1
|
Tea Polyphenols Reducing Lipopolysaccharide-induced Inflammatory Responses in RAW264.7 Macrophages via NF-κB Pathway. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-8376-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
2
|
Zheng Y, Wu Y, Chen X, Jiang X, Wang K, Hu F. Chinese Propolis Exerts Anti-Proliferation Effects in Human Melanoma Cells by Targeting NLRP1 Inflammatory Pathway, Inducing Apoptosis, Cell Cycle Arrest, and Autophagy. Nutrients 2018; 10:E1170. [PMID: 30149677 PMCID: PMC6165017 DOI: 10.3390/nu10091170] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/17/2018] [Accepted: 08/23/2018] [Indexed: 01/03/2023] Open
Abstract
Melanoma is a malignant tumor that begins in the melanocyte and has the highest mortality rate among all cutaneous tumors. Chinese propolis (CP) has been shown to have a potent antitumor effect against various cancers. In this study, we uncovered the combined effects of antiproliferation and anti-inflammation of CP on suppressing the progression of human melanoma cell line A375. We evaluated the alterations of protein expression after CP treatment by Western blot. After CP treatment, A375 cells underwent intrinsic apoptosis and cell cycle arrest. Furthermore, we found that CP suppressed inflammation in A375 cells. NLRP1 (NLR family pyrin domain containing 1), confirmed as a proinflammatory protein in melanoma progression, was downregulated significantly by CP, as were the NLRP1-related caspase activation and recruitment domains (CARD) proteins, including caspase-1 and caspase-4. Additionally, decreasing mRNA levels of IL-1α, IL-1β, and IL-18 further proved the negative regulation of CP on the melanoma inflammatory environment. We also discovered that CP induced autophagy in A375 cells. Interestingly, inhibiting autophagy in CP-treated cells diminished its antitumor effect, suggesting that the autophagy was attributed to CP-induced apoptosis. Collectively, CP is a promising candidate for drug development for melanoma therapy.
Collapse
Affiliation(s)
- Yufei Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yuqi Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Xi Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Xiasen Jiang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Fuliang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Ren Y, Liu SF, Nie L, Cai SY, Chen J. Involvement of ayu NOD2 in NF-κB and MAPK signaling pathways: Insights into functional conservation of NOD2 in antibacterial innate immunity. Zool Res 2018; 40:77-88. [PMID: 29872030 PMCID: PMC6378557 DOI: 10.24272/j.issn.2095-8137.2018.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nucleotide oligomerization domain 2 (NOD2) is a major cytoplasmic sensor for pathogens and is critical for the clearance of cytosolic bacteria in mammals. However, studies regarding NOD2, especially the initiated signaling pathways, are scarce in teleost species. In this study, we identified a NOD2 molecule (PaNOD2) from ayu (Plecoglossus altivelis). Bioinformatics analysis showed the structure of NOD2 to be highly conserved during vertebrate evolution. Dual-luciferase reporter assays examined the activation of NF-κB signaling and Western blotting analysis detected the phosphorylation of three MAP kinases (p-38, Erk1/2, and JNK1/2). Functional study revealed that, like its mammalian counterparts, PaNOD2 was the receptor of the bacterial cell wall component muramyl dipeptide (MDP), and the leucine-rich repeat motif was responsible for the recognition and binding of PaNOD2 with the ligand. Overexpression of PaNOD2 activated the NF-κB signaling pathway, leading to the upregulation of inflammatory cytokines, including TNF-α and IL-1β in HEK293T cells and ayu head kidney-derived monocytes/macrophages (MO/MΦ). Particularly, we found that PaNOD2 activated the MAPK signaling pathways, as indicated by the increased phosphorylation of p-38, Erk1/2, and JNK1/2, which have not been characterized in any teleost species previously. Our findings proved that the NOD2 molecule and initiated pathways are conserved between mammals and ayu. Therefore, ayu could be used as an animal model to investigate NOD2-based diseases and therapeutic applications.
Collapse
Affiliation(s)
- Yi Ren
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo Zhejiang 315211, China
| | - Shui-Fang Liu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo Zhejiang 315211, China
| | - Li Nie
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo Zhejiang 315211, China; E-mail:
| | - Shi-Yu Cai
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo Zhejiang 315211, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo Zhejiang 315211, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo Zhejiang 315211, China; E-mail:
| |
Collapse
|
4
|
Xie J, Belosevic M. Characterization and functional assessment of the NLRC3-like molecule of the goldfish (Carassius auratus L.). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 79:1-10. [PMID: 28988993 DOI: 10.1016/j.dci.2017.09.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 06/07/2023]
Abstract
The NLRC3-like (NLRC3L) molecule from the goldfish transcriptome database was identified and characterized. Quantitative gene expression analysis revealed the highest mRNA levels of NLRC3L were in the spleen and intestine, with lower mRNA levels observed in muscle and liver. Goldfish NLRC3L was differentially expressed in goldfish immune cell populations with highest mRNA levels measured in PBLs and macrophages. We generated a recombinant form of the molecule (rgfNLRC3L) and an anti-CT-NLRC3L IgG. Treatment of goldfish primary kidney macrophages in vitro with ATP, LPS and heat-killed Aeromonas salmonicida up-regulated the NLRC3L mRNA and protein. Confocal microscopy and co-immunoprecipitation assays indicated that goldfish rgfNLRC3L interacted with apoptosis-associated spec-like protein (ASC) in eukaryotic cells, indicating that NLRC3L may participate in the regulation of the inflammasome responses. The dual-luciferase reporter assay showed that NLRC3L over-expression did not cause the activation of NF-κB, but that it cooperated with RIP2 to down-regulate NF-κB activation. Our results indicate that the NLRC3L may function as a regulator of NLR pathways in teleosts.
Collapse
Affiliation(s)
- Jiasong Xie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
5
|
Boini KM, Hussain T, Li PL, Koka S. Trimethylamine-N-Oxide Instigates NLRP3 Inflammasome Activation and Endothelial Dysfunction. Cell Physiol Biochem 2017; 44:152-162. [PMID: 29130962 DOI: 10.1159/000484623] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 10/23/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/AIM Plasma trimethylamine-N-oxide (TMAO), a product of intestinal microbial metabolism of dietary phosphatidylcholine has been recently associated with atherosclerosis and increased risk of cardiovascular diseases (CVD) in rodents and humans. However, the molecular mechanisms of how TMAO induces atherosclerosis and CVD progression are still unclear. The present study tested whether TMAO induces NLRP3 inflammasome formation and activation and thereby contributes to endothelial injury initiating atherogenesis. METHODS Inflammasome formation and activation was determined by confocal microscopy, caspase-1 activity was measured by colorimetric assay, IL-1β production was measured using ELISA, cell permeability was determined by microplate reader and ZO-1 expression was determined by western blot analysis and confocal microscopy. In in vivo experiments, TMAO was infused by osmotic pump implantation. RESULTS TMAO treatment significantly increased the colocalization of NLRP3 with Asc or NLRP3 with caspase-1, caspase-1 activity, IL-1β production, cell permeability in carotid artery endothelial cells (CAECs) compared to control cells. Pretreatment with caspase-1 inhibitor, WEHD or Nlrp3 siRNA abolished the TMAO-induced inflammasome formation, activation and cell permeability in these cells. In addition, we explored the mechanisms by which TMAO activates NLRP3 inflammasomes. TMAO-induced the activation of NLRP3 inflammasomes was associated with both redox regulation and lysosomal dysfunction. In animal experiments, direct infusion of TMAO in mice with partially ligated carotid artery were found to have increased NLRP3 inflammasome formation and IL-1β production in the intima of wild type mice. CONCLUSION The formation and activation of NLRP3 inflammasomes by TMAO may be an important initiating mechanism to turn on the endothelial inflammatory response leading to endothelial dysfunction.
Collapse
Affiliation(s)
- Krishna M Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Tahir Hussain
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sai Koka
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| |
Collapse
|
6
|
Raymond SL, Holden DC, Mira JC, Stortz JA, Loftus TJ, Mohr AM, Moldawer LL, Moore FA, Larson SD, Efron PA. Microbial recognition and danger signals in sepsis and trauma. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2564-2573. [PMID: 28115287 PMCID: PMC5519458 DOI: 10.1016/j.bbadis.2017.01.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/03/2017] [Accepted: 01/16/2017] [Indexed: 12/14/2022]
Abstract
Early host recognition of microbial invasion or damaged host tissues provides an effective warning system by which protective immune and inflammatory processes are initiated. Host tissues responsible for continuous sampling of their local environment employ cell surface and cytosolic pattern recognition receptors (PRRs) that provide redundant and overlapping identification of both microbial and host alarmins. Microbial products containing pathogen-associated molecular patterns (PAMPs), as well as damage-associated molecular patterns (DAMPs) serve as principle ligands for recognition by these PRRs. It is this interaction which plays both an essential survival role in response to infection and injury, as well as the pathologic role in tissue and organ injury associated with severe sepsis and trauma. Elucidating the interaction between ligands and their respective PRRs can provide both a better understanding of the host response, as well as a rational basis for therapeutic intervention. This article is part of a Special Issue entitled: Immune and Metabolic Alterations in Trauma and Sepsis edited by Dr. Raghavan Raju.
Collapse
Affiliation(s)
- Steven L Raymond
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - David C Holden
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Juan C Mira
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Julie A Stortz
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Tyler J Loftus
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Alicia M Mohr
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Lyle L Moldawer
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Frederick A Moore
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Shawn D Larson
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Philip A Efron
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States.
| |
Collapse
|
7
|
Luehong N, Khaowmek J, Wongsawan K, Chuammitri P. Preferential pattern of mouse neutrophil cell death in response to various stimulants. In Vitro Cell Dev Biol Anim 2017; 53:513-524. [DOI: 10.1007/s11626-016-0129-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 12/23/2016] [Indexed: 12/23/2022]
|
8
|
Cytokine signatures in hereditary fever syndromes (HFS). Cytokine Growth Factor Rev 2016; 33:19-34. [PMID: 27916611 DOI: 10.1016/j.cytogfr.2016.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/31/2016] [Accepted: 11/14/2016] [Indexed: 02/03/2023]
Abstract
Hereditary fever syndromes (HFS) include a group of disorders characterized by recurrent self-limited episodes of fever accompanied by inflammatory manifestations occurring in the absence of infection or autoimmune reaction. Advances in the genetics of HFS have led to the identification of new gene families and pathways involved in the regulation of inflammation and innate immunity. The key role of several cytokine networks in the pathogenesis of HFS has been underlined by several groups, and supported by the rapid response of patients to targeted cytokine blocking therapies. This can be due to the direct effect of cytokine overproduction or to an absence of receptor antagonist resulting in dysbalance of downstream pro- and anti-inflammatory cytokine networks. The aim of this study was to present an overview and to discuss the major concepts regarding the cellular and molecular immunology of HFS, with a particular focus on their specific cytokine signatures and physiopathological implications. Based on their molecular and cellular mechanisms, HFS have been classified into intrinsic and extrinsic IL-1β activation disorders or inflammasomopathies, and protein misfolding disorders. This review integrates all recent data in an updated classification of HFS.
Collapse
|
9
|
Qiu YY, Tang LQ. Roles of the NLRP3 inflammasome in the pathogenesis of diabetic nephropathy. Pharmacol Res 2016; 114:251-264. [PMID: 27826011 DOI: 10.1016/j.phrs.2016.11.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/10/2016] [Accepted: 11/03/2016] [Indexed: 12/22/2022]
Abstract
Diabetic nephropathy (DN) is a serious complication of diabetes mellitus, and persistent inflammation in circulatory and renal tissues is an important pathophysiological basis for DN. The essence of the microinflammatory state is the innate immune response, which is central to the occurrence and development of DN. Members of the inflammasome family, including both "receptors" and "regulators", are key to the inflammatory immune response. Nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) and other inflammasome components are able to detect endogenous danger signals, resulting in activation of caspase-1 as well as interleukin (IL)-1β, IL-18 and other cytokines; these events stimulate the inflammatory cascade reaction, which is crucial for DN. Hyperglycaemia, hyperlipidaemia and hyperuricaemia can activate the NLRP3 inflammasome, which then mediates the occurrence and development of DN through the K+ channel model, the lysosomal damage model and the active oxygen cluster model. In this review, we survey the involvement of the NLRP3 inflammasome in various signalling pathways and highlight different aspects of their influence on DN. We also explore the important effects of the NLRP3 inflammasome on kidney function and structural changes that occur during DN development and progression. It is becoming more evident that NLRP3 inflammasome targeting has therapeutic potential for the treatment of DN.
Collapse
Affiliation(s)
- Yuan-Ye Qiu
- Anhui Provincial Hospital, Anhui Medical University, 17# Lu-jiang Road, Hefei 230001, Anhui, China.
| | - Li-Qin Tang
- Anhui Provincial Hospital, Anhui Medical University, 17# Lu-jiang Road, Hefei 230001, Anhui, China.
| |
Collapse
|
10
|
Abstract
Parasitic diseases are a serious global health concern. Many of the most common and most severe parasitic diseases, including Chagas' disease, leishmaniasis, and schistosomiasis, are also classified as neglected tropical diseases and are comparatively less studied than infectious diseases prevalent in high income nations. The NLRs (nucleotide-binding domain leucine-rich-repeat-containing proteins) are cytosolic proteins known to be involved in pathogen detection and host response. The role of NLRs in the host response to parasitic infection is just beginning to be understood. The NLR proteins NOD1 and NOD2 have been shown to contribute to immune responses during Trypanosoma cruzi infection, Toxoplasma gondii infection, and murine cerebral malaria. The NLRP3 inflammasome is activated by T. cruzi and Leishmania amazonensis but also induces pathology during infection with schistosomes or malaria. Both the NLRP1 and NLRP3 inflammasomes respond to T. gondii infection. The NLRs may play crucial roles in human immune responses during parasitic infection, usually acting as innate immune sensors and driving the inflammatory response against invading parasites. However, this inflammatory response can either kill the invading parasite or be responsible for destructive pathology. Therefore, understanding the role of the NLR proteins will be critical to understanding the host defense against parasites as well as the fine balance between homeostasis and parasitic disease.
Collapse
Affiliation(s)
- Gwendolyn M Clay
- The Interdisciplinary Program in Molecular and Cellular Biology, University of Iowa, 400 EMRB, 500 Newton Rd., Iowa City, IA, 52242, USA
| | | | | |
Collapse
|
11
|
Casey ME, Meade KG, Nalpas NC, Taraktsoglou M, Browne JA, Killick KE, Park SDE, Gormley E, Hokamp K, Magee DA, MacHugh DE. Analysis of the Bovine Monocyte-Derived Macrophage Response to Mycobacterium avium Subspecies Paratuberculosis Infection Using RNA-seq. Front Immunol 2015; 6:23. [PMID: 25699042 PMCID: PMC4316787 DOI: 10.3389/fimmu.2015.00023] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/10/2015] [Indexed: 12/28/2022] Open
Abstract
Johne's disease, caused by infection with Mycobacterium avium subsp. paratuberculosis, (MAP), is a chronic intestinal disease of ruminants with serious economic consequences for cattle production in the United States and elsewhere. During infection, MAP bacilli are phagocytosed and subvert host macrophage processes, resulting in subclinical infections that can lead to immunopathology and dissemination of disease. Analysis of the host macrophage transcriptome during infection can therefore shed light on the molecular mechanisms and host-pathogen interplay associated with Johne's disease. Here, we describe results of an in vitro study of the bovine monocyte-derived macrophage (MDM) transcriptome response during MAP infection using RNA-seq. MDM were obtained from seven age- and sex-matched Holstein-Friesian cattle and were infected with MAP across a 6-h infection time course with non-infected controls. We observed 245 and 574 differentially expressed (DE) genes in MAP-infected versus non-infected control samples (adjusted P value ≤0.05) at 2 and 6 h post-infection, respectively. Functional analyses of these DE genes, including biological pathway enrichment, highlighted potential functional roles for genes that have not been previously described in the host response to infection with MAP bacilli. In addition, differential expression of pro- and anti-inflammatory cytokine genes, such as those associated with the IL-10 signaling pathway, and other immune-related genes that encode proteins involved in the bovine macrophage response to MAP infection emphasize the balance between protective host immunity and bacilli survival and proliferation. Systematic comparisons of RNA-seq gene expression results with Affymetrix(®) microarray data generated from the same experimental samples also demonstrated that RNA-seq represents a superior technology for studying host transcriptional responses to intracellular infection.
Collapse
Affiliation(s)
- Maura E Casey
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland ; Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc , Dunsany , Ireland
| | - Kieran G Meade
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc , Dunsany , Ireland
| | - Nicolas C Nalpas
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland
| | | | - John A Browne
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland
| | - Kate E Killick
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland ; Systems Biology Ireland, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin , Dublin , Ireland
| | - Stephen D E Park
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland
| | - Eamonn Gormley
- Tuberculosis Diagnostics and Immunology Research Centre, UCD School of Veterinary Medicine, University College Dublin , Dublin , Ireland
| | - Karsten Hokamp
- Smurfit Institute of Genetics, Trinity College Dublin , Dublin , Ireland
| | - David A Magee
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin , Dublin , Ireland ; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin , Dublin , Ireland
| |
Collapse
|
12
|
Mechanisms of inflammasome activation: recent advances and novel insights. Trends Cell Biol 2015; 25:308-15. [PMID: 25639489 DOI: 10.1016/j.tcb.2014.12.009] [Citation(s) in RCA: 385] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/22/2014] [Accepted: 12/22/2014] [Indexed: 01/04/2023]
Abstract
Inflammasomes are cytosolic multiprotein platforms assembled in response to invading pathogens and other danger signals. Typically inflammasome complexes contain a sensor protein, an adaptor protein, and a zymogen - procaspase-1. Formation of inflammasome assembly results in processing of inactive procaspase-1 into an active cysteine-protease enzyme, caspase-1, which subsequently activates the proinflammatory cytokines, interleukins IL-1β and IL-18, and induces pyroptosis, a highly-pyrogenic inflammatory form of cell death. Studies over the past year have unveiled exciting new players and regulatory pathways that are involved in traditional inflammasome signaling, some of them even challenging the existing dogma. This review outlines these new insights in inflammasome research and discusses areas that warrant further exploration.
Collapse
|
13
|
Tamassia N, Zimmermann M, Cassatella MA. An additional piece in the puzzle of neutrophil-derived IL-1β: the NLRP3 inflammasome. Eur J Immunol 2012; 42:565-8. [PMID: 22488359 DOI: 10.1002/eji.201242399] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The notion that neutrophils play a pivotal role in orchestrating ongoing inflammatory immune responses has been bolstered by several fairly newly described effector mechanisms, particularly their capacity to serve as a source of cytokines. This frequently neglected phenomenon is acquiring more and more credit and, as a result, our understanding of the molecular basis of neutrophil-derived cytokines has grown tremendously in the past 20 years. It is now clear that cytokine secretion by neutrophils is controlled by sophisticated regulatory mechanisms. In this issue of the European Journal of Immunology, Mankan et al. (Eur. J. Immunol. 42: 710-715) further extend our knowledge by reappraising the role of the inflammasome pathway, specifically the NLRP3 sensor, in the secretion of mature IL-1β by murine neutrophils. Accordingly, Mankan et al. (Eur. J. Immunol. 42: 710-715) identify the neutrophil expression of the NLRP3 inflammasome complex, and by using specific knockout mice, they also show that, in LPS-primed neutrophils, the NLRP3/ASC/caspase-1 axis plays a nonredundant role for IL-1β processing in response to typical NLRP3 inflammasome stimuli.
Collapse
Affiliation(s)
- Nicola Tamassia
- Department of Pathology and Diagnostics, Section of General Pathology, University of Verona, Verona, Italy
| | | | | |
Collapse
|
14
|
Montano MAE, da Cruz IBM, Duarte MMMF, Krewer CDC, da Rocha MIDUM, Mânica-Cattani MF, Soares FAA, Rosa G, Maris AF, Battiston FG, Trott A, Lera JPB. Inflammatory cytokines in vitro production are associated with Ala16Val superoxide dismutase gene polymorphism of peripheral blood mononuclear cells. Cytokine 2012; 60:30-3. [PMID: 22688013 DOI: 10.1016/j.cyto.2012.05.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 05/17/2012] [Accepted: 05/18/2012] [Indexed: 11/16/2022]
Abstract
Obesity is considered a chronic low-grade inflammatory state associated with a chronic oxidative stress caused by superoxide production (O(2)(-)). The superoxide dismutase manganese dependent (SOD2) catalyzes O(2)(-) in H(2)O(2) into mitochondria and is encoded by a single gene that presents a common polymorphism that results in the replacement of alanine (A) with a valine (V) in the 16 codon. This polymorphism has been implicated in a decreased efficiency of SOD2 transport into targeted mitochondria in V allele carriers. Previous studies described an association between VV genotype and metabolic diseases, including obesity and diabetes. However, the causal mechanisms to explain this association need to be more elucidated. We postulated that the polymorphism could influence the inflammatory response. To test our hypothesis, we evaluated the in vitro cytokines production by human peripheral blood mononuclear cells (PBMCs) carrier's different Ala16Val-SOD2 genotypes (IL-1, IL-6, IL-10, TNF-α, IFN-γ). Additionally, we evaluated if the culture medium glucose, enriched insulin, could influence the cytokine production. Higher levels of proinflammatory cytokines were observed in VV-PBMCs when compared to AA-PBMCs. However, the culture medium glucose and enriched insulin did not affect cytokine production. The results suggest that Ala16Val-SOD2 gene polymorphism could trigger the PBMCs proinflammatory cytokines level. However, discerning if a similar mechanism occurs in fat cells is an open question.
Collapse
Affiliation(s)
- Marco Aurélio Echart Montano
- Laboratory of Molecular Aspects Associated to Genetic Diseases, University of Western Santa Catarina, Unoesc, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Natl Acad Sci U S A 2011; 108:5354-9. [PMID: 21402903 DOI: 10.1073/pnas.1019378108] [Citation(s) in RCA: 1093] [Impact Index Per Article: 84.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although commensal bacteria are crucial in maintaining immune homeostasis of the intestine, the role of commensal bacteria in immune responses at other mucosal surfaces remains less clear. Here, we show that commensal microbiota composition critically regulates the generation of virus-specific CD4 and CD8 T cells and antibody responses following respiratory influenza virus infection. By using various antibiotic treatments, we found that neomycin-sensitive bacteria are associated with the induction of productive immune responses in the lung. Local or distal injection of Toll-like receptor (TLR) ligands could rescue the immune impairment in the antibiotic-treated mice. Intact microbiota provided signals leading to the expression of mRNA for pro-IL-1β and pro-IL-18 at steady state. Following influenza virus infection, inflammasome activation led to migration of dendritic cells (DCs) from the lung to the draining lymph node and T-cell priming. Our results reveal the importance of commensal microbiota in regulating immunity in the respiratory mucosa through the proper activation of inflammasomes.
Collapse
|
17
|
Venier P, Varotto L, Rosani U, Millino C, Celegato B, Bernante F, Lanfranchi G, Novoa B, Roch P, Figueras A, Pallavicini A. Insights into the innate immunity of the Mediterranean mussel Mytilus galloprovincialis. BMC Genomics 2011; 12:69. [PMID: 21269501 PMCID: PMC3039611 DOI: 10.1186/1471-2164-12-69] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 01/26/2011] [Indexed: 11/15/2022] Open
Abstract
Background Sessile bivalves of the genus Mytilus are suspension feeders relatively tolerant to a wide range of environmental changes, used as sentinels in ecotoxicological investigations and marketed worldwide as seafood. Mortality events caused by infective agents and parasites apparently occur less in mussels than in other bivalves but the molecular basis of such evidence is unknown. The arrangement of Mytibase, interactive catalogue of 7,112 transcripts of M. galloprovincialis, offered us the opportunity to look for gene sequences relevant to the host defences, in particular the innate immunity related genes. Results We have explored and described the Mytibase sequence clusters and singletons having a putative role in recognition, intracellular signalling, and neutralization of potential pathogens in M. galloprovincialis. Automatically assisted searches of protein signatures and manually cured sequence analysis confirmed the molecular diversity of recognition/effector molecules such as the antimicrobial peptides and many carbohydrate binding proteins. Molecular motifs identifying complement C1q, C-type lectins and fibrinogen-like transcripts emerged as the most abundant in the Mytibase collection whereas, conversely, sequence motifs denoting the regulatory cytokine MIF and cytokine-related transcripts represent singular and unexpected findings. Using a cross-search strategy, 1,820 putatively immune-related sequences were selected to design oligonucleotide probes and define a species-specific Immunochip (DNA microarray). The Immunochip performance was tested with hemolymph RNAs from mussels injected with Vibrio splendidus at 3 and 48 hours post-treatment. A total of 143 and 262 differentially expressed genes exemplify the early and late hemocyte response of the Vibrio-challenged mussels, respectively, with AMP trends confirmed by qPCR and clear modulation of interrelated signalling pathways. Conclusions The Mytibase collection is rich in gene transcripts modulated in response to antigenic stimuli and represents an interesting window for looking at the mussel immunome (transcriptomes mediating the mussel response to non-self or abnormal antigens). On this basis, we have defined a new microarray platform, a mussel Immunochip, as a flexible tool for the experimental validation of immune-candidate sequences, and tested its performance on Vibrio-activated mussel hemocytes. The microarray platform and related expression data can be regarded as a step forward in the study of the adaptive response of the Mytilus species to an evolving microbial world.
Collapse
Affiliation(s)
- Paola Venier
- Department of Biology, University of Padova, Via U, Bassi, 58/B, 35121 Padova, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lin SM, Lin BH, Hsieh WM, Ko HJ, Liu CD, Chen LG, Chiou RYY. Structural identification and bioactivities of red-violet pigments present in Basella alba fruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:10364-72. [PMID: 20839771 DOI: 10.1021/jf1017719] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Mature Basella alba L. fruit, with dark blue skin and deep red-violet flesh, is a potential source of natural colorants. Its pigment components and bioactivities deserve particular attention and investigation. In this study, fruit flesh was extracted with 80% methanol (containing 0.2% formic acid) and subjected to solid-phase extraction, semipreparative HPLC isolation, mass spectrophotometric analysis, and structural elucidation. The major red pigment was identified as gomphrenin I. Its quantity increased with the increase of fruit maturity. The gomphrenin I extract yield from ripe fruits was 36.1 mg/100 g of fresh weight. In addition to gomphrenin I, betanidin-dihexose and isobetanidin-dihexose were also detected. The antioxidant activities of gomphrenin I determined by Trolox equivalent antioxidant capacity (TEAC), α,α-diphenyl-β-picrylhydrazyl (DPPH) radical scavenging activity, reducing power, and antioxidative capacity assays were equivalent to 534 μM Trolox, 103 μM butylated hydroxytoluene (BHT), 129 μM ascorbic acid, and 68 μM BHT at 180, 23, 45, and 181 μM, respectively. The anti-inflammatory function was tested at concentrations of 25, 50, and 100 μM in murine macrophages stimulated with lipopolysaccharide (LPS). The results revealed that gomphrenin I suppressed LPS-induced nitric oxide (NO) production in a dose-dependent manner and decreased PGE(2) and IL-1β secretions at the highest concentration tested. The transcriptional inhibitory activities of gomphrenin I on the expression of inflammatory genes encoding iNOS, COX-2, IL-1β, TNF-α, and IL-6 were also observed. It is of merit to identify gomphrenin I as a principal pigment of B. alba fruits and as a potent antioxidant and inflammatory inhibitor. These findings suggest that B. alba fruit is a rich source of betalains and has value-added potential for use in the development of food colorants and nutraceuticals.
Collapse
Affiliation(s)
- Shu-Mei Lin
- Department of Food Science, National Chiayi University, Chiayi, Taiwan
| | | | | | | | | | | | | |
Collapse
|
19
|
Li H, Hu J, Ma L, Yuan Z, Wang Y, Wang X, Xing D, Lei F, Du L. Comprehensive study of baicalin down-regulating NOD2 receptor expression of neurons with oxygen-glucose deprivation in vitro and cerebral ischemia-reperfusion in vivo. Eur J Pharmacol 2010; 649:92-9. [PMID: 20863826 DOI: 10.1016/j.ejphar.2010.09.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 08/31/2010] [Accepted: 09/07/2010] [Indexed: 11/24/2022]
Abstract
Cerebral ischemia-reperfusion can activate several transcription factors and lead to inflammatory reactions, which related to pattern recognition receptors with immune activating functions. NOD2 (nucleotide-binding oligomerization domain protein 2) is one of the receptors involved in innate immune response and is genetically associated with several inflammatory reactions. Since baicalin has the pharmacological effects of anti-inflammation and protection of brain from cerebral ischemia-reperfusion, we studied baicalin's effect on NOD2/TNFα in the cell of oxygen-glucose deprivation (OGD) in vitro and the mice of cerebral ischemia-reperfusion in vivo. The results showed that NOD2 and TNFα were up regulated in the cells with oxygen-glucose deprivation, not only in BV2 cells, but also in both of PC12 cells and primary neuron cells, which suggested NOD2 could express directly in neuron while OGD treatment. Baicalin (10 μg/ml) could effectively down regulate the expression of NOD2 and TNFα in both mRNA and protein levels. Meanwhile, baicalin (50 mg/kg, i.p.) could also down regulate the expression of NOD2 and TNFα in protein levels significantly, in which agreed with its effect in vitro study. These data demonstrated that targeting on NOD2 especially in neurons directly was possibly attributed to the neural-protective effect of baicalin in the injury of cerebral ischemia-reperfusion.
Collapse
Affiliation(s)
- Huiying Li
- Protein Science Laboratory of the Ministry of Education, Laboratory of Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | |
Collapse
|