1
|
Taus E, Hofmann C, Ibarrondo FJ, Gong LS, Hausner MA, Fulcher JA, Krogstad P, Kitchen SG, Ferbas KG, Tobin NH, Rimoin AW, Aldrovandi GM, Yang OO. Persistent memory despite rapid contraction of circulating T Cell responses to SARS-CoV-2 mRNA vaccination. Front Immunol 2023; 14:1100594. [PMID: 36860850 PMCID: PMC9968837 DOI: 10.3389/fimmu.2023.1100594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/24/2023] [Indexed: 02/17/2023] Open
Abstract
Introduction While antibodies raised by SARS-CoV-2 mRNA vaccines have had compromised efficacy to prevent breakthrough infections due to both limited durability and spike sequence variation, the vaccines have remained highly protective against severe illness. This protection is mediated through cellular immunity, particularly CD8+ T cells, and lasts at least a few months. Although several studies have documented rapidly waning levels of vaccine-elicited antibodies, the kinetics of T cell responses have not been well defined. Methods Interferon (IFN)-γ enzyme-linked immunosorbent spot (ELISpot) assay and intracellular cytokine staining (ICS) were utilized to assess cellular immune responses (in isolated CD8+ T cells or whole peripheral blood mononuclear cells, PBMCs) to pooled peptides spanning spike. ELISA was performed to quantitate serum antibodies against the spike receptor binding domain (RBD). Results In two persons receiving primary vaccination, tightly serially evaluated frequencies of anti-spike CD8+ T cells using ELISpot assays revealed strikingly short-lived responses, peaking after about 10 days and becoming undetectable by about 20 days after each dose. This pattern was also observed in cross-sectional analyses of persons after the first and second doses during primary vaccination with mRNA vaccines. In contrast, cross-sectional analysis of COVID-19-recovered persons using the same assay showed persisting responses in most persons through 45 days after symptom onset. Cross-sectional analysis using IFN-γ ICS of PBMCs from persons 13 to 235 days after mRNA vaccination also demonstrated undetectable CD8+ T cells against spike soon after vaccination, and extended the observation to include CD4+ T cells. However, ICS analyses of the same PBMCs after culturing with the mRNA-1273 vaccine in vitro showed CD4+ and CD8+ T cell responses that were readily detectable in most persons out to 235 days after vaccination. Discussion Overall, we find that detection of spike-targeted responses from mRNA vaccines using typical IFN-γ assays is remarkably transient, which may be a function of the mRNA vaccine platform and an intrinsic property of the spike protein as an immune target. However, robust memory, as demonstrated by capacity for rapid expansion of T cells responding to spike, is maintained at least several months after vaccination. This is consistent with the clinical observation of vaccine protection from severe illness lasting months. The level of such memory responsiveness required for clinical protection remains to be defined.
Collapse
Affiliation(s)
- Ellie Taus
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Christian Hofmann
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - F Javier Ibarrondo
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Laura S Gong
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Mary Ann Hausner
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Jennifer A Fulcher
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Paul Krogstad
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Scott G Kitchen
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Kathie G Ferbas
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Nicole H Tobin
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Anne W Rimoin
- Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, United States
| | - Grace M Aldrovandi
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Otto O Yang
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States.,Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
2
|
Bansal A, Gehre MN, Qin K, Sterrett S, Ali A, Dang Y, Abraham S, Costanzo MC, Venegas LA, Tang J, Manjunath N, Brockman MA, Yang OO, Kan-Mitchell J, Goepfert PA. HLA-E-restricted HIV-1-specific CD8+ T cell responses in natural infection. J Clin Invest 2021; 131:148979. [PMID: 34228645 PMCID: PMC8363272 DOI: 10.1172/jci148979] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/01/2021] [Indexed: 01/07/2023] Open
Abstract
CD8+ T cell responses restricted by MHC-E, a nonclassical MHC molecule, have been associated with protection in an SIV/rhesus macaque model. The biological relevance of HLA-E-restricted CD8+ T cell responses in HIV infection, however, remains unknown. In this study, CD8+ T cells responding to HIV-1 Gag peptides presented by HLA-E were analyzed. Using in vitro assays, we observed HLA-E-restricted T cell responses to what we believe to be a newly identified subdominant Gag-KL9 as well as a well-described immunodominant Gag-KF11 epitope in T cell lines derived from chronically HIV-infected patients and also primed from healthy donors. Blocking of the HLA-E/KF11 binding by the B7 signal peptide resulted in decreased CD8+ T cell responses. KF11 presented via HLA-E in HIV-infected cells was recognized by antigen-specific CD8+ T cells. Importantly, bulk CD8+ T cells obtained from HIV-infected individuals recognized infected cells via HLA-E presentation. Ex vivo analyses at the epitope level showed a higher responder frequency of HLA-E-restricted responses to KF11 compared with KL9. Taken together, our findings of HLA-E-restricted HIV-specific immune responses offer intriguing and possibly paradigm-shifting insights into factors that contribute to the immunodominance of CD8+ T cell responses in HIV infection.
Collapse
Affiliation(s)
- Anju Bansal
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Mika N. Gehre
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | - Kai Qin
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Sarah Sterrett
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Ayub Ali
- Department of Medicine and AIDS Institute, UCLA, Los Angeles, California, USA
| | - Ying Dang
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas, USA
| | - Sojan Abraham
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas, USA
| | - Margaret C. Costanzo
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | - Leon A. Venegas
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | - Jianming Tang
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - N. Manjunath
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas, USA
| | | | - Otto O. Yang
- Department of Medicine and AIDS Institute, UCLA, Los Angeles, California, USA
| | - June Kan-Mitchell
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | - Paul A. Goepfert
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| |
Collapse
|
3
|
Jones HF, Molvi Z, Klatt MG, Dao T, Scheinberg DA. Empirical and Rational Design of T Cell Receptor-Based Immunotherapies. Front Immunol 2021; 11:585385. [PMID: 33569049 PMCID: PMC7868419 DOI: 10.3389/fimmu.2020.585385] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/04/2020] [Indexed: 01/04/2023] Open
Abstract
The use of T cells reactive with intracellular tumor-associated or tumor-specific antigens has been a promising strategy for cancer immunotherapies in the past three decades, but the approach has been constrained by a limited understanding of the T cell receptor's (TCR) complex functions and specificities. Newer TCR and T cell-based approaches are in development, including engineered adoptive T cells with enhanced TCR affinities, TCR mimic antibodies, and T cell-redirecting bispecific agents. These new therapeutic modalities are exciting opportunities by which TCR recognition can be further exploited for therapeutic benefit. In this review we summarize the development of TCR-based therapeutic strategies and focus on balancing efficacy and potency versus specificity, and hence, possible toxicity, of these powerful therapeutic modalities.
Collapse
Affiliation(s)
- Heather F. Jones
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medicine, New York, NY, United States
| | - Zaki Molvi
- Weill Cornell Medicine, New York, NY, United States
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Martin G. Klatt
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Tao Dao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - David A. Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
4
|
Bentzen AK, Hadrup SR. T-cell-receptor cross-recognition and strategies to select safe T-cell receptors for clinical translation. IMMUNO-ONCOLOGY AND TECHNOLOGY 2019; 2:1-10. [PMID: 35036898 PMCID: PMC8741623 DOI: 10.1016/j.iotech.2019.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Adoptive transfer of T-cell-receptor (TCR)-transduced T cells has shown promising results for cancer treatment, but has also produced severe immunotoxicities caused by on-target as well as off-target TCR recognition. Off-target toxicities are related to the ability of a single T cell to cross-recognize and respond to several different peptide–major histocompatibility complex (pMHC) antigens; a property that is essential for providing broad antigenic coverage despite a confined number of unique TCRs in the human body. However, this degeneracy makes it incredibly difficult to account for the range of targets that any TCR might recognize, which represents a major challenge for the clinical development of therapeutic TCRs. The prospect of using affinity-optimized TCRs has been impeded due to observations that affinity enhancement might alter the specificity of a TCR, thereby increasing the risk that it will cross-recognize endogenous tissue. Strategies for selecting safe TCRs for the clinic have included functional assessment after individual incubations with tissue-derived primary cells or with peptides substituted with single amino acids. However, these strategies have not been able to predict cross-recognition sufficiently, leading to fatal cross-reactivity in clinical trials. Novel technologies have emerged that enable extensive characterization of the exact interaction points of a TCR with pMHC, which provides a foundation from which to make predictions of the cross-recognition potential of individual TCRs. This review describes current advances in strategies for dissecting the molecular interaction points of TCRs, focusing on their potential as tools for predicting cross-recognition of TCRs in clinical development. T-cell-receptor (TCR) degeneracy plays a fundamental role in the capacity of our immune systems to recognize foreign antigens. TCR cross-reactivity provides an inherent risk in TCR–gene transfer cell therapies. Advances in description of TCR cross-recognition can guide the selection process for TCRs into clinical use.
Collapse
|
5
|
Bentzen AK, Such L, Jensen KK, Marquard AM, Jessen LE, Miller NJ, Church CD, Lyngaa R, Koelle DM, Becker JC, Linnemann C, Schumacher TNM, Marcatili P, Nghiem P, Nielsen M, Hadrup SR. T cell receptor fingerprinting enables in-depth characterization of the interactions governing recognition of peptide-MHC complexes. Nat Biotechnol 2018; 36:nbt.4303. [PMID: 30451992 PMCID: PMC9452375 DOI: 10.1038/nbt.4303] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 10/24/2018] [Indexed: 02/08/2023]
Abstract
The promiscuous nature of T-cell receptors (TCRs) allows T cells to recognize a large variety of pathogens, but makes it challenging to understand and control T-cell recognition. Existing technologies provide limited information about the key requirements for T-cell recognition and the ability of TCRs to cross-recognize structurally related elements. Here we present a 'one-pot' strategy for determining the interactions that govern TCR recognition of peptide-major histocompatibility complex (pMHC). We measured the relative affinities of TCRs to libraries of barcoded peptide-MHC variants and applied this knowledge to understand the recognition motif, here termed the TCR fingerprint. The TCR fingerprints of 16 different TCRs were identified and used to predict and validate cross-recognized peptides from the human proteome. The identified fingerprints differed among TCRs recognizing the same epitope, demonstrating the value of this strategy for understanding T-cell interactions and assessing potential cross-recognition before selection of TCRs for clinical development.
Collapse
Affiliation(s)
- Amalie K Bentzen
- Department of Micro and Nanotechnology, Technical University of Denmark, Lyngby, Denmark
| | - Lina Such
- Department of Micro and Nanotechnology, Technical University of Denmark, Lyngby, Denmark
| | - Kamilla K Jensen
- Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
| | - Andrea M Marquard
- Department of Micro and Nanotechnology, Technical University of Denmark, Lyngby, Denmark
| | - Leon E Jessen
- Department of Micro and Nanotechnology, Technical University of Denmark, Lyngby, Denmark
- Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
| | - Natalie J Miller
- Department of Medicine, Divisions of Dermatology, University of Washington, Seattle, Washington, USA
| | - Candice D Church
- Department of Medicine, Divisions of Dermatology, University of Washington, Seattle, Washington, USA
| | - Rikke Lyngaa
- Department of Micro and Nanotechnology, Technical University of Denmark, Lyngby, Denmark
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Division of Vaccine and Infectious Diseases, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jürgen C Becker
- Translational Skin Cancer Research, University Hospital Essen and University of Duisburg-Essen, Essen, Germany
| | - Carsten Linnemann
- Department of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ton N M Schumacher
- Department of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Paolo Marcatili
- Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
| | - Paul Nghiem
- Department of Medicine, Divisions of Dermatology, University of Washington, Seattle, Washington, USA
| | - Morten Nielsen
- Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Sine R Hadrup
- Department of Micro and Nanotechnology, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
6
|
Du VY, Bansal A, Carlson J, Salazar-Gonzalez JF, Salazar MG, Ladell K, Gras S, Josephs TM, Heath SL, Price DA, Rossjohn J, Hunter E, Goepfert PA. HIV-1-Specific CD8 T Cells Exhibit Limited Cross-Reactivity during Acute Infection. THE JOURNAL OF IMMUNOLOGY 2016; 196:3276-86. [PMID: 26983786 DOI: 10.4049/jimmunol.1502411] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/11/2016] [Indexed: 01/03/2023]
Abstract
Prior work has demonstrated that HIV-1-specific CD8 T cells can cross-recognize variant epitopes. However, most of these studies were performed in the context of chronic infection, where the presence of viral quasispecies makes it difficult to ascertain the true nature of the original antigenic stimulus. To overcome this limitation, we evaluated the extent of CD8 T cell cross-reactivity in patients with acute HIV-1 clade B infection. In each case, we determined the transmitted founder virus sequence to identify the autologous epitopes restricted by individual HLA class I molecules. Our data show that cross-reactive CD8 T cells are infrequent during the acute phase of HIV-1 infection. Moreover, in the uncommon instances where cross-reactive responses were detected, the variant epitopes were poorly recognized in cytotoxicity assays. Molecular analysis revealed that similar antigenic structures could be cross-recognized by identical CD8 T cell clonotypes mobilized in vivo, yet even subtle differences in a single TCR-accessible peptide residue were sufficient to disrupt variant-specific reactivity. These findings demonstrate that CD8 T cells are highly specific for autologous epitopes during acute HIV-1 infection. Polyvalent vaccines may therefore be required to provide optimal immune cover against this genetically labile pathogen.
Collapse
Affiliation(s)
- Victor Y Du
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Anju Bansal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | | | | | - Maria G Salazar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Kristin Ladell
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Tracy M Josephs
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Sonya L Heath
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - David A Price
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom; Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Jamie Rossjohn
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom; Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Eric Hunter
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30329
| | - Paul A Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294;
| |
Collapse
|
7
|
Soysal SD, Muenst S, Kan-Mitchell J, Huarte E, Zhang X, Wilkinson-Ryan I, Fleming T, Tiriveedhi V, Mohanakumar T, Li L, Herndon J, Oertli D, Goedegebuure SP, Gillanders WE. Identification and translational validation of novel mammaglobin-A CD8 T cell epitopes. Breast Cancer Res Treat 2014; 147:527-37. [PMID: 25212176 DOI: 10.1007/s10549-014-3129-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 09/06/2014] [Indexed: 12/13/2022]
Abstract
Mammaglobin-A (MAM-A) is a secretory protein that is overexpressed in 80 % of human breast cancers. Its near-universal expression in breast cancer as well as its exquisite tissue specificity makes it an attractive target for a breast cancer prevention vaccine, and we recently initiated a phase 1 clinical trial of a MAM-A DNA vaccine. Previously, we have identified multiple MAM-A CD8 T cell epitopes using a reverse immunology candidate epitope approach based on predicted binding, but to date no attempt has been made to identify epitopes using an unbiased approach. In this study, we used human T cells primed in vitro with autologous dendritic cells expressing MAM-A to systematically identify MAM-A CD8 T cell epitopes. Using this unbiased approach, we identified three novel HLA-A2-restricted MAM-A epitopes. CD8 T cells specific for these epitopes are able to recognize and lyse human breast cancer cells in a MAM-A-specific, HLA-A2-dependent fashion. HLA-A2(+)/MAM-A(+) breast cancer patients have an increased prevalence of CD8 T cells specific for these novel MAM-A epitopes, and vaccination with a MAM-A DNA vaccine significantly increases the number of these CD8 T cells. The identification and translational validation of novel MAM-A epitopes has important implications for the ongoing clinical development of vaccine strategies targeting MAM-A. The novel MAM-A epitopes represent attractive targets for epitope-based vaccination strategies, and can also be used to monitor immune responses. Taken together these studies provide additional support for MAM-A as an important therapeutic target for the prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- S D Soysal
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Xu W, Watts DM, Costanzo MC, Tang X, Venegas LA, Jiao F, Sette A, Sidney J, Sewell AK, Wooldridge L, Makino S, Morrill JC, Peters CJ, Kan-Mitchell J. The nucleocapsid protein of Rift Valley fever virus is a potent human CD8+ T cell antigen and elicits memory responses. PLoS One 2013; 8:e59210. [PMID: 23527138 PMCID: PMC3601065 DOI: 10.1371/journal.pone.0059210] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/12/2013] [Indexed: 01/10/2023] Open
Abstract
There is no licensed human vaccine currently available for Rift Valley Fever Virus (RVFV), a Category A high priority pathogen and a serious zoonotic threat. While neutralizing antibodies targeting the viral glycoproteins are protective, they appear late in the course of infection, and may not be induced in time to prevent a natural or bioterrorism-induced outbreak. Here we examined the immunogenicity of RVFV nucleocapsid (N) protein as a CD8(+) T cell antigen with the potential for inducing rapid protection after vaccination. HLA-A*0201 (A2)-restricted epitopic determinants were identified with N-specific CD8(+) T cells from eight healthy donors that were primed with dendritic cells transduced to express N, and subsequently expanded in vitro by weekly re-stimulations with monocytes pulsed with 59 15mer overlapping peptides (OLPs) across N. Two immunodominant epitopes, VT9 (VLSEWLPVT, N(121-129)) and IL9 (ILDAHSLYL, N165-173), were defined. VT9- and IL9-specific CD8(+) T cells identified by tetramer staining were cytotoxic and polyfunctional, characteristics deemed important for viral control in vivo. These peptides induced specific CD8(+) T cell responses in A2-transgenic mice, and more importantly, potent N-specific CD8(+) T cell reactivities, including VT9- and IL9-specific ones, were mounted by mice after a booster vaccination with the live attenuated RVF MP-12. Our data suggest that the RVFV N protein is a potent human T cell immunogen capable of eliciting broad, immunodominant CD8(+) T cell responses that are potentially protective. Understanding the immune responses to the nucleocapsid is central to the design of an effective RVFV vaccine irrespective of whether this viral protein is effective as a stand-alone immunogen or only in combination with other RVFV antigens.
Collapse
Affiliation(s)
- Weidong Xu
- Department of Biological Science and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ekeruche-Makinde J, Clement M, Cole DK, Edwards ESJ, Ladell K, Miles JJ, Matthews KK, Fuller A, Lloyd KA, Madura F, Dolton GM, Pentier J, Lissina A, Gostick E, Baxter TK, Baker BM, Rizkallah PJ, Price DA, Wooldridge L, Sewell AK. T-cell receptor-optimized peptide skewing of the T-cell repertoire can enhance antigen targeting. J Biol Chem 2012; 287:37269-81. [PMID: 22952231 PMCID: PMC3481325 DOI: 10.1074/jbc.m112.386409] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Altered peptide antigens that enhance T-cell immunogenicity have been used to improve peptide-based vaccination for a range of diseases. Although this strategy can prime T-cell responses of greater magnitude, the efficacy of constituent T-cell clonotypes within the primed population can be poor. To overcome this limitation, we isolated a CD8+ T-cell clone (MEL5) with an enhanced ability to recognize the HLA A*0201-Melan A27–35 (HLA A*0201-AAGIGILTV) antigen expressed on the surface of malignant melanoma cells. We used combinatorial peptide library screening to design an optimal peptide sequence that enhanced functional activation of the MEL5 clone, but not other CD8+ T-cell clones that recognized HLA A*0201-AAGIGILTV poorly. Structural analysis revealed the potential for new contacts between the MEL5 T-cell receptor and the optimized peptide. Furthermore, the optimized peptide was able to prime CD8+ T-cell populations in peripheral blood mononuclear cell isolates from multiple HLA A*0201+ individuals that were capable of efficient HLA A*0201+ melanoma cell destruction. This proof-of-concept study demonstrates that it is possible to design altered peptide antigens for the selection of superior T-cell clonotypes with enhanced antigen recognition properties.
Collapse
Affiliation(s)
- Julia Ekeruche-Makinde
- Institute of Infection and Immunity, Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, Wales, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Varadarajan N, Kwon DS, Law KM, Ogunniyi AO, Anahtar MN, Richter JM, Walker BD, Love JC. Rapid, efficient functional characterization and recovery of HIV-specific human CD8+ T cells using microengraving. Proc Natl Acad Sci U S A 2012; 109:3885-90. [PMID: 22355106 PMCID: PMC3309713 DOI: 10.1073/pnas.1111205109] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The nature of certain clinical samples (tissue biopsies, fluids) or the subjects themselves (pediatric subjects, neonates) often constrain the number of cells available to evaluate the breadth of functional T-cell responses to infections or therapeutic interventions. The methods most commonly used to assess this functional diversity ex vivo and to recover specific cells to expand in vitro usually require more than 10(6) cells. Here we present a process to identify antigen-specific responses efficiently ex vivo from 10(4)-10(5) single cells from blood or mucosal tissues using dense arrays of subnanoliter wells. The approach combines on-chip imaging cytometry with a technique for capturing secreted proteins--called "microengraving"--to enumerate antigen-specific responses by single T cells in a manner comparable to conventional assays such as ELISpot and intracellular cytokine staining. Unlike those assays, however, the individual cells identified can be recovered readily by micromanipulation for further characterization in vitro. Applying this method to assess HIV-specific T-cell responses demonstrates that it is possible to establish clonal CD8(+) T-cell lines that represent the most abundant specificities present in circulation using 100- to 1,000-fold fewer cells than traditional approaches require and without extensive genotypic analysis a priori. This rapid (<24 h), efficient, and inexpensive process should improve the comparative study of human T-cell immunology across ages and anatomic compartments.
Collapse
Affiliation(s)
- Navin Varadarajan
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Douglas S. Kwon
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Charlestown, MA 02129; Divisions of
- Infectious Diseases and
| | - Kenneth M. Law
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Charlestown, MA 02129; Divisions of
| | - Adebola O. Ogunniyi
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Melis N. Anahtar
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Charlestown, MA 02129; Divisions of
| | - James M. Richter
- Gastroenterology, Massachusetts General Hospital, Boston, MA 02114; and
| | - Bruce D. Walker
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Charlestown, MA 02129; Divisions of
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - J. Christopher Love
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Charlestown, MA 02129; Divisions of
| |
Collapse
|
12
|
Ndhlovu ZM, Piechocka-Trocha A, Vine S, McMullen A, Koofhethile KC, Goulder PJR, Ndung'u T, Barouch DH, Walker BD. Mosaic HIV-1 Gag antigens can be processed and presented to human HIV-specific CD8+ T cells. THE JOURNAL OF IMMUNOLOGY 2011; 186:6914-24. [PMID: 21576505 DOI: 10.4049/jimmunol.1004231] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Polyvalent mosaic HIV immunogens offer a potential solution for generating vaccines that can elicit immune responses against genetically diverse viruses. However, it is unclear whether key T cell epitopes can be processed and presented from these synthetic Ags and recognized by epitope-specific human T cells. In this study, we tested the ability of mosaic HIV immunogens expressed by recombinant, replication-incompetent adenovirus serotype 26 vectors to process and present major HIV clade B and clade C CD8 T cell epitopes in human cells. A bivalent mosaic vaccine expressing HIV Gag sequences was used to transduce PBMCs from 12 HIV-1-infected individuals from the United States and 10 HIV-1-infected individuals from South Africa; intracellular cytokine staining, together with tetramer staining, was used to assess the ability of mosaic Gag Ags to stimulate pre-existing memory responses compared with natural clade B and C vectors. Mosaic Gag Ags expressed all eight clade B epitopes tested in 12 United States subjects and all 5 clade C epitopes tested in 10 South African subjects. Overall, the magnitude of cytokine production induced by stimulation with mosaic Ags was comparable to clade B and clade C Ags tested, but the mosaic Ags elicited greater cross-clade recognition. Additionally, mosaic Ags induced HIV-specific CD4 T cell responses. Our studies demonstrate that mosaic Ags express major clade B and clade C viral T cell epitopes in human cells, as well as support the evaluation of mosaic HIV-1 vaccines in humans.
Collapse
Affiliation(s)
- Zaza M Ndhlovu
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Cong H, Mui EJ, Witola WH, Sidney J, Alexander J, Sette A, Maewal A, McLeod R. Towards an immunosense vaccine to prevent toxoplasmosis: protective Toxoplasma gondii epitopes restricted by HLA-A*0201. Vaccine 2010; 29:754-62. [PMID: 21095258 DOI: 10.1016/j.vaccine.2010.11.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 10/29/2010] [Accepted: 11/06/2010] [Indexed: 10/18/2022]
Abstract
The ideal vaccine to protect against toxoplasmosis in humans would include antigens that elicit a protective T helper cell type 1 immune response, and generate long-lived IFN-γ-producing CD8(+) T cells. Herein, we utilized a predictive algorithm to identify candidate HLA-A02 supertype epitopes from Toxoplasma gondii proteins. Thirteen peptides elicited production of IFN-γ from PBMC of HLA-A02 supertype persons seropositive for T. gondii infection but not from seronegative controls. These peptides displayed high-affinity binding to HLA-A02 proteins. Immunization of HLA-A*0201 transgenic mice with these pooled peptides, with a universal CD4(+) epitope peptide called PADRE, formulated with adjuvant GLA-SE, induced CD8(+) T cell IFN-γ production and protected against parasite challenge. Peptides identified in this study provide candidates for inclusion in immunosense epitope-based vaccines.
Collapse
Affiliation(s)
- Hua Cong
- Department of Surgery, The University of Chicago, 5841 S. Maryland Ave., MC 2114, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Profile of a serial killer: cellular and molecular approaches to study individual cytotoxic T-cells following therapeutic vaccination. J Biomed Biotechnol 2010; 2011:452606. [PMID: 21113290 PMCID: PMC2989374 DOI: 10.1155/2011/452606] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 09/29/2010] [Indexed: 12/28/2022] Open
Abstract
T-cell vaccination may prevent or treat cancer and infectious diseases, but further progress is required to increase clinical efficacy. Step-by-step improvements of T-cell vaccination in phase I/II clinical studies combined with very detailed analysis of T-cell responses at the single cell level are the strategy of choice for the identification of the most promising vaccine candidates for testing in subsequent large-scale phase III clinical trials. Major aims are to fully identify the most efficient T-cells in anticancer therapy, to characterize their TCRs, and to pinpoint the mechanisms of T-cell recruitment and function in well-defined clinical situations. Here we discuss novel strategies for the assessment of human T-cell responses, revealing in part unprecedented insight into T-cell biology and novel structural principles that govern TCR-pMHC recognition. Together, the described approaches advance our knowledge of T-cell mediated-protection from human diseases.
Collapse
|