Collapse
Affiliation(s)
- Brenda Raud
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Peter J McGuire
- Metabolism, Infection, and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Russell G Jones
- Department of Physiology, Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Luciana Berod
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| |
Collapse
|
29
|
Zhao FL, Ahn JJ, Chen ELY, Yi TJ, Stickle NH, Spaner D, Zúñiga-Pflücker JC, Dunn SE. Peroxisome Proliferator-Activated Receptor-δ Supports the Metabolic Requirements of Cell Growth in TCRβ-Selected Thymocytes and Peripheral CD4 + T Cells. THE JOURNAL OF IMMUNOLOGY 2018; 201:2664-2682. [PMID: 30257885 DOI: 10.4049/jimmunol.1800374] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022]
Abstract
During T cell development, progenitor thymocytes undergo a large proliferative burst immediately following successful TCRβ rearrangement, and defects in genes that regulate this proliferation have a profound effect on thymus cellularity and output. Although the signaling pathways that initiate cell cycling and nutrient uptake after TCRβ selection are understood, less is known about the transcriptional programs that regulate the metabolic machinery to promote biomass accumulation during this process. In this article, we report that mice with whole body deficiency in the nuclear receptor peroxisome proliferator-activated receptor-δ (PPARδmut) exhibit a reduction in spleen and thymus cellularity, with a decrease in thymocyte cell number starting at the double-negative 4 stage of thymocyte development. Although in vivo DNA synthesis was normal in PPARδmut thymocytes, studies in the OP9-delta-like 4 in vitro system of differentiation revealed that PPARδmut double-negative 3 cells underwent fewer cell divisions. Naive CD4+ T cells from PPARδmut mice also exhibited reduced proliferation upon TCR and CD28 stimulation in vitro. Growth defects in PPAR-δ-deficient thymocytes and peripheral CD4+ T cells correlated with decreases in extracellular acidification rate, mitochondrial reserve, and expression of a host of genes involved in glycolysis, oxidative phosphorylation, and lipogenesis. By contrast, mice with T cell-restricted deficiency of Ppard starting at the double-positive stage of thymocyte development, although exhibiting defective CD4+ T cell growth, possessed a normal T cell compartment, pointing to developmental defects as a cause of peripheral T cell lymphopenia in PPARδmut mice. These findings implicate PPAR-δ as a regulator of the metabolic program during thymocyte and T cell growth.
Collapse
Affiliation(s)
- Fei Linda Zhao
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jeeyoon Jennifer Ahn
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Edward L Y Chen
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tae Joon Yi
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Toronto General Hospital Research Institute, Toronto, Ontario M5G 2C4, Canada
| | | | - David Spaner
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada; and
| | - Juan Carlos Zúñiga-Pflücker
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada; and
| | - Shannon E Dunn
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; .,Toronto General Hospital Research Institute, Toronto, Ontario M5G 2C4, Canada.,Women's College Health Research Institute, Toronto, Ontario M5G 1N8, Canada
| |
Collapse
|
30
|
Cabon L, Bertaux A, Brunelle-Navas MN, Nemazanyy I, Scourzic L, Delavallée L, Vela L, Baritaud M, Bouchet S, Lopez C, Quang Van V, Garbin K, Chateau D, Gilard F, Sarfati M, Mercher T, Bernard OA, Susin SA. AIF loss deregulates hematopoiesis and reveals different adaptive metabolic responses in bone marrow cells and thymocytes. Cell Death Differ 2018; 25:983-1001. [PMID: 29323266 PMCID: PMC5943248 DOI: 10.1038/s41418-017-0035-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/21/2017] [Accepted: 10/16/2017] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial metabolism is a tightly regulated process that plays a central role throughout the lifespan of hematopoietic cells. Herein, we analyze the consequences of the mitochondrial oxidative phosphorylation (OXPHOS)/metabolism disorder associated with the cell-specific hematopoietic ablation of apoptosis-inducing factor (AIF). AIF-null (AIF-/Y ) mice developed pancytopenia that was associated with hypocellular bone marrow (BM) and thymus atrophy. Although myeloid cells were relatively spared, the B-cell and erythroid lineages were altered with increased frequencies of precursor B cells, pro-erythroblasts I, and basophilic erythroblasts II. T-cell populations were dramatically reduced with a thymopoiesis blockade at a double negative (DN) immature state, with DN1 accumulation and delayed DN2/DN3 and DN3/DN4 transitions. In BM cells, the OXPHOS/metabolism dysfunction provoked by the loss of AIF was counterbalanced by the augmentation of the mitochondrial biogenesis and a shift towards anaerobic glycolysis. Nevertheless, in a caspase-independent process, the resulting excess of reactive oxygen species compromised the viability of the hematopoietic stem cells (HSC) and progenitors. This led to the progressive exhaustion of the HSC pool, a reduced capacity of the BM progenitors to differentiate into colonies in methylcellulose assays, and the absence of cell-autonomous HSC repopulating potential in vivo. In contrast to BM cells, AIF-/Y thymocytes compensated for the OXPHOS breakdown by enhancing fatty acid β-oxidation. By over-expressing CPT1, ACADL and PDK4, three key enzymes facilitating fatty acid β-oxidation (e.g., palmitic acid assimilation), the AIF-/Y thymocytes retrieved the ATP levels of the AIF +/Y cells. As a consequence, it was possible to significantly reestablish AIF-/Y thymopoiesis in vivo by feeding the animals with a high-fat diet complemented with an antioxidant. Overall, our data reveal that the mitochondrial signals regulated by AIF are critical to hematopoietic decision-making. Emerging as a link between mitochondrial metabolism and hematopoietic cell fate, AIF-mediated OXPHOS regulation represents a target for the development of new immunomodulatory therapeutics.
Collapse
Affiliation(s)
- Lauriane Cabon
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Audrey Bertaux
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Marie-Noëlle Brunelle-Navas
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Ivan Nemazanyy
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Laurianne Scourzic
- INSERM U1170, Institut Gustave Roussy, Villejuif, France. Université Paris-Sud/Paris Saclay, Orsay, France
| | - Laure Delavallée
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Laura Vela
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Mathieu Baritaud
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Sandrine Bouchet
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Cécile Lopez
- INSERM U1170, Institut Gustave Roussy, Villejuif, France. Université Paris-Sud/Paris Saclay, Orsay, France
| | - Vu Quang Van
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Kevin Garbin
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
- Intestine: Nutrition, Barrier, and Diseases Team, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Paris, France
| | - Danielle Chateau
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
- Intestine: Nutrition, Barrier, and Diseases Team, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Paris, France
| | - Françoise Gilard
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université d'Evry, Université Paris-Diderot, Université Paris-Sud/Paris Saclay, Orsay, France
| | - Marika Sarfati
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Thomas Mercher
- INSERM U1170, Institut Gustave Roussy, Villejuif, France. Université Paris-Sud/Paris Saclay, Orsay, France
| | - Olivier A Bernard
- INSERM U1170, Institut Gustave Roussy, Villejuif, France. Université Paris-Sud/Paris Saclay, Orsay, France
| | - Santos A Susin
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Paris, France.
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France.
| |
Collapse
|
31
|
He N, Fan W, Henriquez B, Yu RT, Atkins AR, Liddle C, Zheng Y, Downes M, Evans RM. Metabolic control of regulatory T cell (Treg) survival and function by Lkb1. Proc Natl Acad Sci U S A 2017; 114:12542-12547. [PMID: 29109251 PMCID: PMC5703326 DOI: 10.1073/pnas.1715363114] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The metabolic programs of functionally distinct T cell subsets are tailored to their immunologic activities. While quiescent T cells use oxidative phosphorylation (OXPHOS) for energy production, and effector T cells (Teffs) rely on glycolysis for proliferation, the distinct metabolic features of regulatory T cells (Tregs) are less well established. Here we show that the metabolic sensor LKB1 is critical to maintain cellular metabolism and energy homeostasis in Tregs. Treg-specific deletion of Lkb1 in mice causes loss of Treg number and function, leading to a fatal, early-onset autoimmune disorder. Tregs lacking Lkb1 have defective mitochondria, compromised OXPHOS, depleted cellular ATP, and altered cellular metabolism pathways that compromise their survival and function. Furthermore, we demonstrate that the function of LKB1 in Tregs is largely independent of the AMP-activated protein kinase, but is mediated by the MAP/microtubule affinity-regulating kinases and salt-inducible kinases. Our results define a metabolic checkpoint in Tregs that couples metabolic regulation to immune homeostasis and tolerance.
Collapse
Affiliation(s)
- Nanhai He
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Weiwei Fan
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Brian Henriquez
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Ruth T Yu
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Annette R Atkins
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research and Sydney Medical School, Westmead Hospital, University of Sydney, Westmead, NSW 2145, Australia
| | - Ye Zheng
- Nomis Laboratories for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Michael Downes
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037;
| | - Ronald M Evans
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037;
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037
| |
Collapse
|
32
|
Wang J, Li Z, Gao L, Qi Y, Zhu H, Qin X. The regulation effect of AMPK in immune related diseases. SCIENCE CHINA-LIFE SCIENCES 2017; 61:523-533. [PMID: 29127585 DOI: 10.1007/s11427-017-9169-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/28/2017] [Indexed: 12/12/2022]
|
33
|
Abstract
Regulatory T (Treg) cells are a distinct T-cell lineage characterized by sustained Foxp3 expression and potent suppressor function, but the upstream dominant factors that preserve Treg lineage-specific features are mostly unknown. Here, we show that Lkb1 maintains Treg cell lineage identity by stabilizing Foxp3 expression and enforcing suppressor function. Upon T-cell receptor (TCR) stimulation Lkb1 protein expression is upregulated in Treg cells but not in conventional T cells. Mice with Treg cell-specific deletion of Lkb1 develop a fatal early-onset autoimmune disease, with no Foxp3 expression in most Treg cells. Lkb1 stabilizes Foxp3 expression by preventing STAT4-mediated methylation of the conserved noncoding sequence 2 (CNS2) in the Foxp3 locus. Independent of maintaining Foxp3 expression, Lkb1 programs the expression of a wide spectrum of immunosuppressive genes, through mechanisms involving the augmentation of TGF-β signalling. These findings identify a critical function of Lkb1 in maintaining Treg cell lineage identity. The protein kinase Lkb1 has been shown to limit conventional T cell activation and pro-inflammatory functions. Here the authors show that Lkb1 also maintains Foxp3 expression and suppressive function in regulatory T (Treg) cells, and that Treg-specific Lkb1-deficient mice develop fatal autoimmune disease.
Collapse
|
34
|
Ma EH, Poffenberger MC, Wong AHT, Jones RG. The role of AMPK in T cell metabolism and function. Curr Opin Immunol 2017; 46:45-52. [DOI: 10.1016/j.coi.2017.04.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/07/2017] [Indexed: 12/19/2022]
|
35
|
Xu Z, Liu J, Shan T. New Roles of Lkb1 in Regulating Adipose Tissue Development and Thermogenesis. J Cell Physiol 2017; 232:2296-2298. [PMID: 27731500 DOI: 10.1002/jcp.25643] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 10/10/2016] [Indexed: 12/19/2022]
Abstract
Adipose tissues regulate energy metabolism and reproduction. There are three types of adipocytes (brown, white, and beige adipocytes) in mammals. White adipocytes store energy and are closely associated with obesity and other metabolic diseases. The beige and brown adipocytes have numerous mitochondria and high levels of UCP1 that dissipates lipid to generate heat and defend against obesity. The global epidemic of obesity and its associated metabolic diseases urge an imperative need for understating the regulation of adipogenesis. Liver kinase B1 (Lkb1), also called STK11, is a master kinase of the AMPK subfamily and plays crucial roles in regulating glucose and energy homeostasis in various metabolic tissues. In this review, we focus on the regulatory roles of Lkb1 in regulating preadipocyte differentiation, adipose tissue development, and thermogenesis. J. Cell. Physiol. 232: 2296-2298, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ziye Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jiaqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
Ren W, Liu G, Yin J, Tan B, Wu G, Bazer FW, Peng Y, Yin Y. Amino-acid transporters in T-cell activation and differentiation. Cell Death Dis 2017; 8:e2655. [PMID: 28252650 PMCID: PMC5386510 DOI: 10.1038/cddis.2016.222] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 12/25/2022]
Abstract
T-cell-mediated immune responses aim to protect mammals against cancers and infections, and are also involved in the pathogenesis of various inflammatory or autoimmune diseases. Cellular uptake and the utilization of nutrients is closely related to the T-cell fate decision and function. Research in this area has yielded surprising findings in the importance of amino-acid transporters for T-cell development, homeostasis, activation, differentiation and memory. In this review, we present current information on amino-acid transporters, such as LAT1 (l-leucine transporter), ASCT2 (l-glutamine transporter) and GAT-1 (γ-aminobutyric acid transporter-1), which are critically important for mediating peripheral naive T-cell homeostasis, activation and differentiation, especially for Th1 and Th17 cells, and even memory T cells. Mechanically, the influence of amino-acid transporters on T-cell fate decision may largely depend on the mechanistic target of rapamycin complex 1 (mTORC1) signaling. These discoveries remarkably demonstrate the role of amino-acid transporters in T-cell fate determination, and strongly indicate that manipulation of the amino-acid transporter-mTORC1 axis could ameliorate many inflammatory or autoimmune diseases associated with T-cell-based immune responses.
Collapse
Affiliation(s)
- Wenkai Ren
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Observation and Experiment Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China.,University of the Chinese Academy of Sciences, Beijing 10008, China
| | - Gang Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Observation and Experiment Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China
| | - Jie Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Observation and Experiment Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China
| | - Bie Tan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Observation and Experiment Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, TX 77843-2471, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, TX 77843-2471, USA
| | - Yuanyi Peng
- Chongqing Key Laboratory of Forage and Herbivore, College of Animal Science and Technology, Southwest University, Chongqing 400716, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Observation and Experiment Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China
| |
Collapse
|
37
|
Shan T, Zhang P, Xiong Y, Wang Y, Kuang S. Lkb1 deletion upregulates Pax7 expression through activating Notch signaling pathway in myoblasts. Int J Biochem Cell Biol 2016; 76:31-8. [PMID: 27131604 DOI: 10.1016/j.biocel.2016.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 03/19/2016] [Accepted: 04/26/2016] [Indexed: 11/28/2022]
Abstract
Satellite cells play crucial roles in mediating the growth, maintenance, and repair of postnatal skeletal muscle. Activated satellite cells (myoblasts) can divide symmetrically or asymmetrically to generate progenies that self-renewal, proliferate or differentiate. Pax7 is a defining marker of quiescent and activated satellite cells, but not differentiated myoblast. We demonstrate here that deletion of Lkb1 upregulates Pax7 expression in myoblasts and inhibits asymmetric divisions that generate differentiating progenies. Furthermore, we find that Lkb1 activates the Notch signaling pathway, which subsequently increases Pax7 expression and promotes self-renewal and proliferation while inhibiting differentiation. Mechanistic studies reveal that Lkb1 regulates Notch activation through AMPK-mTOR pathway in myoblasts. Together, these results establish a key role of Lkb1 in regulating myoblast division and cell fates choices.
Collapse
Affiliation(s)
- Tizhong Shan
- Department of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA.
| | - Pengpeng Zhang
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA
| | - Yan Xiong
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA
| | - Yizhen Wang
- Department of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shihuan Kuang
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, West Lafayette, IN 47907, USA.
| |
Collapse
|
38
|
Shorning BY, Clarke AR. Energy sensing and cancer: LKB1 function and lessons learnt from Peutz-Jeghers syndrome. Semin Cell Dev Biol 2016; 52:21-9. [PMID: 26877140 DOI: 10.1016/j.semcdb.2016.02.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/08/2016] [Accepted: 02/08/2016] [Indexed: 12/31/2022]
Abstract
We describe in this review increasing evidence that loss of LKB1 kinase in Peutz-Jeghers syndrome (PJS) derails the existing natural balance between cell survival and tumour growth suppression. LKB1 deletion can plunge cells into an energy/oxidative stress-induced crisis which leads to the activation of alternative and often carcinogenic pathways to maintain cellular energy levels. It therefore appears that although LKB1 deficiency can suppress oncogenic transformation in the short term, it can ultimately lead to more progressed and malignant phenotypes by driving abnormal cell differentiation, genomic instability and increased tumour heterogeneity.
Collapse
Affiliation(s)
- Boris Y Shorning
- European Cancer Stem Cell Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, United Kingdom.
| | - Alan R Clarke
- European Cancer Stem Cell Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
| |
Collapse
|
39
|
Chen XL, Serrano D, Mayhue M, Hoebe K, Ilangumaran S, Ramanathan S. GIMAP5 Deficiency Is Associated with Increased AKT Activity in T Lymphocytes. PLoS One 2015; 10:e0139019. [PMID: 26440416 PMCID: PMC4595448 DOI: 10.1371/journal.pone.0139019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/07/2015] [Indexed: 01/05/2023] Open
Abstract
Long-term survival of T lymphocytes in quiescent state is essential to maintain their cell numbers in secondary lymphoid organs. In mice and in rats, the loss of functional GTPase of the immune associated nucleotide binding protein 5 (GIMAP5) causes peripheral T lymphopenia due to spontaneous death of T cells. The underlying mechanism responsible for the disruption of quiescence in Gimap5 deficient T cells remains largely unknown. In this study, we show that loss of functional Gimap5 results in increased basal activation of mammalian target of rapamycin (mTOR), independent of protein phosphatase 2A (PP2A) or AMP-activated protein kinase (AMPK). Our results suggest that the constitutive activation of the phosphoinositide 3-kinase (PI3K) pathway may be one of the consequences of the absence of functional GIMAP5.
Collapse
Affiliation(s)
- Xi-Lin Chen
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Daniel Serrano
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Marian Mayhue
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Kasper Hoebe
- Department of Pediatrics, Division of Cellular and Molecular Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States of America
| | - Subburaj Ilangumaran
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
- Centre de Recherche Clinique, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Sheela Ramanathan
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
- Centre de Recherche Clinique, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
- * E-mail:
| |
Collapse
|
40
|
Antonioli L, Colucci R, Pellegrini C, Giustarini G, Sacco D, Tirotta E, Caputi V, Marsilio I, Giron MC, Németh ZH, Blandizzi C, Fornai M. The AMPK enzyme-complex: from the regulation of cellular energy homeostasis to a possible new molecular target in the management of chronic inflammatory disorders. Expert Opin Ther Targets 2015; 20:179-91. [DOI: 10.1517/14728222.2016.1086752] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Shan T, Zhang P, Liang X, Bi P, Yue F, Kuang S. Lkb1 is indispensable for skeletal muscle development, regeneration, and satellite cell homeostasis. Stem Cells 2015; 32:2893-907. [PMID: 25069613 DOI: 10.1002/stem.1788] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/14/2014] [Accepted: 06/19/2014] [Indexed: 12/17/2022]
Abstract
Serine/threonine kinase 11, commonly known as liver kinase b1 (Lkb1), is a tumor suppressor that regulates cellular energy metabolism and stem cell function. Satellite cells are skeletal muscle resident stem cells that maintain postnatal muscle growth and repair. Here, we used MyoD(Cre)/Lkb1(flox/flox) mice (called MyoD-Lkb1) to delete Lkb1 in embryonic myogenic progenitors and their descendant satellite cells and myofibers. The MyoD-Lkb1 mice exhibit a severe myopathy characterized by central nucleated myofibers, reduced mobility, growth retardation, and premature death. Although tamoxifen-induced postnatal deletion of Lkb1 in satellite cells using Pax7(CreER) mice bypasses the developmental defects and early death, Lkb1 null satellite cells lose their regenerative capacity cell-autonomously. Strikingly, Lkb1 null satellite cells fail to maintain quiescence in noninjured resting muscles and exhibit accelerated proliferation but reduced differentiation kinetics. At the molecular level, Lkb1 limits satellite cell proliferation through the canonical AMP-activated protein kinase/mammalian target of rapamycin pathway, but facilitates differentiation through phosphorylation of GSK-3β, a key component of the WNT signaling pathway. Together, these results establish a central role of Lkb1 in muscle stem cell homeostasis, muscle development, and regeneration.
Collapse
Affiliation(s)
- Tizhong Shan
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Foxp3(+) Tregs are central regulators of immune tolerance. As dysregulated Treg responses contribute to disease pathogenesis, novel approaches to target the immunomodulatory functions of Tregs are currently under investigation. mTORC1 and mTORC2 are therapeutic targets of interest. Recent studies revealed that mTOR signaling impacts conventional T-cell homeostasis, activation and differentiation. Moreover, mTOR controls the differentiation and functions of Tregs, suggesting that its activity could be targeted to modulate Treg responses. Here, we summarize how Tregs suppress immune responses, their roles in disease development and methods used to alter their functions therapeutically. We also discuss the diverse effects exerted by mTOR inhibition on the development, homeostasis, and functions of conventional T cells and Tregs. We conclude with a discussion of how modulation of mTOR activity in Tregs may be therapeutically beneficial or detrimental in different disease settings.
Collapse
Affiliation(s)
- Nicole M Chapman
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
43
|
Walsh NC, Waters LR, Fowler JA, Lin M, Cunningham CR, Brooks DG, Rehg JE, Morse HC, Teitell MA. LKB1 inhibition of NF-κB in B cells prevents T follicular helper cell differentiation and germinal center formation. EMBO Rep 2015; 16:753-68. [PMID: 25916856 PMCID: PMC4467859 DOI: 10.15252/embr.201439505] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 03/06/2015] [Accepted: 03/16/2015] [Indexed: 11/09/2022] Open
Abstract
T-cell-dependent antigenic stimulation drives the differentiation of B cells into antibody-secreting plasma cells and memory B cells, but how B cells regulate this process is unclear. We show that LKB1 expression in B cells maintains B-cell quiescence and prevents the premature formation of germinal centers (GCs). Lkb1-deficient B cells (BKO) undergo spontaneous B-cell activation and secretion of multiple inflammatory cytokines, which leads to splenomegaly caused by an unexpected expansion of T cells. Within this cytokine response, increased IL-6 production results from heightened activation of NF-κB, which is suppressed by active LKB1. Secreted IL-6 drives T-cell activation and IL-21 production, promoting T follicular helper (TFH ) cell differentiation and expansion to support a ~100-fold increase in steady-state GC B cells. Blockade of IL-6 secretion by BKO B cells inhibits IL-21 expression, a known inducer of TFH -cell differentiation and expansion. Together, these data reveal cell intrinsic and surprising cell extrinsic roles for LKB1 in B cells that control TFH -cell differentiation and GC formation, and place LKB1 as a central regulator of T-cell-dependent humoral immunity.
Collapse
Affiliation(s)
- Nicole C Walsh
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, CA, USA
| | - Lynnea R Waters
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Jessica A Fowler
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, CA, USA
| | - Mark Lin
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, CA, USA
| | - Cameron R Cunningham
- Department of Microbiology, Immunology and Molecular Genetics and UCLA AIDS Institute University of California, Los Angeles, CA, USA
| | - David G Brooks
- Department of Microbiology, Immunology and Molecular Genetics and UCLA AIDS Institute University of California, Los Angeles, CA, USA
| | - Jerold E Rehg
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Herbert C Morse
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases National Institutes of Health, Rockville, MD, USA
| | - Michael A Teitell
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, CA, USA Molecular Biology Institute, University of California, Los Angeles, CA, USA Broad Stem Cell Research Center, Departments of Pediatrics and Bioengineering, California NanoSystems Institute, and Jonsson Comprehensive Cancer Center University of California, Los Angeles, CA, USA
| |
Collapse
|
44
|
Weinberg SE, Sena LA, Chandel NS. Mitochondria in the regulation of innate and adaptive immunity. Immunity 2015; 42:406-17. [PMID: 25786173 DOI: 10.1016/j.immuni.2015.02.002] [Citation(s) in RCA: 651] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Indexed: 02/07/2023]
Abstract
Mitochondria are well appreciated for their role as biosynthetic and bioenergetic organelles. In the past two decades, mitochondria have emerged as signaling organelles that contribute critical decisions about cell proliferation, death, and differentiation. Mitochondria not only sustain immune cell phenotypes but also are necessary for establishing immune cell phenotype and their function. Mitochondria can rapidly switch from primarily being catabolic organelles generating ATP to anabolic organelles that generate both ATP and building blocks for macromolecule synthesis. This enables them to fulfill appropriate metabolic demands of different immune cells. Mitochondria have multiple mechanisms that allow them to activate signaling pathways in the cytosol including altering in AMP/ATP ratio, the release of ROS and TCA cycle metabolites, as well as the localization of immune regulatory proteins on the outer mitochondrial membrane. In this Review, we discuss the evidence and mechanisms that mitochondrial dependent signaling controls innate and adaptive immune responses.
Collapse
Affiliation(s)
- Samuel E Weinberg
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, IL 60615, USA
| | - Laura A Sena
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, IL 60615, USA
| | - Navdeep S Chandel
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, IL 60615, USA.
| |
Collapse
|
45
|
Liu C, Chapman NM, Karmaus PWF, Zeng H, Chi H. mTOR and metabolic regulation of conventional and regulatory T cells. J Leukoc Biol 2015; 97:837-847. [PMID: 25714803 DOI: 10.1189/jlb.2ri0814-408r] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 12/12/2022] Open
Abstract
mTOR signaling links bioenergetic and biosynthetic metabolism to immune responses. mTOR is activated by diverse upstream stimuli, including immune signals, growth factors, and nutrients. Recent studies highlight crucial roles of mTOR signaling in immune functions mediated by conventional T cells and Tregs In this review, we discuss the regulation of mTOR signaling in T cells and the functional impacts of mTOR and metabolic pathways on T cell-mediated immune responses, with a particular focus on the differentiation and function of Tregs.
Collapse
Affiliation(s)
- Chaohong Liu
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Peer W F Karmaus
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Hu Zeng
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
46
|
Chapman NM, Chi H. mTOR Links Environmental Signals to T Cell Fate Decisions. Front Immunol 2015; 5:686. [PMID: 25653651 PMCID: PMC4299512 DOI: 10.3389/fimmu.2014.00686] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/20/2014] [Indexed: 12/18/2022] Open
Abstract
T cell fate decisions play an integral role in maintaining the health of organisms under homeostatic and inflammatory conditions. The localized microenvironment in which developing and mature T cells reside provides signals that serve essential functions in shaping these fate decisions. These signals are derived from the immune compartment, including antigens, co-stimulation, and cytokines, and other factors, including growth factors and nutrients. The mechanistic target of rapamycin (mTOR), a vital sensor of signals within the immune microenvironment, is a central regulator of T cell biology. In this review, we discuss how various environmental cues tune mTOR activity in T cells, and summarize how mTOR integrates these signals to influence multiple aspects of T cell biology.
Collapse
Affiliation(s)
- Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital , Memphis, TN , USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital , Memphis, TN , USA
| |
Collapse
|
47
|
Serine-threonine kinases in TCR signaling. Nat Immunol 2014; 15:808-14. [PMID: 25137455 DOI: 10.1038/ni.2941] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/10/2014] [Indexed: 12/13/2022]
Abstract
T lymphocyte proliferation and differentiation are controlled by signaling pathways initiated by the T cell antigen receptor. Here we explore how key serine-threonine kinases and their substrates mediate T cell signaling and coordinate T cell metabolism to meet the metabolic demands of participating in an immune response.
Collapse
|
48
|
Liu Z, Zhang W, Zhang M, Zhu H, Moriasi C, Zou MH. Liver kinase B1 suppresses lipopolysaccharide-induced nuclear factor κB (NF-κB) activation in macrophages. J Biol Chem 2014; 290:2312-20. [PMID: 25451940 DOI: 10.1074/jbc.m114.616441] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Liver kinase B1 (LKB1), a serine/threonine kinase, is a tumor suppressor and metabolic regulator. Recent data suggest that LKB1 is essential in regulating homeostasis of hematopoietic cells and immune responses. However, its role in macrophages and innate immune system remains unclear. Here we report that macrophage LKB1 inhibits pro-inflammatory signaling in response to LPS. LPS-induced pro-inflammatory cytokines and pro-inflammatory enzymes were monitored in bone marrow-derived macrophages isolated from myeloid cell-specific LKB1 knock out mice and their wild type littermate control mice. LPS induced higher levels of pro-inflammatory cytokines and pro-inflammatory enzymes in bone marrow-derived macrophages from LKB1 KO than those from wild type mice. Consistently, LPS induced higher levels of NF-κB activation in LKB1-deficient macrophages than those in wild type. Further, LPS stimulation significantly increased LKB1 phosphorylation at serine 428, which promoted its binding to IκB kinaseβ (IKKβ), resulting in the inhibition of NF-κB. Finally, LPS injection caused higher levels of cytokine release and more severe tissue injury in the lung tissues of LKB1 KO mice than in those of control mice. We conclude that LKB1 inhibits LPS-induced NF-κB activation in macrophages.
Collapse
Affiliation(s)
- Zhaoyu Liu
- From the Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104
| | - Wencheng Zhang
- From the Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104
| | - Miao Zhang
- From the Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104
| | - Huaiping Zhu
- From the Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104
| | - Cate Moriasi
- From the Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104
| | - Ming-Hui Zou
- From the Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
49
|
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is a serine/threonine kinase that is crucial for cellular energy metabolism homeostasis. AMPK monitors cellular energy status in response to nutritional variations and, once activated by low energy status, switches on ATP-producing catabolic pathways and switches off ATP-consuming anabolic pathways to restore cellular energy homeostasis. When T lymphocytes encounter foreign antigens, they initiate a program of differentiation leading to the rapid generation of effector and memory cells that clear the pathogen and prevent future infection, respectively. Differentiation of naïve T cells in effector or long term memory cells is tightly associated with changes in their energy metabolic activity and recent data have revealed that fine-tuning of metabolism could modulate T cell functions. Here, we will review recent data about the regulation of T cell metabolism by AMPK and discuss its influence on T cell function.
Collapse
Affiliation(s)
- Fabienne Andris
- Laboratoire d'Immunobiologie, Institut de Biologie et de Médecine Moléculaire, Université Libre de Bruxelles, Gosselies, Belgium
| | | |
Collapse
|
50
|
Navarro MN, Goebel J, Hukelmann JL, Cantrell DA. Quantitative phosphoproteomics of cytotoxic T cells to reveal protein kinase d 2 regulated networks. Mol Cell Proteomics 2014; 13:3544-57. [PMID: 25266776 PMCID: PMC4256504 DOI: 10.1074/mcp.m113.037242] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The focus of the present study was to characterize the phosphoproteome of cytotoxic T cells and to explore the role of the serine threonine kinase PKD2 (Protein Kinase D2) in the phosphorylation networks of this key lymphocyte population. We used Stable Isotope Labeling of Amino acids in Culture (SILAC) combined with phosphopeptide enrichment and quantitative mass-spectrometry to determine the impact of PKD2 loss on the cytotoxic T cells phosphoproteome. We identified 15,871 phosphorylations on 3505 proteins in cytotoxic T cells. 450 phosphosites on 281 proteins were down-regulated and 300 phosphosites on 196 proteins were up-regulated in PKD2 null cytotoxic T cells. These data give valuable new insights about the protein phosphorylation networks operational in effector T cells and reveal that PKD2 regulates directly and indirectly about 5% of the cytotoxic T-cell phosphoproteome. PKD2 candidate substrates identified in this study include proteins involved in two distinct biological functions: regulation of protein sorting and intracellular vesicle trafficking, and control of chromatin structure, transcription, and translation. In other cell types, PKD substrates include class II histone deacetylases such as HDAC7 and actin regulatory proteins such as Slingshot. The current data show these are not PKD substrates in primary T cells revealing that the functional role of PKD isoforms is different in different cell lineages.
Collapse
Affiliation(s)
- María N Navarro
- From the ‡Division of Cell Signalling and Immunology. College of Life Sciences University of Dundee, Dundee, Scotland, U.K
| | - Juergen Goebel
- From the ‡Division of Cell Signalling and Immunology. College of Life Sciences University of Dundee, Dundee, Scotland, U.K
| | - Jens L Hukelmann
- From the ‡Division of Cell Signalling and Immunology. College of Life Sciences University of Dundee, Dundee, Scotland, U.K
| | - Doreen A Cantrell
- From the ‡Division of Cell Signalling and Immunology. College of Life Sciences University of Dundee, Dundee, Scotland, U.K.
| |
Collapse
|