1
|
Abd El-Aleem SA, Saber EA, Aziz NM, El-Sherif H, Abdelraof AM, Djouhri L. Follicular dendritic cells. J Cell Physiol 2021; 237:2019-2033. [PMID: 34918359 DOI: 10.1002/jcp.30662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 11/08/2022]
Abstract
Follicular dendritic cells (FDCs) are unique accessory immune cells that contribute to the regulation of humoral immunity. They are multitasker cells essential for the organization and maintenance of the lymphoid architecture, induction of germinal center reaction, production of B memory cells, and protection from autoimmune disorders. They perform their activities through both antigen-driven and chemical signaling to B cells. FDCs play a crucial role in the physiological regulation of the immune response. Dis-regulation of this immune response results when FDCs retain antigens for years. This provides a constant antigenic stimulation for B cells resulting in the development of immune disorders. Antigen trapped on FDCs is resistant to therapeutic intervention causing chronicity and recurrences. Beyond their physiological immunoregulatory functions, FDCs are involved in the pathogenesis of several immune-related disorders including HIV/AIDS, prion diseases, chronic inflammatory, and autoimmune disorders. FDCs have also been recently implicated in rare neoplasms of lymphoid and hematopoietic tissues. Understanding FDC biology is essential for better control of humoral immunity and opens the gate for therapeutic management of FDC-mediated immune disorders. Thus, the biology of FDCs has become a hot research area in the last couple of decades. In this review, we aim to provide a comprehensive overview of FDCs and their role in physiological and pathological conditions.
Collapse
Affiliation(s)
| | - Entesar Ali Saber
- Department of Histology and Cell Biology, Minia University, Minya, Egypt.,Department of Pharmacy, Deraya University, New Minia City, Egypt
| | - Neven M Aziz
- Department of Pharmacy, Deraya University, New Minia City, Egypt.,Department of Physiology, Minia Faculty of Medicine, Minia, Egypt
| | - Hani El-Sherif
- Department of Pharmacy, Deraya University, New Minia City, Egypt
| | - Asmaa M Abdelraof
- Public Health, Community, Environmental and Occupational Department, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Laiche Djouhri
- Department of Physiology, College of Medicine (QU Health), Qatar University, Doha, Qatar
| |
Collapse
|
2
|
Single-cell profiling of CNS border compartment leukocytes reveals that B cells and their progenitors reside in non-diseased meninges. Nat Neurosci 2021; 24:1225-1234. [PMID: 34253922 DOI: 10.1038/s41593-021-00880-y] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
The CNS is ensheathed by the meninges and cerebrospinal fluid, and recent findings suggest that these CNS-associated border tissues have complex immunological functions. Unlike myeloid lineage cells, lymphocytes in border compartments have yet to be thoroughly characterized. Based on single-cell transcriptomics, we here identified a highly location-specific composition and expression profile of tissue-resident leukocytes in CNS parenchyma, pia-enriched subdural meninges, dura mater, choroid plexus and cerebrospinal fluid. The dura layer of the meninges contained a large population of B cells under homeostatic conditions in mice and rats. Murine dura B cells exhibited slow turnover and long-term tissue residency, and they matured in experimental neuroinflammation. The dura also contained B lineage progenitors at the pro-B cell stage typically not found outside of bone marrow, without direct influx from the periphery or the skull bone marrow. This identified the dura as an unexpected site of B cell residence and potentially of development in both homeostasis and neuroinflammation.
Collapse
|
3
|
Thierry GR, Gentek R, Bajenoff M. Remodeling of reactive lymph nodes: Dynamics of stromal cells and underlying chemokine signaling. Immunol Rev 2020; 289:42-61. [PMID: 30977194 DOI: 10.1111/imr.12750] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 12/19/2022]
Abstract
Lymph nodes (LNs) are secondary immune organs dispersed throughout the body. They are primarily composed of lymphocytes, "transient passengers" that are only present for a few hours. During this time, they extensively interact with a meshwork of stromal cells. Although these cells constitute less than 5% of all LN cells, they are integral to LN function: Stromal cells create a three-dimensional network that provides a rigid backbone for the transport of lymph and generates "roads" for lymphocyte migration. Beyond structural support, the LN stroma also produces survival signals for lymphocytes and provides nutrients, soluble factors, antigens, and immune cells collectively required for immune surveillance and the generation of adaptive immune responses. A unique feature of LNs is their ability to considerably and rapidly change size: the volume and cellularity of inflamed LNs can increase up to 20-fold before returning to homeostatic levels. This cycle will be repeated many times during life and is accommodated by stromal cells. The dynamics underlying this dramatic remodeling are subject of this review. We will first introduce the main types of LN stromal cells and explain their known functions. We will then discuss how these cells enable LN growth during immune responses, with a particular focus on underlying cellular mechanisms and molecular cues. Similarly, we will elaborate on stromal dynamics mediating the return to LN homeostasis, a process that is mechanistically much less understood than LN expansion.
Collapse
Affiliation(s)
- Guilhem R Thierry
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, Marseille, France
| | - Rebecca Gentek
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, Marseille, France
| | - Marc Bajenoff
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, Marseille, France
| |
Collapse
|
4
|
Rodda LB, Lu E, Bennett ML, Sokol CL, Wang X, Luther SA, Barres BA, Luster AD, Ye CJ, Cyster JG. Single-Cell RNA Sequencing of Lymph Node Stromal Cells Reveals Niche-Associated Heterogeneity. Immunity 2018; 48:1014-1028.e6. [PMID: 29752062 PMCID: PMC5971117 DOI: 10.1016/j.immuni.2018.04.006] [Citation(s) in RCA: 299] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/23/2017] [Accepted: 04/02/2018] [Indexed: 01/06/2023]
Abstract
Stromal cells (SCs) establish the compartmentalization of lymphoid tissues critical to the immune response. However, the full diversity of lymph node (LN) SCs remains undefined. Using droplet-based single-cell RNA sequencing, we identified nine peripheral LN non-endothelial SC clusters. Included are the established subsets, Ccl19hi T-zone reticular cells (TRCs), marginal reticular cells, follicular dendritic cells (FDCs), and perivascular cells. We also identified Ccl19lo TRCs, likely including cholesterol-25-hydroxylase+ cells located at the T-zone perimeter, Cxcl9+ TRCs in the T-zone and interfollicular region, CD34+ SCs in the capsule and medullary vessel adventitia, indolethylamine N-methyltransferase+ SCs in the medullary cords, and Nr4a1+ SCs in several niches. These data help define how transcriptionally distinct LN SCs support niche-restricted immune functions and provide evidence that many SCs are in an activated state.
Collapse
Affiliation(s)
- Lauren B Rodda
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Erick Lu
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mariko L Bennett
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caroline L Sokol
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Xiaoming Wang
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Sanjiv A Luther
- Department of Biochemistry, Center for Immunity and Infection, University of Lausanne, 1066 Epalinges, Switzerland
| | - Ben A Barres
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew D Luster
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Chun Jimmie Ye
- Institute for Human Genetics, Department of Epidemiology and Biostatistics, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
5
|
Jarjour M, Jorquera A, Mondor I, Wienert S, Narang P, Coles MC, Klauschen F, Bajénoff M. Fate mapping reveals origin and dynamics of lymph node follicular dendritic cells. ACTA ACUST UNITED AC 2014; 211:1109-22. [PMID: 24863064 PMCID: PMC4042641 DOI: 10.1084/jem.20132409] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The lymph node follicular dendritic cell (FDC) network is derived from the expansion and differentiation of marginal reticular cells, as are the new FDCs generated during an immune response. Follicular dendritic cells (FDCs) regulate B cell function and development of high affinity antibody responses but little is known about their biology. FDCs associate in intricate cellular networks within secondary lymphoid organs. In vitro and ex vivo methods, therefore, allow only limited understanding of the genuine immunobiology of FDCs in their native habitat. Herein, we used various multicolor fate mapping systems to investigate the ontogeny and dynamics of lymph node (LN) FDCs in situ. We show that LN FDC networks arise from the clonal expansion and differentiation of marginal reticular cells (MRCs), a population of lymphoid stromal cells lining the LN subcapsular sinus. We further demonstrate that during an immune response, FDCs accumulate in germinal centers and that neither the recruitment of circulating progenitors nor the division of local mature FDCs significantly contributes to this accumulation. Rather, we provide evidence that newly generated FDCs also arise from the proliferation and differentiation of MRCs, thus unraveling a critical function of this poorly defined stromal cell population.
Collapse
Affiliation(s)
- Meryem Jarjour
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille Université, UM2 Marseille, France Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 1104 Marseille, France Centre National de la Recherche Scientifique (CNRS), UMR7280 Marseille, France Aix-Marseille Univ (AMU), F-13284 Marseille, France
| | - Audrey Jorquera
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille Université, UM2 Marseille, France Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 1104 Marseille, France Centre National de la Recherche Scientifique (CNRS), UMR7280 Marseille, France Aix-Marseille Univ (AMU), F-13284 Marseille, France
| | - Isabelle Mondor
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille Université, UM2 Marseille, France Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 1104 Marseille, France Centre National de la Recherche Scientifique (CNRS), UMR7280 Marseille, France Aix-Marseille Univ (AMU), F-13284 Marseille, France
| | - Stephan Wienert
- Institute of Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Priyanka Narang
- Center for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, YO10 5DD York, England, UK
| | - Mark C Coles
- Center for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, YO10 5DD York, England, UK
| | - Frederick Klauschen
- Institute of Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Marc Bajénoff
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille Université, UM2 Marseille, France Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 1104 Marseille, France Centre National de la Recherche Scientifique (CNRS), UMR7280 Marseille, France Aix-Marseille Univ (AMU), F-13284 Marseille, France
| |
Collapse
|
6
|
Aguzzi A, Kranich J, Krautler NJ. Follicular dendritic cells: origin, phenotype, and function in health and disease. Trends Immunol 2013; 35:105-13. [PMID: 24315719 DOI: 10.1016/j.it.2013.11.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 10/31/2013] [Accepted: 11/07/2013] [Indexed: 01/15/2023]
Abstract
Follicular dendritic cells (FDCs) were originally identified by their specific morphology and by their ability to trap immune-complexed antigen in B cell follicles. By virtue of the latter as well as the provision of chemokines, adhesion molecules, and trophic factors, FDCs participate in the shaping of B cell responses. Importantly, FDCs also supply tingible body macrophages (TBMs) with the eat-me-signaling molecule milk fat globule-EGF factor 8 (Mfge8), thereby enabling the disposal of apoptotic B cells. Recent studies have provided fundamental insights into the multiple functions of FDCs in both physiological and pathophysiological contexts and into their origin. Here we review these findings, and discuss current concepts related to FDC histogenesis both in lymphoid organs and in inflammatory lymphoneogenesis.
Collapse
Affiliation(s)
- Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland.
| | - Jan Kranich
- Institute for Immunology, Ludwig Maximilians University, Munich, Germany
| | - Nike Julia Krautler
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Sydney, Australia.
| |
Collapse
|
7
|
Chu VT, Berek C. The establishment of the plasma cell survival niche in the bone marrow. Immunol Rev 2012; 251:177-88. [DOI: 10.1111/imr.12011] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Van T. Chu
- Deutsches Rheuma Forschungszentrum; ein Institut der Leibniz-Gemeinschaft; Berlin; Germany
| | - Claudia Berek
- Deutsches Rheuma Forschungszentrum; ein Institut der Leibniz-Gemeinschaft; Berlin; Germany
| |
Collapse
|
8
|
El Shikh MEM, Pitzalis C. Follicular dendritic cells in health and disease. Front Immunol 2012; 3:292. [PMID: 23049531 PMCID: PMC3448061 DOI: 10.3389/fimmu.2012.00292] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/31/2012] [Indexed: 12/17/2022] Open
Abstract
Follicular dendritic cells (FDCs) are unique immune cells that contribute to the regulation of humoral immune responses. These cells are located in the B-cell follicles of secondary lymphoid tissues where they trap and retain antigens (Ags) in the form of highly immunogenic immune complexes (ICs) consisting of Ag plus specific antibody (Ab) and/or complement proteins. FDCs multimerize Ags and present them polyvalently to B-cells in periodically arranged arrays that extensively crosslink the B-cell receptors for Ag (BCRs). FDC-FcγRIIB mediates IC periodicity, and FDC-Ag presentation combined with other soluble and membrane bound signals contributed by FDCs, like FDC-BAFF, -IL-6, and -C4bBP, are essential for the induction of the germinal center (GC) reaction, the maintenance of serological memory, and the remarkable ability of FDC-Ags to induce specific Ab responses in the absence of cognate T-cell help. On the other hand, FDCs play a negative role in several disease conditions including chronic inflammatory diseases, autoimmune diseases, HIV/AIDS, prion diseases, and follicular lymphomas. Compared to other accessory immune cells, FDCs have received little attention, and their functions have not been fully elucidated. This review gives an overview of FDC structure, and recapitulates our current knowledge on the immunoregulatory functions of FDCs in health and disease. A better understanding of FDCs should permit better regulation of Ab responses to suit the therapeutic manipulation of regulated and dysregulated immune responses.
Collapse
Affiliation(s)
- Mohey Eldin M El Shikh
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London London, UK
| | | |
Collapse
|
9
|
Krautler NJ, Kana V, Kranich J, Tian Y, Perera D, Lemm D, Schwarz P, Armulik A, Browning JL, Tallquist M, Buch T, Oliveira-Martins JB, Zhu C, Hermann M, Wagner U, Brink R, Heikenwalder M, Aguzzi A. Follicular dendritic cells emerge from ubiquitous perivascular precursors. Cell 2012; 150:194-206. [PMID: 22770220 DOI: 10.1016/j.cell.2012.05.032] [Citation(s) in RCA: 293] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 03/16/2012] [Accepted: 05/11/2012] [Indexed: 12/25/2022]
Abstract
The differentiation of follicular dendritic cells (FDC) is essential to the remarkable microanatomic plasticity of lymphoid follicles. Here we show that FDC arise from ubiquitous perivascular precursors (preFDC) expressing platelet-derived growth factor receptor β (PDGFRβ). PDGFRβ-Cre-driven reporter gene recombination resulted in FDC labeling, whereas conditional ablation of PDGFRβ(+)-derived cells abolished FDC, indicating that FDC originate from PDGFRβ(+) cells. Lymphotoxin-α-overexpressing prion protein (PrP)(+) kidneys developed PrP(+) FDC after transplantation into PrP(-) mice, confirming that preFDC exist outside lymphoid organs. Adipose tissue-derived PDGFRβ(+) stromal-vascular cells responded to FDC maturation factors and, when transplanted into lymphotoxin β receptor (LTβR)(-) kidney capsules, differentiated into Mfge8(+)CD21/35(+)FcγRIIβ(+)PrP(+) FDC capable of trapping immune complexes and recruiting B cells. Spleens of lymphocyte-deficient mice contained perivascular PDGFRβ(+) FDC precursors whose expansion required both lymphoid tissue inducer (LTi) cells and lymphotoxin. The ubiquity of preFDC and their strategic location at blood vessels may explain the de novo generation of organized lymphoid tissue at sites of lymphocytic inflammation.
Collapse
Affiliation(s)
- Nike Julia Krautler
- Institute of Neuropathology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hess E, Duheron V, Decossas M, Lézot F, Berdal A, Chea S, Golub R, Bosisio MR, Bridal SL, Choi Y, Yagita H, Mueller CG. RANKL induces organized lymph node growth by stromal cell proliferation. THE JOURNAL OF IMMUNOLOGY 2011; 188:1245-54. [PMID: 22210913 DOI: 10.4049/jimmunol.1101513] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RANK and its ligand RANKL play important roles in the development and regulation of the immune system. We show that mice transgenic for Rank in hair follicles display massive postnatal growth of skin-draining lymph nodes. The proportions of hematopoietic and nonhematopoietic stromal cells and their organization are maintained, with the exception of an increase in B cell follicles. The hematopoietic cells are not activated and respond to immunization by foreign Ag and adjuvant. We demonstrate that soluble RANKL is overproduced from the transgenic hair follicles and that its neutralization normalizes lymph node size, inclusive area, and numbers of B cell follicles. Reticular fibroblastic and vascular stromal cells, important for secondary lymphoid organ formation and organization, express RANK and undergo hyperproliferation, which is abrogated by RANKL neutralization. In addition, they express higher levels of CXCL13 and CCL19 chemokines, as well as MAdCAM-1 and VCAM-1 cell-adhesion molecules. These findings highlight the importance of tissue-derived cues for secondary lymphoid organ homeostasis and identify RANKL as a key molecule for controlling the plasticity of the immune system.
Collapse
Affiliation(s)
- Estelle Hess
- Centre National de la Recherche Scientifique, Laboratoire d'Immunopathologie et Chimie Thérapeutique, Unité Propre de Recherche 9021, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67084 Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
McCulloch L, Brown KL, Bradford BM, Hopkins J, Bailey M, Rajewsky K, Manson JC, Mabbott NA. Follicular dendritic cell-specific prion protein (PrP) expression alone is sufficient to sustain prion infection in the spleen. PLoS Pathog 2011; 7:e1002402. [PMID: 22144895 PMCID: PMC3228802 DOI: 10.1371/journal.ppat.1002402] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 10/11/2011] [Indexed: 11/20/2022] Open
Abstract
Prion diseases are characterised by the accumulation of PrP(Sc), an abnormally folded isoform of the cellular prion protein (PrP(C)), in affected tissues. Following peripheral exposure high levels of prion-specific PrP(Sc) accumulate first upon follicular dendritic cells (FDC) in lymphoid tissues before spreading to the CNS. Expression of PrP(C) is mandatory for cells to sustain prion infection and FDC appear to express high levels. However, whether FDC actively replicate prions or simply acquire them from other infected cells is uncertain. In the attempts to-date to establish the role of FDC in prion pathogenesis it was not possible to dissociate the Prnp expression of FDC from that of the nervous system and all other non-haematopoietic lineages. This is important as FDC may simply acquire prions after synthesis by other infected cells. To establish the role of FDC in prion pathogenesis transgenic mice were created in which PrP(C) expression was specifically "switched on" or "off" only on FDC. We show that PrP(C)-expression only on FDC is sufficient to sustain prion replication in the spleen. Furthermore, prion replication is blocked in the spleen when PrP(C)-expression is specifically ablated only on FDC. These data definitively demonstrate that FDC are the essential sites of prion replication in lymphoid tissues. The demonstration that Prnp-ablation only on FDC blocked splenic prion accumulation without apparent consequences for FDC status represents a novel opportunity to prevent neuroinvasion by modulation of PrP(C) expression on FDC.
Collapse
Affiliation(s)
- Laura McCulloch
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Midlothian, United Kingdom
| | - Karen L. Brown
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Midlothian, United Kingdom
| | - Barry M. Bradford
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Midlothian, United Kingdom
| | - John Hopkins
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Midlothian, United Kingdom
| | - Mick Bailey
- Division of Veterinary Pathology, Infection and Immunity, School of Clinical Veterinary Science, University of Bristol, Avon, United Kingdom
| | - Klaus Rajewsky
- Program in Cellular and Molecular Medicine, Children's Hospital, and Immune Disease Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jean C. Manson
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Midlothian, United Kingdom
| | - Neil A. Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
12
|
Abstract
Defining where and in what form lymphocytes encounter antigen is fundamental to understanding how immune responses occur. Although knowledge of the recognition of antigen by CD4(+) and CD8(+) T cells has advanced greatly, understanding of the dynamics of B cell-antigen encounters has lagged. With the application of advanced imaging approaches, encounters of this third kind are now being brought into focus. Multiple processes facilitate these encounters, from the filtering functions of lymphoid tissues and migration paths of B cells to the antigen-presenting properties of macrophages and follicular dendritic cells. This Review will discuss how these factors work together in the lymph node to ensure efficient and persistent exposure of B cells to diverse forms of antigen and thus effective triggering of the humoral response.
Collapse
|
13
|
Aguzzi A, Krautler NJ. Characterizing follicular dendritic cells: A progress report. Eur J Immunol 2010; 40:2134-8. [DOI: 10.1002/eji.201040765] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|