1
|
Zhi F, Ma JW, Ji DD, Bao J, Li QQ. Causal associations between circulating cytokines and risk of sepsis and related outcomes: a two-sample Mendelian randomization study. Front Immunol 2024; 15:1336586. [PMID: 38504987 PMCID: PMC10948396 DOI: 10.3389/fimmu.2024.1336586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024] Open
Abstract
Introduction Sepsis represents a critical medical condition that arises due to an imbalanced host reaction to infection. Central to its pathophysiology are cytokines. However, observational investigations that explore the interrelationships between circulating cytokines and susceptibility to sepsis frequently encounter challenges pertaining to confounding variables and reverse causality. Methods To elucidate the potential causal impact of cytokines on the risk of sepsis, we conducted two-sample Mendelian randomization (MR) analyses. Genetic instruments tied to circulating cytokine concentrations were sourced from genome-wide association studies encompassing 8,293 Finnish participants. We then evaluated their links with sepsis and related outcomes using summary-level data acquired from the UK Biobank, a vast multicenter cohort study involving over 500,000 European participants. Specifically, our data spanned 11,643 sepsis cases and 474,841 controls, with subsets including specific age groups, 28-day mortality, and ICU-related outcomes. Results and Discussion MR insights intimated that reduced genetically-predicted interleukin-10 (IL-10) levels causally correlated with a heightened sepsis risk (odds ratio [OR] 0.68, 95% confidence interval [CI] 0.52-0.90, P=0.006). An inverse relationship emerged between monocyte chemoattractant protein-1 (MCP-1) and sepsis-induced mortality. Conversely, elevated macrophage inflammatory protein 1 beta (MIP1B) concentrations were positively linked with both sepsis incidence and associated mortality. These revelations underscore the causal impact of certain circulating cytokines on sepsis susceptibility and its prognosis, hinting at the therapeutic potential of modulating these cytokine levels. Additional research is essential to corroborate these connections.
Collapse
Affiliation(s)
- Feng Zhi
- Department of Critical Care Medicine, Wuxi No.2 People's Hospital, Jiangnan University Medical Center, Wuxi, China
| | - Jia-Wei Ma
- Department of Critical Care Medicine, Wuxi No.2 People's Hospital, Jiangnan University Medical Center, Wuxi, China
- Department of Critical Care Medicine, Aheqi County People's Hospital, Xinjiang, China
| | - Dan-Dan Ji
- Department of Critical Care Medicine, Wuxi No.2 People's Hospital, Jiangnan University Medical Center, Wuxi, China
| | - Jie Bao
- Department of Critical Care Medicine, Wuxi No.2 People's Hospital, Jiangnan University Medical Center, Wuxi, China
| | - Qian-Qian Li
- Department of Critical Care Medicine, Wuxi No.2 People's Hospital, Jiangnan University Medical Center, Wuxi, China
| |
Collapse
|
2
|
Webster HC, Andrusaite AT, Shergold AL, Milling SWF, Perona-Wright G. Isolation and functional characterisation of lamina propria leukocytes from helminth-infected, murine small intestine. J Immunol Methods 2020; 477:112702. [PMID: 31705860 PMCID: PMC6983935 DOI: 10.1016/j.jim.2019.112702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022]
Abstract
The use of helminth infections as tools to understand the type 2 immune response is a well-established technique and important to many areas of immunological research. The phenotype and function of immune cell populations at the site of infection is a key determinant of pathogen clearance. However, infections with helminths such as the murine nematode Heligomosmoides polygryrus cause increased mucus production and thickening of the intestinal wall, which can result in extensive cell death when isolating and analysing cells from the lamina propria (LP). Populations of larger immune cells such as macrophages and dendritic cells are often trapped within mucus or dying tissues. Here we describe an optimised protocol for isolating LP leukocytes from the small intestine of H.polygyrus -infected mice, and we demonstrate phenotypic and functional identification of myeloid and CD4+ T cell subsets using cytokine staining and flow cytometry. Our protocol may provide a useful experimental method for the immunological analysis of the affected tissue site during helminth infections.
Collapse
Affiliation(s)
- Holly C Webster
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK.
| | - Anna T Andrusaite
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK.
| | - Amy L Shergold
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK.
| | - Simon W F Milling
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK.
| | - Georgia Perona-Wright
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK.
| |
Collapse
|
3
|
Oliveira YLDC, Oliveira LM, Oliveira YLM, Nascimento AMD, La Corte R, Geraldi RM, Barbosa L, Gazzinelli-Guimarães PH, Fujiwara RT, Bueno LL, Dolabella SS. Changes in the epidemiological profile of intestinal parasites after a school-based large-scale treatment for soil-transmitted helminths in a community in northeastern Brazil: Epidemiological profile after large-scale school-based treatment for STH. Acta Trop 2020; 202:105279. [PMID: 31758913 DOI: 10.1016/j.actatropica.2019.105279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/22/2019] [Accepted: 11/19/2019] [Indexed: 11/29/2022]
Abstract
Intestinal parasites cause a significant public health problem worldwide due to the associated morbidities, mainly in infected school-aged children (SAC). The strategy of large-scale deworming in SAC to control the transmission of soil-transmitted helminths (STH) has been advocated by the World Health Organization and was recently adopted in Brazil; however, the long-term effects of mass deworming on the larger parasitological profile have been less studied. After a five-year period of school-based large-scale treatment for STH using an annual single dose of albendazole in a community of Sergipe state, Brazil, a marked reduction in prevalence was observed (15.4%% vs.7.4% for Ascaris sp., 6.0%% vs. 0.4% for hookworm, and 12.8%% vs. 4.5%% for Trichuris trichiura), with the exception of Strongyloides stercoralis, which had no statistically significant change in prevalence. There was, however, an increase in the prevalence of intestinal protozoans, specifically Entamoeba histolytica/E. dispar (0.0%% vs. 36.0%), Blastocystis hominis (0.0%% vs. 40.1%), and Giardia duodenalis (5.6%% vs. 14.5%). Although the findings showed a dramatic reduction in the prevalence of STH after four rounds of preventive chemotherapy, there was an increase in intestinal protozoan infections, indicating a change in the epidemiological profile.
Collapse
Affiliation(s)
- Yvanna L D C Oliveira
- Department of Morphology, Center of Biology and Health Sciences, Universidade Federal de Sergipe, São Cristovão, Sergipe 49100-000, Brazil.
| | - Luciana M Oliveira
- Department of Morphology, Center of Biology and Health Sciences, Universidade Federal de Sergipe, São Cristovão, Sergipe 49100-000, Brazil.
| | - Yrna L M Oliveira
- Department of Morphology, Center of Biology and Health Sciences, Universidade Federal de Sergipe, São Cristovão, Sergipe 49100-000, Brazil.
| | - Ana M D Nascimento
- Department of Morphology, Center of Biology and Health Sciences, Universidade Federal de Sergipe, São Cristovão, Sergipe 49100-000, Brazil.
| | - Roseli La Corte
- Department of Morphology, Center of Biology and Health Sciences, Universidade Federal de Sergipe, São Cristovão, Sergipe 49100-000, Brazil.
| | - Ricardo M Geraldi
- Department of Morphology, Center of Biology and Health Sciences, Universidade Federal de Sergipe, São Cristovão, Sergipe 49100-000, Brazil.
| | - Luciene Barbosa
- Department of Morphology, Center of Biology and Health Sciences, Universidade Federal de Sergipe, São Cristovão, Sergipe 49100-000, Brazil.
| | - Pedro H Gazzinelli-Guimarães
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Ricardo T Fujiwara
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Lilian L Bueno
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Silvio S Dolabella
- Department of Morphology, Center of Biology and Health Sciences, Universidade Federal de Sergipe, São Cristovão, Sergipe 49100-000, Brazil.
| |
Collapse
|
4
|
Parasitic nematodes simultaneously suppress and benefit from coccidian coinfection in their natural mouse host. Parasitology 2019; 146:1096-1106. [PMID: 30915927 PMCID: PMC6603796 DOI: 10.1017/s0031182019000192] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Within-host interactions among coinfecting parasites are common and have important consequences for host health and disease dynamics. However, these within-host interactions have traditionally been studied in laboratory mouse models, which often exclude important variation and use unnatural host-parasite combinations. Conversely, the few wild studies of within-host interactions often lack knowledge of parasite exposure and infection history. Here we exposed laboratory-reared wood mice (Apodemus sylvaticus) that were derived from wild-caught animals to two naturally-occurring parasites (nematode: Heligmosomoides polygyrus, coccidia: Eimeria hungaryensis) to investigate the impact of coinfection on parasite infection dynamics, and to determine if the host immune response mediates this interaction. Coinfection led to delayed worm expulsion and prolonged egg shedding in H. polygyrus infections and lower peak E. hungaryensis oocyst burdens. By comparing antibody levels between wild and colony-housed mice, we also found that wild mice had elevated H. polygyrus-IgG1 titres even if currently uninfected with H. polygyrus. Using this unique wild-laboratory system, we demonstrate, for the first time, clear evidence for a reciprocal interaction between these intestinal parasites, and that there is a great discrepancy between antibody levels measured in the wild vs those measured under controlled laboratory conditions in relation to parasite infection and coinfection.
Collapse
|
5
|
Antibodies and coinfection drive variation in nematode burdens in wild mice. Int J Parasitol 2018; 48:785-792. [DOI: 10.1016/j.ijpara.2018.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 12/19/2022]
|
6
|
Susceptibility to Ticks and Lyme Disease Spirochetes Is Not Affected in Mice Coinfected with Nematodes. Infect Immun 2016; 84:1274-1286. [PMID: 26883594 PMCID: PMC4862734 DOI: 10.1128/iai.01309-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/26/2016] [Indexed: 01/16/2023] Open
Abstract
Small rodents serve as reservoir hosts for tick-borne pathogens, such as the spirochetes causing Lyme disease. Whether natural coinfections with other macroparasites alter the success of tick feeding, antitick immunity, and the host's reservoir competence for tick-borne pathogens remains to be determined. In a parasitological survey of wild mice in Berlin, Germany, approximately 40% of Ixodes ricinus-infested animals simultaneously harbored a nematode of the genus Heligmosomoides. We therefore aimed to analyze the immunological impact of the nematode/tick coinfection as well as its effect on the tick-borne pathogen Borrelia afzelii. Hosts experimentally coinfected with Heligmosomoides polygyrus and larval/nymphal I. ricinus ticks developed substantially stronger systemic type 2 T helper cell (Th2) responses, on the basis of the levels of GATA-3 and interleukin-13 expression, than mice infected with a single pathogen. During repeated larval infestations, however, anti-tick Th2 reactivity and an observed partial immunity to tick feeding were unaffected by concurrent nematode infections. Importantly, the strong systemic Th2 immune response in coinfected mice did not affect susceptibility to tick-borne B. afzelii. An observed trend for decreased local and systemic Th1 reactivity against B. afzelii in coinfected mice did not result in a higher spirochete burden, nor did it facilitate bacterial dissemination or induce signs of immunopathology. Hence, this study indicates that strong systemic Th2 responses in nematode/tick-coinfected house mice do not affect the success of tick feeding and the control of the causative agent of Lyme disease.
Collapse
|
7
|
Chapman HD, Barta JR, Blake D, Gruber A, Jenkins M, Smith NC, Suo X, Tomley FM. A selective review of advances in coccidiosis research. ADVANCES IN PARASITOLOGY 2014; 83:93-171. [PMID: 23876872 DOI: 10.1016/b978-0-12-407705-8.00002-1] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coccidiosis is a widespread and economically significant disease of livestock caused by protozoan parasites of the genus Eimeria. This disease is worldwide in occurrence and costs the animal agricultural industry many millions of dollars to control. In recent years, the modern tools of molecular biology, biochemistry, cell biology and immunology have been used to expand greatly our knowledge of these parasites and the disease they cause. Such studies are essential if we are to develop new means for the control of coccidiosis. In this chapter, selective aspects of the biology of these organisms, with emphasis on recent research in poultry, are reviewed. Topics considered include taxonomy, systematics, genetics, genomics, transcriptomics, proteomics, transfection, oocyst biogenesis, host cell invasion, immunobiology, diagnostics and control.
Collapse
Affiliation(s)
- H David Chapman
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Rausch S, Held J, Fischer A, Heimesaat MM, Kühl AA, Bereswill S, Hartmann S. Small intestinal nematode infection of mice is associated with increased enterobacterial loads alongside the intestinal tract. PLoS One 2013; 8:e74026. [PMID: 24040152 PMCID: PMC3769368 DOI: 10.1371/journal.pone.0074026] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/25/2013] [Indexed: 01/04/2023] Open
Abstract
Parasitic nematodes are potent modulators of immune reactivity in mice and men. Intestinal nematodes live in close contact with commensal gut bacteria, provoke biased Th2 immune responses upon infection, and subsequently lead to changes in gut physiology. We hypothesized that murine nematode infection is associated with distinct changes of the intestinal bacterial microbiota composition. We here studied intestinal inflammatory and immune responses in mice following infection with the hookworm Heligmosomoidespolygyrusbakeri and applied cultural and molecular techniques to quantitatively assess intestinal microbiota changes in the ileum, cecum and colon. At day 14 post nematode infection, mice harbored significantly higher numbers of γ-Proteobacteria/Enterobacteriaceae and members of the Bacteroides/Prevotella group in their cecum as compared to uninfected controls. Abundance of Gram-positive species such as Lactobacilli, Clostridia as well as the total bacterial load was not affected by worm infection. The altered microbiota composition was independent of the IL-4/-13 – STAT6 signaling axis, as infected IL-4Rα-/- mice showed a similar increase in enterobacterial loads. In conclusion, infection with an enteric nematode is accompanied by distinct intestinal microbiota changes towards higher abundance of gram-negative commensal species at the small intestinal site of infection (and inflammation), but also in the parasite-free large intestinal tract. Further studies should unravel the impact of nematode-induced microbiota changes in inflammatory bowel disease to allow for a better understanding of how theses parasites interfere with intestinal inflammation and bacterial communities in men.
Collapse
MESH Headings
- Animals
- Bacterial Load
- Cytokines/biosynthesis
- Enterobacteriaceae/classification
- Enterobacteriaceae/genetics
- Enterobacteriaceae/growth & development
- Female
- Interleukin-4 Receptor alpha Subunit/genetics
- Interleukin-4 Receptor alpha Subunit/metabolism
- Intestinal Diseases, Parasitic/immunology
- Intestinal Diseases, Parasitic/microbiology
- Intestinal Mucosa/microbiology
- Intestinal Mucosa/parasitology
- Intestinal Mucosa/pathology
- Intestine, Small/immunology
- Intestine, Small/microbiology
- Intestine, Small/parasitology
- Intestine, Small/pathology
- Mice
- Mice, Knockout
- Microbiota
- Nematode Infections/immunology
- Nematode Infections/microbiology
- Nematode Infections/parasitology
- RNA, Bacterial
- RNA, Ribosomal, 16S
- Signal Transduction
Collapse
Affiliation(s)
- Sebastian Rausch
- Institute of Immunology, Department of Veterinary Medicine, Freie Universität, Berlin, Germany
- * E-mail:
| | - Josephin Held
- Department of Neuropathology, Charité - University Medicine Berlin, Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Markus M. Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Anja A. Kühl
- Department of Internal Medicine, Rheumatology and Clinical Immunology/Research Center ImmunoSciences (RCIS), Charité - University Medicine Berlin, Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Berlin, Germany
| | - Susanne Hartmann
- Institute of Immunology, Department of Veterinary Medicine, Freie Universität, Berlin, Germany
| |
Collapse
|
9
|
Ruiz A, Muñoz M, Molina J, Hermosilla C, Rodríguez F, Andrada M, Martín S, A.Guedes, Pérez D, Matos L, López A, Taubert A. Primary infection of goats with Eimeria ninakohlyakimovae does not provide protective immunity against high challenge infections. Small Rumin Res 2013. [DOI: 10.1016/j.smallrumres.2013.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Knowles SCL, Fenton A, Petchey OL, Jones TR, Barber R, Pedersen AB. Stability of within-host-parasite communities in a wild mammal system. Proc Biol Sci 2013; 280:20130598. [PMID: 23677343 PMCID: PMC3673050 DOI: 10.1098/rspb.2013.0598] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Simultaneous infection by multiple parasite species is ubiquitous in nature. Interactions among co-infecting parasites may have important consequences for disease severity, transmission and community-level responses to perturbations. However, our current view of parasite interactions in nature comes primarily from observational studies, which may be unreliable at detecting interactions. We performed a perturbation experiment in wild mice, by using an anthelminthic to suppress nematodes, and monitored the consequences for other parasite species. Overall, these parasite communities were remarkably stable to perturbation. Only one non-target parasite species responded to deworming, and this response was temporary: we found strong, but short-lived, increases in the abundance of Eimeria protozoa, which share an infection site with the dominant nematode species, suggesting local, dynamic competition. These results, providing a rare and clear experimental demonstration of interactions between helminths and co-infecting parasites in wild vertebrates, constitute an important step towards understanding the wider consequences of similar drug treatments in humans and animals.
Collapse
Affiliation(s)
- Sarah C L Knowles
- Institute of Evolutionary Biology, and Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK.
| | | | | | | | | | | |
Collapse
|
11
|
Order of Inoculation during Heligmosomoides bakeri and Hymenolepis microstoma Coinfection Alters Parasite Life History and Host Responses. Pathogens 2013; 2:130-52. [PMID: 25436885 PMCID: PMC4235709 DOI: 10.3390/pathogens2010130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/02/2013] [Accepted: 02/21/2013] [Indexed: 11/24/2022] Open
Abstract
Parasite life history may differ during coinfection compared to single infections, and the order of infection may be an important predictor of life history traits. We subjected laboratory mice (Mus musculus) to single and coinfections with Heligmosomoides bakeri and Hymenolepis microstoma and measured life history traits of worms and also hepatobiliary and morphological responses by the host. We found that fewer H. bakeri larvae established, and adult worms were shorter and produced fewer eggs during a coinfection where H. microstoma occurred first. H. microstoma grew more and released more eggs after simultaneous inoculation of both parasites compared to a single H. microstoma infection, despite similar worm numbers. Mouse small intestine mass, but not length, varied with coinfection and bile duct mass was largest when H. microstoma was given alone or first. Mouse serum alkaline phosphatase levels were greatest for mice infected with H. microstoma only but did not vary with number of scolices; no change in mouse serum alanine transaminase levels was observed. Overall, the order of coinfection influenced life history traits of both H. bakeri and H. microstoma, but changes in survival, growth, and reproduction with order of inoculation were not consistent between the two parasites.
Collapse
|
12
|
Maizels RM, Hewitson JP, Murray J, Harcus YM, Dayer B, Filbey KJ, Grainger JR, McSorley HJ, Reynolds LA, Smith KA. Immune modulation and modulators in Heligmosomoides polygyrus infection. Exp Parasitol 2012; 132:76-89. [PMID: 21875581 PMCID: PMC6485391 DOI: 10.1016/j.exppara.2011.08.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 08/09/2011] [Accepted: 08/15/2011] [Indexed: 01/12/2023]
Abstract
The intestinal nematode parasite Heligmosomoides polygyrus bakeri exerts widespread immunomodulatory effects on both the innate and adaptive immune system of the host. Infected mice adopt an immunoregulated phenotype, with abated allergic and autoimmune reactions. At the cellular level, infection is accompanied by expanded regulatory T cell populations, skewed dendritic cell and macrophage phenotypes, B cell hyperstimulation and multiple localised changes within the intestinal environment. In most mouse strains, these act to block protective Th2 immunity. The molecular basis of parasite interactions with the host immune system centres upon secreted products termed HES (H. polygyrus excretory-secretory antigen), which include a TGF-β-like ligand that induces de novo regulatory T cells, factors that modify innate inflammatory responses, and molecules that block allergy in vivo. Proteomic and transcriptomic definition of parasite proteins, combined with biochemical identification of immunogenic molecules in resistant mice, will provide new candidate immunomodulators and vaccine antigens for future research.
Collapse
Affiliation(s)
- Rick M Maizels
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3JT, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Li Z, Liu G, Chen Y, Liu Y, Liu B, Su Z. The phenotype and function of naturally existing regulatory dendritic cells in nematode-infected mice. Int J Parasitol 2011; 41:1129-37. [PMID: 21827765 DOI: 10.1016/j.ijpara.2011.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 06/21/2011] [Accepted: 06/22/2011] [Indexed: 02/06/2023]
Abstract
Immunosuppression associated with chronic helminth infections has been documented in many studies and regulatory T (Treg) cells have been shown to mediate the nematode-induced immunosuppression, but the role of dendritic cells (DCs) in the induction of Treg cell response and immunosuppression has not yet been fully determined. We analysed the response and function of DCs in mesenteric lymph node (MLNs) of mice infected with a gastrointestinal nematode, Heligmosomoides polygyrus, and observed a substantial expansion of DCs in MLNs following the infection. The CD11c(+) DCs in MLNs of infected mice showed reduced expression of co-stimulatory molecules CD40, CD86 and MHC-II, and production of inflammatory cytokines IL-12 and IL-6. Analysis of MLN DC subsets defined by CD11c and CD45RB expression showed that the CD11c(low)CD45RB(mid) subset increased rapidly following H. polygyrus infection and the CD11c(mid)CD45RB(high) subset expanded from the third week after infection. In the co-culture of sorted DC subsets with ovalbumin-(OVA-)specific T cell receptor (TCR) transgenic CD4(+) T cells, CD11c(low)CD45RB(mid) DCs induced a low proliferation response and a high level of IL-10 production in CD4(+) T cells, whereas CD11c(mid)CD45RB(high) DCs induced more IFN-γ and IL-4 producing CD4(+) T cells. Intracellular staining revealed that CD11c(low)CD45RB(mid) DCs promoted CD4(+) Foxp3(+) differentiations. These results indicate that nematode infections selectively induce expansion of the CD11c(low)CD45RB(mid) regulatory DC subset that promotes development of Foxp3(+) and IL-10 producing Treg cells. The Treg cell responses and immunoregulatory cytokines induced by this regulatory DC subset in turn play an important role in mediation of the nematode-induced immunosuppression.
Collapse
Affiliation(s)
- Zhaotao Li
- Laboratory of Immunobiology, Center for Infectious Diseases and Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, PR China
| | | | | | | | | | | |
Collapse
|